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I. INTRODUCTION

In this write-up, the tutorial review ”Principal compo-
nent analysis” by Bro and Smilde is summarized, and the
used statistical method is explained. The review revolves
around an analysis of 44 bottles of red wine, measuring
14 different chemical properties and components for each
of the bottles. Data in 14-dimensional feature space with
44 samples. The approach to these data can be of vary-
ing nature, e.g. plots of each feature vs. sample, as seen
in figure 1.

FIG. 1: Two plots of methanol and ethanol content in
each of the sample wine bottles. The bottles are
furthermore classified in the region of origin.

This is a univariate approach. The down-side is that
important correlations between the features are prone to
be lost. The question is, how is interpretable informa-
tion extracted from a 14-dimensional feature space? The
answer is Principal Component Analysis (PCA): Project
the data from N to D dimensions preserving the most
information.

II. REVIEW

To ensure that the desired outcomes are achieved when
performing PCA, several steps must be taken during the
actual implementation of the method.
As mentioned earlier the goal of the method is to re-
duce dimensionality. This is done by a change of basis
i.e. rotating the data in accordance to a maximization
of variance. This maximization is generalized into an
eigenvalue problem where the eigenvectors make out for
the new basis, which will be covered later. The number
of eigenvectors equals the number of parameters in the
data set, but choosing the right amount for the particu-
lar set, necessitates attentive consideration depending on
the data and choice of visualisation.

Before all this some data processing is needed. It is stated
in the article that when comparing data from different pa-
rameters the characteristic sizes i.e. means and variance
may differ drastically.[1] The term autoscaling is intro-
duced to eliminate bias towards any single parameter,
and thereby promote a fair comparison that maximizes
variance. Autoscaling is simply subtracting the mean
from all measurements in regards to a certain parameter
such that the mean over that given parameter is 0, Eq.
(1). Furthermore the data is divided by the standard
deviation, ensuring the new basis won’t be affected by a
parameter with a large variance.
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Dividing the parameter values with the standard devia-
tion is not always necessary and depends on the original
data set. In literature, the division by σ is sometimes
omitted.[2]
Subsequently, weights are introduced to weigh the data
and have the length ||w|| = 1. w will contain the eigenval-
ues determining in which direction the largest variances
are obtained and will generally be the bridge from the
autoscaled data to the new xn = wT yn. From Eq. (2)
and (3) it shows how the problem ends up being an eigen-
value problem involving the covariance matrix C. Several
parts of the derivation are omitted and can be found in
literature.[2]
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After solving this eigenvalue problem the first vector e.i.
the vector with the largest eigenvalue corresponds to the
component of the new basis with the highest variance.

Practical aspects

As described in detail in the paper by Bro and Smilde,
several considerations arise when performing PCA. The
first as mentioned earlier is the number of components
or length of the new basis. The article describes a lot of
ways of doing this where some are illustrated in Fig. 3.
Some of the ways include Kaiser’s rule, which simplifies
choosing all the components with eigenvalues above one.
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Because of the autoscaling and the presumed orthogonal-
ity between variables, each should have a variance of 1.
An eigenvalue greater than one should then point to the
component describing variance for more than one feature.
Another method, also shown in Fig. 2, is the broken stick
rule. Using this rule, it is considered, how the eigenvalues
would be placed if the data was truly random, and com-
paring to the eigenvalues greater than these.[1] In case
of the wine samples, the first rule results in around 5
components and the latter results in 3. After the choice

FIG. 2: Illustration of choosing component for the PCA
analysis.[1]

of numbers of sub-dimensions, the next question is ”how
much information was lost in the compression process?”

X = (t · pT ) + E (4)

Eq. (4) contains the original data matrix X, the scores
vector i.e. the new weighted vector t, the loading vector
p and the residuals E. The loading vector is simply the
transformation required to go from the new basis to the
old. Lastly, E is the same shape as the original data,
measuring how much information is lost in the process.[1]

Results

After the principal components of the wine data, and the
number of components to include have been determined,
the samples are plotted along the respective axes in figure
3:

FIG. 3: The 44 samples plotted along the 4 principal
components. The legend shows the classification of the
samples depending on the region of origin.

It is e.g. seen that wines from Chile score exclu-
sively negative values along principal component 2, and
wines from Argentina score exclusively positive values
along principal component 4. Studying the eigenvec-
tors of eq. 3 reveals a correlation regarding the wine’s
region of origin and some of the chemical structure
of the wine (within the 14 chosen chemical compo-
nents/measurements).

III. CONCLUSION

In the review, PCA is motivated and thoroughly ex-
plained. Relevant considerations regarding preparation
of data, such as autoscaling, are made, and finally the
wine samples are analyzed with respect to the principal
components. It is concluded that projecting data along
the 3-4 greatest principal components axes is beneficial,
since the eigenvalues along these component directions
lie above the ”broken-stick” distribution of eigenvalues
of random 14-dimensional data. Projecting the samples
along the 4 greatest principal component axes, a scatter
plot shows the grouping of the different wine bottles in
region of origin and their trends along the selected com-
ponents.
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