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Apparent superluminal behavior in wave propagation
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The apparent superluminal propagation of electromagnetic signals seen in recent experiments is shown to be
the result of simple and robust properties of relativistic field equations. Although the wave front of a signal
passing through a classically forbidden region can never move faster than light, an attenuated replica of the
signal is reproduced “instantaneously” on the other side of the barrier. The reconstructed signal, causally
connected to the forerunner rather than the bulk of the input signal, appears to move through the barrier faster
than light.
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[. INTRODUCTION then sufficient to prove that the signal is necessarily zero
ahead of the light front and that the light front always moves
Recent experimental reports of the propagation of electrowith a velocity of c. While the efforts of Sommerfeld and
magnetic signals with velocities larger tharin dispersive  Brillouin would seem to have settled the issue of true super-
media[1], in waveguideg2], and in electronic circuit$3] luminal propagation definitively, the situation is somewhat
have once again focused attention on a subject of longmore subtle. Their work conclusively demonstrated that
standing interest. The immediate and widespread hostilitfMaxwell’s equations preclude superluminal propagation for
that such reports seem to generate among theorists is an umedia with a causal form af(w). It did not, however, ex-
derstandable consequence of a firm belief in the consistendgnd to a proof that the singularities ©fw) must lie in the
of electromagnetism and relativity. In order to dispel suchlower half plane. In simple electron resonance models of
concerns at the outset, we distinguish between “true” andlielectrics, such behavior follows from the absorptive nature
“apparent” superluminal phenomena. Consider a right-of the materia[5]. We are not, however, aware of any com-
moving pulse with a wave front locatedxj att=0. Atrue  pletely general proof of material causality. For this reason,
superluminal phenomenon would permit the observation opresent considerations will be confined to modeling
some signal at positions>Xy+ ct. True superluminality is dielectric-free waveguides.
not predicted by either Maxwell's equations or the Klein- The present paper addresses the current issue of apparent
Gordon equation which we shall consider here. Indeed, mostuperluminality. In order to avoid the difficult issue of mod-
recent experimental papers are careful to emphasize the#ling v(w), we will restrict our attention to propagation in
consistency with Maxwell’s equations and, hence, do notwo-dimensional wave guides with constrictions. For slow
claim the observation of true superluminal effects. Ratheryariations in the shape of the constriction, Maxwell's equa-
these experiments have demonstrated the existence of “apions reduce to a one-dimensional Klein-Gordon equation, in
parent” superluminal phenomena taking place well behindwhich the nonuniformities can be modeled through a suitable
the light front. In the case of waveguide experiments, obserpotential. A side benefit of this replacement is that the strict
vations generically involve pulses that seem to traverse anpossibility of true superluminal propagation is easily dem-
“classically forbidden” region instantaneously. While these onstrated. We then consider the propagation of a wave form
results illuminate an interesting and potentially useful effectwith a precise front initially to the left of a potential barrier
such transmission occurs well behind the light front and doefocated in the interval &x=<b. The barrier is presumed to
not challenge the wisdom and authority of Maxwell and Ein-be high relative to the dominant wave numbers contained in
stein. As we shall see below, apparent superluminality is exthe pulse but is otherwise arbitrary. Our results for the in-
tremely general and to be expected. coming and transmitted waves can then be expressed simply:
Papers by Sommerfeld and Brillou[d] represent some The incoming wave moves with a uniform velocity of 1.
of the earliest and most beautiful investigations of the quesThe transmitted wave/(x,t) (for x>b) is attenuated as an
tion of superluminality. Their concern was with unbounded,obvious consequence of barrier penetration, and its ampli-
dispersive media. There were at the time abundant examplesde is proportional to the derivative of the initial pulse
of anomalous dispersion, i.e., substances for which phasevaluated at the pointx(-ct—b). The additional displace-
and group velocities were both larger tharBince the group ment b suggests instantaneous transmission of the pulse
velocity was then believed to be identical to the velocity ofthrough the barrier and is the source of the apparent super-
energy propagation, Sommerfeld and Brillouin understandiuminality observed empirically. The fact that the transmitted
ably found the question of superluminal propagation to be opulse is an image of the derivative of the original pulse and
importance. Their strategy was to write the requisite propanot the pulse itself is an elementary consequence of the fact
gator using Laplace transforms and a suitable analytic fornthat transmission amplitudes generally vanish in the linit
for the phase velocity (0) = w/k. The fact that the singu- —0. When the signal is a low-frequency modulation of a
larities ofv (w) were restricted to the lower half plane was carrier wave, as is the case in many experimental investiga-
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tions, the envelopes of the incident and transmitted wavegpper half plane, it follows that (x—t—x')=0 for x>x’

are identical. _ _ +t and thus thaiy(x,t) is strictly zero forx>xq+t. Noth-
Some of the topics treated here have been discussed elsfiy precedes the light front.

where both analytically and numericall§,3]. Our intention

is to emphasize the generality and extreme simplicity of this

A. A special case
phenomenon.

The authors of Ref.7] considered the special case where
Il. THE MODEL V(x)=m? is a positive constant inside the barrier region 0

<x=b and found
We consider a scalar wave/ moving in a one-

dimensional potential according to the Klein-Gordon equa- 4ok .
fion p g q T(w)= 5 eI(K w)b (5)
Py >y with k=iym?—(w+ie)? and
—F'i‘V(X)I,U:—F. (1) .
X D=(w+k)°—(w— k)% P, (6)

This problem is closely related to that of propagation in

two-dimensional waveguide according to a[The discontinuity inV(x) implies that Eq.(1) is not a nu-

merically reliable approximation to the corresponding two-

P2 dimensional problem of a waveguide with a sudden constric-
V2 = — 2) tion. Nevertheless, the apparent superluminal behavior
at displayed below is strictly analogous to that seen in real

waveguideg 6].] The singularities ofT(w) are due to the
zeros ofD in the w plane. Given the form ok, the zeros of

D are confined to the lower half plane, aiidw) is indeed
analytic in the upper half plane. As expected, this model
precludes genuine superluminal propagation. The analytic
properties ofT (w) are, of course, dictated by those\tfw).

The general proof that any given potential will lead to such
analyticity is more challenginbAll real, local, and bounded
potentials that vanish sufficiently rapidly as—«~ are ex-
pected to respect these analyticity conditions, and the ab-

We seek solutions to Ed1) that describe the motion of gence of true superluminality is thus to be expected for all
an initial pulsey(x,0)=f(x), which has arbitrary shape but physically sensible choices &f

satisfies the following two conditions. First, the pulse has a
well-defined wave fronkg initially to the left of the barrier
V(x), i.e., ¥(x,0)#0 only whenx=<xy,<0. Second, at
=0 the pulse moves uniformly to the right with a velocity of ~ Confident that our Klein-Gordon model is free of genuine
1, so thatdy/ dt=— gyl 9x att=0. For any given potential, acausal propagation, we turn to apparent superluminal phe-
this problem can be solved with the aid of the correspondingiomena. Consider a strong barr{gith mb>1) and imag-
Green'’s function. ine that the initial wave form/(x,0) is dominated by low-

This model was considered in detail in RET], where it frequency components for whidlw|<m. In this case, the
was shown in generality that the transmitted wave is giverform of ¢(x,t) is both simple and intuitive. Specifically, we
by need only considew~0 for which k~im. In this domain,

the transmission amplitude can be approximated as

The waveguide is assumed to be infinite in theirection
and to extend from &z=<h(x) in thez direction. If ¥ van-
ishes at the transverse bounding surfaces ahdsifa slowly
varying function ofx, we can approximatd as the product
(x,t)sin(mz/h). Neglecting derivatives di, Eq.(2) reduces
to Eq. (1). The potential is determined by the width of the
waveguide so that (x) = %/h(x)? for the lowest transverse
mode. For simplicity, however, we will consider choices of
V(x) that are nonzero only in the region<X=<b.

B. Apparent superluminal behavior

X0 ~
so0= [ Toctxtnex, @ g
—x ~— o a—lwby—mb
T(w) e e e ™Mb, (7)
whereT(x) is the retarded transmission kernel, which may _ o
be expressed in terms of its Fourier transfoF(w) We shall see shortly that this form of the transmission am-
plitude is quite general. Using E@7), we see that Eq4)
~ o o do reduces to
T(u)= T(w)e'! —. (4)
—w 2
The physical interpretation Gf(w) as a transmission ampli- 15 general proof can be constructed along the following lines.
tude is elementary: An incoming plane wave exp{, inCi-  rite the transmission amplitude as a linear integral equation of the

dent on the potential barrier from the left, leads to a transform y= o+ [G,V ¢, whereG, is a suitable free propagator. Sin-
mitted waveT(w)exp{wX). Since|T(w)|—1 for |w|—%,  gularities iny arise when singularities of the integrand pinch the
the integration contour in Ed4) can be closed in the upper integration contour. Analyticity 0¥ () in the upper half plane then
half @ plane forx>0. If T(w) is free of singularities in the ensures the desired analyticity propertiesT¢b).
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~ 4 9 common to all potentials that do not have a zero-energy
T(x—t—x’)=—ae‘mb£5(u—b) . (8  bound staté.
u=x—t=x’ The final barrier penetration factor is also familiar and is
expected whenever there is strong attenuation. Consider the
Thus, we find that transmission amplitude for a strongly repulsive but otherwise

arbitrary potential using the WKB approximatidrifhe re-
sulting transmission amplitude is readily calculated, and

4
P(X,t)~— Ee*bmf’(x—t—b). (9 shows that the factor exp(mb) is replaced by
b
When a pulse dominated by low-frequency components im- ex;{ B fo W(x)dx|. (12)

pinges on a strongly repulsive barrier, the transmitted wave

is a strongly attenuated replica of the derivative of the origi-a |ocalized repulsive barrier of sufficient strength will trans-
nal pulse. The transmitted pulse appears fo traverse the rjt an instantaneous image of the derivative of the incoming
gion of the potential barrier in zero time. This is the apparenkjgnal according to Eq9) independent of the details of both

superluminal phenomenon observed empirically. It occurghe potential barrier and the pulse. Apparent superluminal
well behind the light front of the original signal and is not an pehavior is a robust phenomenon.

indication of true superluminal propagation. Rather, it is an
interference phenomenon which is in no sense acausal.
There is an evident inconsistency between the present as-
sumption thaty(x,0) is dominated by low-frequency com-  The above results can also be expressed as a time delay of
ponents and our initial assumption that the signal has a welthe pulser defined as the difference between the time actu-
defined light frontwhich necessarily implies the presence of ally required for transmission across the barrier and the time
high-frequency componentsThe consideration of signals required for a free wave to travel the same distance. In the
that are the product of, e.g., a Gaussian puisith clear case of a square barrier and a low-frequency putse;-b.
low-frequency dominangeand a step function to impose the Negative values ofr correspond to apparent superluminal
light front makes it clear that the effects of this inconsistencypropagation. For the modulated carrier wave Ekf), one
can be made arbitrarily smdlr]. may expandr (w) about the carrier frequeney, and obtain

A. The time delay

~ i®(w) @i (@ wg) ' (o)
C. Carrier waves T(0)~[T(wg)|e™ e ’ > (13
Experiments frequently involve a modulated carrier wavewhere®(w) is the phase off (w). The second exponential
. factor gives rise to the time delay(wg) =P’ (wg) through
f(x)=€"“oF(x), (100 the Fourier exponential in Eq4). Familiar results from
guantum mechanics for purely repulsive potentials remind us
where F(x) provides a slowly varying modulation of the that ®(w) is less than 0 for alkw and that®(0)=® ()
carrier. Inserting this into Eq9), the transmitted signal be- =0. The time delay is necessarily negative for sufficiently
comes small wy and apparent superluminal effects can be observed
for all repulsive potentials. The time delay changes sign for

4 . i
P(xX,t)=— Eeibmln woF(u) + F’(u)]elwou|u=x7t7b .
(11) 2Consider scattering from an arbitrary potential that is zero except

in the interval O<x=<b with an interior solutione(x). Join this

. . . interior solution to the right-moving plane wave éxfx—b) at x
Since the Fourier transform d#(x) is presumed to have _y, yith the usual requirement of continuity of the wave function

support only for frequenciefn|<wo, the second term may  ang its first derivative. In the limio—0, ¢(b)=1 ande’ (b)=0.
be ignored. We conclude that the envelope of the pulsegimilarly, join the interior solution to the linear combination
|4(x,1)], is unaltered by the transmission. Again, the argu-A exp(wx)+Bexp(—iwx) atx=0. If ¢’(0)#0, the coefficients
ment of the right side of Eq11) suggests that transmission and B will diverge like liw. The transmission amplitud@(w)
of the envelope through the barrier is instantaneous. =e '“b/A will vanish linearly with  unlesse’(0) is zero. The
condition thate’(0)= ¢’ (b)=0 is precisely the condition that the

potential should support a zero-energy bound state.
IIl. GENERALITY OF THE RESULTS a . . . .
We consider a potential that is strongly repulsive for a#>0

The various factors contributing to the approximate form=b and zero elsewhere. Hence, it is appropriate to match the plane
Eqg. (7) for T(w) are all of general origin. The factor wave solutions directly to the WKB wave function.
exp(—iwb) represents the phase difference between the free4rhis second result is a consequence of Levinson’s theorem which
plane wave exp{x) at the boundaries of the region of non- relates the asymptotic behavior of the phase shift to the number of
zero potential. It will always appear. Similarly, the linear bound states supported by the potentiathrough & (0)— ® (o)
vanishing of the transmission amplitudeas-0 is a feature  =nw. There are no bound states for purely repulsive potentials.
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some value ofw, comparable to the height of the potential Strongly repulsive barriers always transmit an attenuated im-
barrier, and it approaches zero from abovecgstends to  age of the spatial derivative of the incident signal. When the

infinity. Apparent superluminality is a very general phenom-signal consists of a modulated carrier wave, the envelope of
enon. this wave is transmitted unaltered. We have attempted to

demonstrate that the phenomena described here are both ex-
tremely general and noncontroversial. Their experimental
observation does not challenge received wisdom and in no

Using the model of a Klein-Gordon equation with a po- sense compromises our confidence in general notions of cau-
tential, we have presented a simple description of the appasality. It will be interesting to see whether this interesting and
ent superluminal phenomena seen in waveguides: Lowgeneral consequence of wave theory will have practical ap-
frequency waves seem to traverse such barriers in zero timplications.

IV. CONCLUSIONS
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