What is shape?

Characterizing particle morphology using genetic algorithms and deep generative models

A review by Simon Guldager Andersen

UNIVERSITY OF COPENHAGEN

ORIGINAL PAPER

What is shape? Characterizing particle morphology with genetic algorithms and deep generative models

R. Buarque de Macedo¹ · S. Monfared¹ · K. Karapiperis² · J. E. Andrade¹

Received: 8 December 2021 / Accepted: 5 September 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Engineered granular materials have gained considerable interest in recent years. For this substance, the primary design variable is grain shape. Optimizing grain form to achieve a macroscopic property is difficult due to the infinite-dimensional function space particle shape inhabits. Nonetheless, by parameterizing morphology the dimension of the problem can be reduced. In this work, we study the effects of both intuitive and machine-picked shape descriptors on granular material properties. First, we investigate the effect of classical shape descriptors (roundness, convexity, and aspect ratio) on packing fraction ϕ and coordination number Z. We use a genetic algorithm to generate a uniform sampling of shapes across these three shape parameters. The shapes are then simulated in the level set discrete element method. We discover that both ϕ and Z decrease with decreasing convexity, and Z increases with decreasing aspect ratio across the large sampling of morphologies—including among highly non-convex grains not commonly found in nature. Further, we find that subtle changes in mesoscopic properties can be attributed to a continuum of geometric phenomena, including tessellation, hexagonal packing, nematic order and arching. Nonetheless, such descriptors alone can not entirely describe a shape. Thus, we find a set of 20 descriptors which uniquely define a morphology via deep generative models. We show how two of these machine-derived parameters affect ϕ and Z. This methodology can be leveraged for topology optimization of granular materials, with applications ranging from robotic grippers to materials with tunable mechanical properties.

Keywords Granular materials \cdot Non-convex \cdot Topology optimization \cdot Deep generative models \cdot Discrete element method \cdot LS-DEM

Structure of the presentation

- I. Setting the stage
- II. Genetic algorithms generally and specifically
- III. Variational autoencoders a very brief introduction
- IV. Results and discussion
- V. Questions?

Genetic algorithms are the main focus of this presentation

I. ~ Setting the stage

What we want: Predict the grain shape needed to give a granular material certain physical properties specified by us

How we'll do it:

- \rightarrow Create many particle shapes with a genetic algorithm
- \rightarrow Use these to train a VAE to construct a basis for grain shape
- \rightarrow For each grain shape of interest, simulate the interaction of many identical grains to extract bulk properties
- \rightarrow Understand the mapping between the basis and bulk material properties

II. ~ Genetic algorithms - Overview

- Stochastic global optimization scheme
- Biased towards better solutions, but allows for worse to avoid getting stuck in local minima
- Many hyperparameters careful and patient tuning necessary

II. ~ Genetic algorithms - Stages

Initialize a population of N solutions (randomly or using prior knowledge)

At each iteration (not necessarily in this order):

- **1) Fitness evaluation & Selection:** Evaluate the quality of each solution and select k solutions through a selection scheme. Discard the rest
- **2) Crossover:** Produce N-k new solutions by combining the current k solutions through a crossover scheme
- **3) Mutation:** Mutate each solution with probability p through a mutation scheme

Terminate when convergence criterion or max iterations are met

II. ~ Genetic algorithms – Selection stage

Fitness evaluation – *evaluate the quality of all solutions:*

- $\circ~$ 'Quality' is quantified by the cost function
- Incorporate prior knowledge into the cost function, e.g. by adding penalty terms for non-physical solutions

Selection – *select k individuals through a selection scheme like e.g.:*

- \circ Roulette wheel selection
- Tournament selection

II. ~ Genetic algorithms – Crossover stage

Crossover stage – *Produce N-k new solutions by combining the current k solutions through a crossover scheme:*

 \circ Pick two solutions at random and crossover with probability p_c

Crossover scheme examples:

- Linear combinations of two or more solutions
- Swapping one or more components of two solutions

Swapping Example; crossover at the second index:

Parent 1 = $(x_1, x_2, x_3, x_4, x_5)$, Parent 2 = $(y_1, y_2, y_3, y_4, y_5)$ yielding

Child $1 = (y_1, y_2, x_3, x_4, x_5)$, Child $2 = (x_1, x_2, y_3, y_4, y_5)$

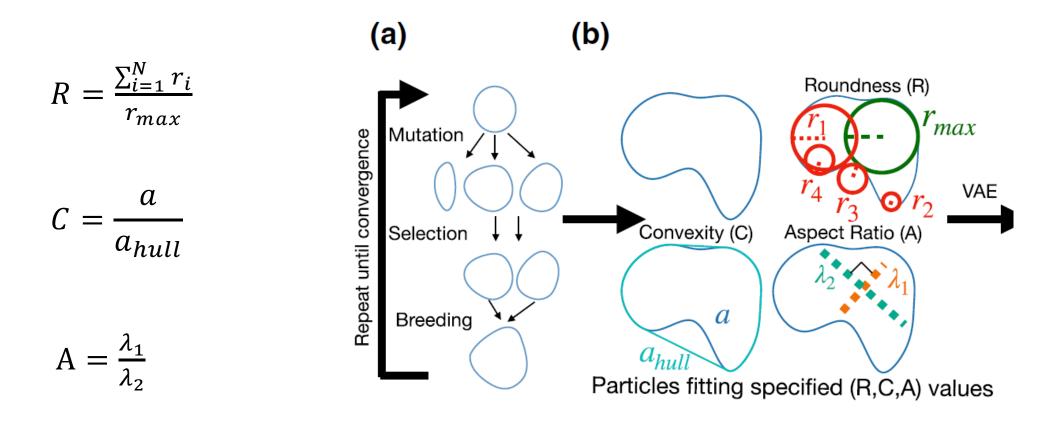
II. ~ Genetic algorithms – Mutation stage

Mutation stage – Mutate each solution with probability p_m through a mutation scheme:

- Perturb one or more components by a random value(s) drawn by some distribution
 - \rightarrow Gaussian results in mostly small steps
 - \rightarrow Lévy results in small steps combined with occasional big jumps

II. ~ Using GAs for particle generation

Which parameters are relevant to the shape of a 2D object?



II. ~ What does the cost function look like?

$$cost = (C - C_{target})^{2} + (R - R_{target})^{2} + (A - A_{target})^{2} + 100 \cdot SC + 100 \, SI + 100 \, BN$$

$$SC = \begin{cases} 1, & \text{if any corner is too sharp} \\ 0, & \text{otherwise} \end{cases}$$

$$SI = \begin{cases} 1, & \text{if particle self - intersects} \\ 0, & \text{otherwise} \end{cases}$$

$$BN = \begin{cases} 1, & \text{if points of opposite side are too close} \\ 0, & \text{otherwise} \end{cases}$$

II. ~ Generate particle with a given (R, C, A)

Initialize N = 50 particles, each one as 8 points uniformly distributed on an ellipse with aspect ratio A

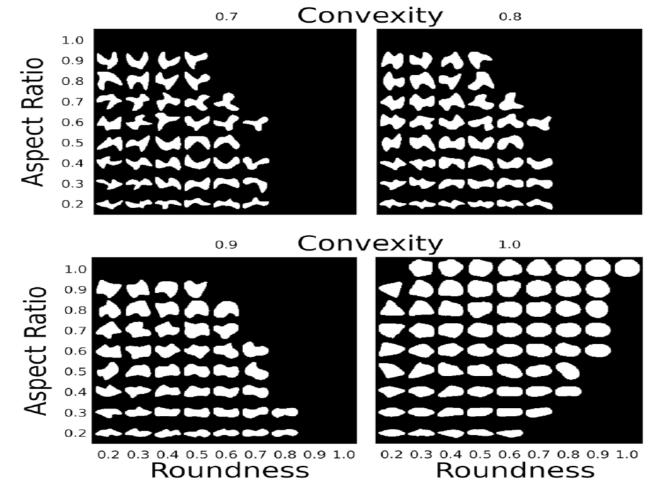
At each iteration:

- **Breed** k new solutions by choosing solution pairs at random with $p_c = 0.2$ and randomly swapping points.
- **Mutate** each particle point (r, θ) with $p_m = 0.5$ by drawing values from Gaussians specified by $(\mu_r = 0, \sigma_r = 1)$ and $(\mu_\theta = 0, \sigma_{theta} = 0.05)$
- Select the best ~ $\frac{N+k}{2}$ solutions by tournament selection. Duplicate the winners until the population size is 50

Terminate when the minimum cost of a solution is less than 0.0005

II. ~ Examples of generated particles

The point of everything so far has been to create 10,000 unique images as training data for the VAE



III. ~ Variational autoencoders – *very* briefly

- Deep generative model
- Dimensionality reduction
- Latent space distribution

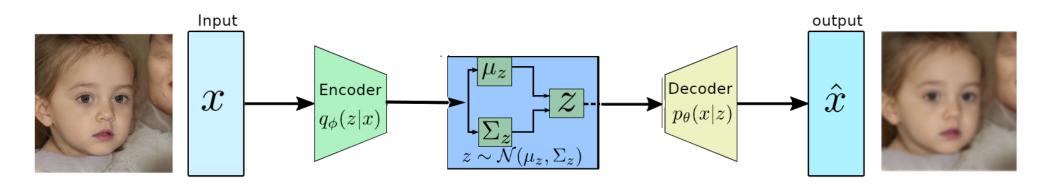
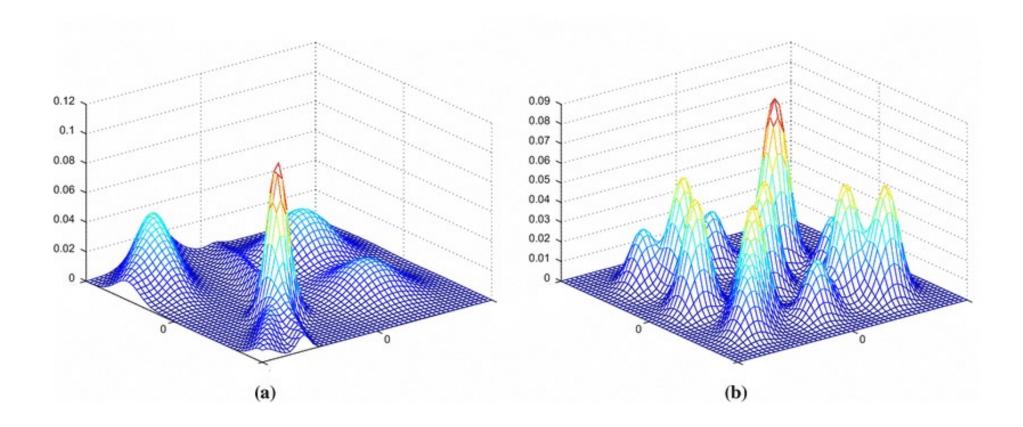


Image by Sunil Yadav

III. ~ Variational autoencoders – very briefly

Possible latent distributions of a 2 dimensional latent space



III. ~ Constructing a space of possible shapes

- o Generate 10,000 unique images of particle shape as training data
- Assume that training data roughly 'maps out' true shape space \rightarrow i.e. no important regions of shape space without images
- During traning, the VAE learns to interpolate between shapes
- After training, the VAE maps any latent vector to a unique shape
 - ightarrow In this sense, we have built a space of possible grain shapes

14/03/2023 17

III. ~ Training a VAE with the GA-shapes

- Trained on the 10,000 images of particle shapes
- A 20-dimensional latent space enough for accurate reconstruction
- Unphysical shapes when $z_i \notin [-4,4]$, i = 1, ..., 20
- Using just 10 subdivisions per dimension $\rightarrow 10^{20}$ unique shapes

IV. ~ Results and discussion

- Having constructed space for possible grain shapes, mapping to bulk properties can in principle be obtained
 - \rightarrow Many simulations needed to establish relationships
 - \rightarrow Not given that each dimension has a simple physical interpretation

#