
What is shape? Characterizing particle morphology using genetic
algorithms and deep generative models

Simon Guldager Andersen - Stud. ID: kpr279
(Dated: March 8, 2023)

This brief write-up is a summary of the scientific article "What is shape? Characterizing parti-
cle morphology using genetic algorithms and deep generative models" by R. Buarque de Macedo
et al. published in Granular Matter 25, 2 (2023) [1]. My emphasis is chiefly on genetic algorithms
and how the authors have used them to generate a variety of different particle shapes.

I. INTRODUCTION

Suppose we are in need of a granular material having
certain physical properties. How should we design the
grain shape in order to realize these properties? This is
the fundamental question that the authors have tried
to answer. To do this, they have started out by gener-
ating 10,000 images of unique particle shapes using a
genetic algorithm. These images have then been used
to train a variational autoencoder (VAE) to create an
approximate basis space of possible grain shapes.

The bulk properties of a material composed of
grains with a given shape can be simulated, and with
an approximate forward mapping from the shape space
to bulk properties at hand, the shape space can be
searched for regions of optimal bulk properties as e.g.
yield stress or packing fraction, albeit a lot of work is
needed to thoroughly explore this mapping.

II. REVIEW

The main focus of this review is how they have used ge-
netic algorithms to generate different particle shapes.
In the following, we will sketch the principles of genetic
algorithms followed by how the authors specifically im-
plemented one. Finally, the principles of VAEs - and
how they have been used to create a space of possible
grain shapes - is covered very briefly.

A. Overview of genetic algorithms

A genetic algorithm (GA) is a stochastic global op-
timization scheme inspired by natural selection. It is
very powerful for combinatorial optimization (e.g. the
travelling salesman), but works well for continuous
problems, too. It is generally quite efficient at finding
a near-global optima, but might be inefficient at find-
ing the exact one; by combining it with a local search
strategy like e.g. a line search, its convergence rate and
robustness can be improved considerably. Quite a lot
of hyperparameters are involved, and careful tuning is
necessary to achieve good performance. [2]

The basic implementation is as follows: A popula-
tion of N solutions is initialized randomly or by using
prior knowledge. Each iteration consists of a selection,
crossover and mutation stage, which are repeated un-
til the termination criterion is reached. These stages,

along with their specific implementation in the article,
will be illuminated in the following.

B. Using a GA for particle generation

In order to obtain a reasonable approximation to the
space of possible grain shapes, the VAE should be
trained on images of many different particle shapes.
To generate such shapes, the authors have exploited
that roundness, convexity and aspect ratio are known
to have big influence on the shape of 2D particles, al-
though they do not uniquely specify shape. They are
defined as

R =

∑N
i=1 ri
rmax

, C =
a

ahull
, A =

λ1

λ2
, (1)

where ri is the radius of the circle than can ’fit into’
the i’th corner (as estimated by the curvature of the
corner point), and rmax is the radius of the biggest
inscribed circle of the particle. Low roundness corre-
sponds to sharp corners and vice versa. a is the particle
area, while ahull is the area of the convex envelope of
the particle, as seen in fig. 3, and so the convexity is a
measure of the degree to which a particle is perfectly
convex. Finally, the aspect ratio is the ratio between
the width and the length of the particle. R,C,A all
take values in [0, 1].

FIG. 1: Illustration (from [1]) of the quantities in (1)

The authors used a GA to generate particle shapes ac-
cording to different (R,C,A) values, ultimately obtain-
ing 10,000 unique images of shape. The cost function
used to evaluate the quality of each solution has the
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form

cost = (C − Ctarget)
2 + (R−Rtaget)

2 + (A−Atarget)
2

+ 100SC + 100SI + 100BN,

which is a least squares function forcing (R,C,A) as
close to the specified values as possible, in addition to
3 terms penalizing unphysical grain shapes, namely too
sharp corners (SC), self-intersection (SI), and bottle-
necks (BN), i.e. when points on opposite side of the
particle are too close. To generate a particle with
(Rtarget, Ctarget, Atarget), their implementation goes
as follows:

Initialize 50 identical particles as 8 points uniformly
distributed around the edge of an ellipse with a speci-
fied area and aspect ratio Atarget

In each iteration:
Crossover: Generate k new solutions, each one by

choosing a solution pair with probability pc = 0.2, and
randomly swapping points

Mutate each particle point (r, θ) with probability
pm = 0.5 by adding Gaussian noise to each of its com-
ponents

Select the N+k
2 best solutions by choosing pairs at

random, each time selecting the best solution. Dupli-
cate the winners until the population size is 50
Terminate when the cost function of a solution is less
than ϵ

C. Creating a space of possible shapes using VAEs

The GA was used to generate 10,000 unique images of
particle shapes, some of which can be seen in fig. 3 in
the appendix, and these are then used to train a VAE.
Let us very briefly outline the principles of this deep
generate model, while referring to the schematic of the
architecture in fig. 2.

FIG. 2: Schematic of the architecture of a VAE. [4]

It is an unsupervised machine learning architecture
used for dimensionality reduction. Through multi-
ple convolutional layers, the encoder maps an input
x to the d-dimenional vectors µ and σ, which typi-
cally has much fewer dimensions than the input. A

’latent vector’, as it is called, z, is then calculated as
z ∼ N (µ, σ2), after which it is fed to the decoder part
of the network, which consists of multiple convolutions,
and whose job it is to reconstruct the input as closely
as possible.

To construct the space of grain shapes, the idea is
this: We assume that the 10,000 particle shape images
are distributed fairly homogeneously throughout the
space of possible grain shapes, in the sense that there
are no important regions of shape space with no im-
ages.

These are then used to train the VAE, after
which the encoder is able to generate two unique d-
dimensional vectors µ, σ for a given particle shape, and
the decoder can generate a unique particle shape given
any latent vector z. In this sense, the latent space of
z-values constitute a space of possible grain shapes.

Since each particle shape corresponds to a given
Gaussian N (µ, σ2) (by construction), the distribution
of possible grain shapes consists of many Gaussians,
whose relative distance is determined by their grain
shape similarity.

The authors found that d = 20 dimensions was
enough to accurately reconstruct the input, i.e. that 20
parameters are needed to uniquely specify 2D particle
shape, and that for each dimension zi, only zi ∈ [−4, 4]
corresponds to connected and therefore physically ac-
ceptable shapes. Using just 10 subdivisions per dimen-
sion still gives rise to 1020 unique particle shapes.

III. CONCLUSION

In this write-up, we have reviewed the method by
which the authors have constructed a space of possi-
ble grain shapes using genetic algorithms to generate
traning data for a VAE. After training, the decoder can
generate a unique particle shape given any 20 dimen-
sional latent vector z, and the 20 dimensional latent
space of possible z’s constitutes an approximate basis
for all (physically acceptable) grain shapes.

This shape space can then be searched for regions
of optimal bulk properties. Since the space of possi-
ble shapes is vast and the simulation of bulk proper-
ties computationally expensive, it is not an easy task
to search the entire shape space, but one could start
searching smaller subspaces and hope to get lucky. It
would be very useful to obtain an understanding of the
20 latent space dimensions in terms of how they each
affect shape, although it is by no means given that each
dimension has a simple physical interpretation.

The prospects of having constructed a space of pos-
sible shapes are exciting: Suppose for instance that we
feed a large number of images of different biological cell
types into the VAE. If different cell types happen to
aggregate in different regions of the shape space, a clas-
sification scheme connecting cell shape and functional-
ity/type could be made, potentially making it possible
to identify e.g. cancer cells just from their shape.
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IV. APPENDIX

FIG. 3: Figure taken from [1]. Examples of grain shapes with specified (R,C,A) values generated by a genetic al-
gorithm. Each box corresponds to a given convexity, with roundness on the horizontal axis and aspect ratio on the
vertical axis. If a shape is missing for a given (R,C,A), they genetic algorithm did not converge.

V. REFERENCES

[1] Macedo, R.B.d., Monfared, S., Karapiperis, K. et al. What is shape? Characterizing particle morphology with genetic
algorithms and deep generative models, Granular Matter 25, 2 (2023). https://doi.org/10.1007/s10035-022-01282-y

[2] Yang, Xin-She (2010) Nature-Inspired Metaheuristic Algorithms, 2nd edition, Luniver Press, p 1-10, 41-46
[3] Doersch, C.(2016) Tutorial on variational autoencoders

arXiv preprint: https://arxiv.org/abs/1606.05908
[4] Image retrieved from

https://en.wikipedia.org/wiki/Variational_autoencoder#/media/File:Reparameterized_Variational_
Autoencoder.png on March 7, 2023

https://arxiv.org/abs/1606.05908
https://en.wikipedia.org/wiki/Variational_autoencoder#/media/File:Reparameterized_Variational_Autoencoder.png
https://en.wikipedia.org/wiki/Variational_autoencoder#/media/File:Reparameterized_Variational_Autoencoder.png

	What is shape? Characterizing particle morphology using genetic algorithms and deep generative models 
	Abstract
	Introduction
	Review
	Overview of genetic algorithms
	Using a GA for particle generation
	Creating a space of possible shapes using VAEs

	Conclusion 
	Appendix
	References
	References


