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PRELIMINARY DISCUSSION

This discussion pertains to time series. These are any
series of data that vary in time, ie. plotted as [f(t), t].
The signals discussed here are periodic, with a slowly
varying frequency. To investigate this, Short (time)
Fourier Transforms (SFT) are utilized. Conjoined, short,
time intervals are individually Fourier transformed, to
give a spectral history.
More specifically, the data looked at in the article are ar-
tificial measurements of slowly varying continuous grav-
itational waves made by LIGO. The injected signal am-
plitude is of the same order as the background noise, ne-
cessitating sophisticated signal analysis. Template com-
parison is often used for this. Here, very specific signal
shapes predicted by theory are tested and varied till one
fits satisfactorily. This gives optimal precision, but at
very large computational cost. The SOAP group imple-
ment an algorithm based on a hidden Markov model: the
Viterbi algorithm, to significantly reduce the computa-
tional cost, as described later in this proceeding. Sev-
eral important approximative steps are taken, for while
the physical system being measured is (presumed) con-
tinuous, any digital measurement is necessarily discrete.
Amplifiers have rise times, and only finite amplitude res-
olution. This data is then lumped into even bigger time
chunks as a by the SFT, which also has maximal and
minimal frequency, and -resolution. The ansatz is then
that the physical system is well approximated by this set
of discrete time and frequency states, which is also what
the Viterbi algorithm takes as input. This is valid for
sufficiently tight frequency and time resolutions.

PRELIMINARY THEORY

In the article, all the data is grouped into equal length
time-intervals ∆t, for which the signal is reasonably ap-
proximated to have a constant frequency, and Gaussian
noise is added to the signal. Performing Fast Fourier
Transform (FFT) on each time slice and squaring gives a
spectrogram for the Power Spectral Density (PSD) - also
known as SFT.

Hidden Markov models

This treatment of the data is made to allow for a hidden
Markov model (HMM) interpretation of the data. In hid-
den Markov models, a Markov model can not be directly
observed, but only observed through emission probabil-
ities. The hidden Markov model dictates the frequency

for each group of data, and then a slice νj of the signal
is observed. By assuming the data follows a HMM the
probabilities can be written using Bayes’s Theorem and
the Markov property as:

max
ν⃗

P (ν⃗|D) =
P (D|ν)P (ν)

P (D)
(1.1)

P (ν⃗) = P (ν0)

N−1∏
j=1

P (νj |νj−1) (1.2)

lnP (ν⃗) = lnP (ν0) +

N−1∑
j=1

lnP (νj |νj−1) (1.3)

Where D is the data, and ν⃗ = {ν0, ν1, . . . νn} will be
referred to as a track, νj denotes the location of the
Markov model at time j. The probabilities P (D|ν) and
P (νn|νn−1) are found by assuming a special structure of
the HMM. For convenience P (D|ν) is known as the emis-
sion probabilities P (νn|νn−1) are known as the transi-
tion probabilities. P (ν0) denotes the probability distri-
bution over the initial state. Now the problem becomes a
discrete maximization problem, where the maximization
happens over the set of all possible tracks. An efficient
algorithm known as the Viterbi algorithm computes the
most likely track given the data. The Viterbi algorithm
requires knowledge of the assumed structure of the HMM.

THE VITERBI ALGORITHM

As previously described, the Viterbi algorithm finds
the most probable track trough the time-frequency grid.
In its most simple form, the Viterbi algorithm uses data
from a single detector, and the next step depends only
on the previous position, as per the Markov property. To
keep it simple, the track is limited to staying in the same
frequency bin (Center - C), going up (U), or one bin down
(D) in the next time step. This can be implemented by
using a transition matrix, which stores the prior probabil-
ity for each direction. In the case of transitions limited to
UCD, the transition matrix (lnP (νj |νj−1) rescaled) will
contain three numbers, and could be written as a stencil:
[0, 1, 0], to favor the center transition.

Given the prior (transition matrix) and the log-
likelihood grid, the Viterbi algorithm is readily applied.
Figure 1 shows the starting point for the algorithm. No-
tice that we have gone from probabilities to log likelihood
(LLH), and since we omit the marginal likelihood P (D),
the value is scaled.
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Figure 1: Scaled LLH for each time segment and frequency bin.

Figure 2 shows the track recorded from the Viterbi al-
gorithm. For the first segment of time, there is no prior,
and the previous transition is set to center. For each
of the next segments of time, the maximum likelihood
is found for each frequency, given the possible previous
positions. The cumulative sum over the previous posi-
tion’s scaled LLH plus any bonuses from the transition
matrix is then taken, and added to the value at the given
frequency. The best possible previous position is then
stored, as shown in figure 2. This is done sequentially
for all time slices. Finally, the last time slice is used to
find the most probable track, starting with the highest
cumulative scaled LLH frequency bin, the route can be
followed backwards using the stored transitions.

Figure 2: Track through the scaled LLH grid.

SNR OPTIMIZATIONS

Outlining a few developments of the base algorithm
discussed in the article: Rather than just looking at the
previous step, older steps can also be taken into account.
This however leads to a significant increase in computa-
tional cost. A more advanced transition matrix (or sten-
cil) can also be implemented, so as to incorporate more
advanced physics into the path selection. This is much

more problem specific, and also increases the computa-
tional complexity of the algorithm, though not as much
as the ’memory’ implementation.

TESTING THE VITERBI ALGORITHM

To test their Viterbi algorithm, the SOAP team used it
on multiple different simulated and real data sets. Figure
3 shows a simulated data sets for two detectors. And even
though no line seems to be present, the Viterbi algorithm
finds a track, shown in the bottom part of the figure.

Figure 3: The two upper pictures are frequencies measured from
two detectors. The third shows a variant of the LLH ratio,
which is normalized along the y-axis. The lower picture
shows the most probable track found by the Viterbi algo-
rithm, along with the injected signal.

Results

The difference between the track found with the Viterbi
algorithm in figure 3 and the input signal gives an RMS
of about 1 frequency bin. The Viterbi algorithm compu-
tation scales linearly in the size of the spectrogram, which
is an improvement over the previous method of template
fitting. Generally, they obtain a RMS of ∼ 2 between the
Viterbi track and the injected signal.

OTHER APPLICATIONS OF VITERBI
ALGORITHM

Historically the Viterbi algorithm was designed to de-
code a noisy bit-channel. It has been applied to a broad
range of problems, from Natural Language Processing to
DNA sequencing.
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