
PHYSICAL REVIEW A, VOLUME 64, 044101
Apparent superluminal behavior in wave propagation
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The apparent superluminal propagation of electromagnetic signals seen in recent experiments is shown to be
the result of simple and robust properties of relativistic field equations. Although the wave front of a signal
passing through a classically forbidden region can never move faster than light, an attenuated replica of the
signal is reproduced ‘‘instantaneously’’ on the other side of the barrier. The reconstructed signal, causally
connected to the forerunner rather than the bulk of the input signal, appears to move through the barrier faster
than light.
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I. INTRODUCTION

Recent experimental reports of the propagation of elec
magnetic signals with velocities larger thanc in dispersive
media @1#, in waveguides@2#, and in electronic circuits@3#
have once again focused attention on a subject of lo
standing interest. The immediate and widespread host
that such reports seem to generate among theorists is a
derstandable consequence of a firm belief in the consiste
of electromagnetism and relativity. In order to dispel su
concerns at the outset, we distinguish between ‘‘true’’ a
‘‘apparent’’ superluminal phenomena. Consider a rig
moving pulse with a wave front located atx0 at t50. A true
superluminal phenomenon would permit the observation
some signal at positionsx.x01ct. True superluminality is
not predicted by either Maxwell’s equations or the Klei
Gordon equation which we shall consider here. Indeed, m
recent experimental papers are careful to emphasize
consistency with Maxwell’s equations and, hence, do
claim the observation of true superluminal effects. Rath
these experiments have demonstrated the existence of
parent’’ superluminal phenomena taking place well beh
the light front. In the case of waveguide experiments, obs
vations generically involve pulses that seem to travers
‘‘classically forbidden’’ region instantaneously. While the
results illuminate an interesting and potentially useful effe
such transmission occurs well behind the light front and d
not challenge the wisdom and authority of Maxwell and E
stein. As we shall see below, apparent superluminality is
tremely general and to be expected.

Papers by Sommerfeld and Brillouin@4# represent some
of the earliest and most beautiful investigations of the qu
tion of superluminality. Their concern was with unbounde
dispersive media. There were at the time abundant exam
of anomalous dispersion, i.e., substances for which ph
and group velocities were both larger thanc. Since the group
velocity was then believed to be identical to the velocity
energy propagation, Sommerfeld and Brillouin understa
ably found the question of superluminal propagation to be
importance. Their strategy was to write the requisite pro
gator using Laplace transforms and a suitable analytic fo
for the phase velocityv(v)5v/k. The fact that the singu
larities ofv(v) were restricted to the lower halfv plane was
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then sufficient to prove that the signal is necessarily z
ahead of the light front and that the light front always mov
with a velocity of c. While the efforts of Sommerfeld and
Brillouin would seem to have settled the issue of true sup
luminal propagation definitively, the situation is somewh
more subtle. Their work conclusively demonstrated th
Maxwell’s equations preclude superluminal propagation
media with a causal form ofv(v). It did not, however, ex-
tend to a proof that the singularities ofv(v) must lie in the
lower half plane. In simple electron resonance models
dielectrics, such behavior follows from the absorptive nat
of the material@5#. We are not, however, aware of any com
pletely general proof of material causality. For this reas
present considerations will be confined to modeli
dielectric-free waveguides.

The present paper addresses the current issue of app
superluminality. In order to avoid the difficult issue of mo
eling v(v), we will restrict our attention to propagation i
two-dimensional wave guides with constrictions. For slo
variations in the shape of the constriction, Maxwell’s equ
tions reduce to a one-dimensional Klein-Gordon equation
which the nonuniformities can be modeled through a suita
potential. A side benefit of this replacement is that the st
impossibility of true superluminal propagation is easily de
onstrated. We then consider the propagation of a wave f
with a precise front initially to the left of a potential barrie
located in the interval 0<x<b. The barrier is presumed to
be high relative to the dominant wave numbers contained
the pulse but is otherwise arbitrary. Our results for the
coming and transmitted waves can then be expressed sim
The incoming wave moves with a uniform velocity ofc51.
The transmitted wavec(x,t) ~for x.b) is attenuated as an
obvious consequence of barrier penetration, and its am
tude is proportional to the derivative of the initial puls
evaluated at the point (x2ct2b). The additional displace-
ment b suggests instantaneous transmission of the p
through the barrier and is the source of the apparent su
luminality observed empirically. The fact that the transmitt
pulse is an image of the derivative of the original pulse a
not the pulse itself is an elementary consequence of the
that transmission amplitudes generally vanish in the limitv
→0. When the signal is a low-frequency modulation of
carrier wave, as is the case in many experimental invest
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW A 64 044101
tions, the envelopes of the incident and transmitted wa
are identical.

Some of the topics treated here have been discussed
where both analytically and numerically@6,3#. Our intention
is to emphasize the generality and extreme simplicity of t
phenomenon.

II. THE MODEL

We consider a scalar wavec moving in a one-
dimensional potential according to the Klein-Gordon eq
tion

2
]2c

]x2
1V~x!c52

]2c

]t2
. ~1!

This problem is closely related to that of propagation in
two-dimensional waveguide according to

¹2C5
]2C

]t2
. ~2!

The waveguide is assumed to be infinite in thex direction
and to extend from 0<z<h(x) in the z direction. If C van-
ishes at the transverse bounding surfaces and ifh is a slowly
varying function ofx, we can approximateC as the product
c(x,t)sin(pz/h). Neglecting derivatives ofh, Eq. ~2! reduces
to Eq. ~1!. The potential is determined by the width of th
waveguide so thatV(x)5p2/h(x)2 for the lowest transverse
mode. For simplicity, however, we will consider choices
V(x) that are nonzero only in the region 0<x<b.

We seek solutions to Eq.~1! that describe the motion o
an initial pulsec(x,0)5 f (x), which has arbitrary shape bu
satisfies the following two conditions. First, the pulse ha
well-defined wave frontx0 initially to the left of the barrier
V(x), i.e., c(x,0)Þ0 only when x<x0,0. Second, att
50 the pulse moves uniformly to the right with a velocity
1, so that]c/]t52]c/]x at t50. For any given potential
this problem can be solved with the aid of the correspond
Green’s function.

This model was considered in detail in Ref.@7#, where it
was shown in generality that the transmitted wave is giv
by

c~x,t !5E
2`

x0
T̃~x2t2x8! f ~x8!dx8, ~3!

where T̃(x) is the retarded transmission kernel, which m
be expressed in terms of its Fourier transformT(v)

T̃~u!5E
2`

`

T~v!eivu
dv

2p
. ~4!

The physical interpretation ofT(v) as a transmission ampli
tude is elementary: An incoming plane wave exp(ivx), inci-
dent on the potential barrier from the left, leads to a tra
mitted waveT(v)exp(ivx). Since uT(v)u→1 for uvu→`,
the integration contour in Eq.~4! can be closed in the uppe
half v plane forx.0. If T(v) is free of singularities in the
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upper half plane, it follows thatT̃(x2t2x8)50 for x.x8
1t and thus thatc(x,t) is strictly zero forx.x01t. Noth-
ing precedes the light front.

A. A special case

The authors of Ref.@7# considered the special case whe
V(x)5m2 is a positive constant inside the barrier region
<x<b and found

T~v!5
4vk

D
ei (k2v)b ~5!

with k5 iAm22(v1 i e)2 and

D5~v1k!22~v2k!2e2ikb. ~6!

@The discontinuity inV(x) implies that Eq.~1! is not a nu-
merically reliable approximation to the corresponding tw
dimensional problem of a waveguide with a sudden const
tion. Nevertheless, the apparent superluminal beha
displayed below is strictly analogous to that seen in r
waveguides@6#.# The singularities ofT(v) are due to the
zeros ofD in thev plane. Given the form ofk, the zeros of
D are confined to the lower half plane, andT(v) is indeed
analytic in the upper half plane. As expected, this mo
precludes genuine superluminal propagation. The anal
properties ofT(v) are, of course, dictated by those ofV(v).
The general proof that any given potential will lead to su
analyticity is more challenging.1 All real, local, and bounded
potentials that vanish sufficiently rapidly asx→` are ex-
pected to respect these analyticity conditions, and the
sence of true superluminality is thus to be expected for
physically sensible choices ofV.

B. Apparent superluminal behavior

Confident that our Klein-Gordon model is free of genui
acausal propagation, we turn to apparent superluminal p
nomena. Consider a strong barrier~with mb@1) and imag-
ine that the initial wave formc(x,0) is dominated by low-
frequency components for whichuvu!m. In this case, the
form of c(x,t) is both simple and intuitive. Specifically, w
need only considerv'0 for which k' im. In this domain,
the transmission amplitude can be approximated as

T~v!'2v
4i

m
e2 ivbe2mb. ~7!

We shall see shortly that this form of the transmission a
plitude is quite general. Using Eq.~7!, we see that Eq.~4!
reduces to

1A general proof can be constructed along the following lin
Write the transmission amplitude as a linear integral equation of
form c5w1*G0V c, whereG0 is a suitable free propagator. Sin
gularities inc arise when singularities of the integrand pinch t
integration contour. Analyticity ofV(v) in the upper half plane then
ensures the desired analyticity properties ofT(v).
1-2
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BRIEF REPORTS PHYSICAL REVIEW A 64 044101
T̃~x2t2x8!52
4

m
e2mb

]

]u
d~u2b!U

u5x2t2x8

. ~8!

Thus, we find that

c~x,t !'2
4

m
e2bmf 8~x2t2b!. ~9!

When a pulse dominated by low-frequency components
pinges on a strongly repulsive barrier, the transmitted w
is a strongly attenuated replica of the derivative of the or
nal pulse. The transmitted pulse appears to traverse the
gion of the potential barrier in zero time. This is the appar
superluminal phenomenon observed empirically. It occ
well behind the light front of the original signal and is not a
indication of true superluminal propagation. Rather, it is
interference phenomenon which is in no sense acausal.

There is an evident inconsistency between the presen
sumption thatc(x,0) is dominated by low-frequency com
ponents and our initial assumption that the signal has a w
defined light front~which necessarily implies the presence
high-frequency components!. The consideration of signal
that are the product of, e.g., a Gaussian pulse~with clear
low-frequency dominance! and a step function to impose th
light front makes it clear that the effects of this inconsisten
can be made arbitrarily small@7#.

C. Carrier waves

Experiments frequently involve a modulated carrier wa

f ~x!5eiv0xF~x!, ~10!

where F(x) provides a slowly varying modulation of th
carrier. Inserting this into Eq.~9!, the transmitted signal be
comes

c~x,t !52
4

m
e2bm@ iv0F~u!1F8~u!#eiv0uuu5x2t2b .

~11!

Since the Fourier transform ofF(x) is presumed to have
support only for frequenciesuvu!v0, the second term may
be ignored. We conclude that the envelope of the pu
uc(x,t)u, is unaltered by the transmission. Again, the arg
ment of the right side of Eq.~11! suggests that transmissio
of the envelope through the barrier is instantaneous.

III. GENERALITY OF THE RESULTS

The various factors contributing to the approximate fo
Eq. ~7! for T(v) are all of general origin. The facto
exp(2ivb) represents the phase difference between the
plane wave exp(ivx) at the boundaries of the region of no
zero potential. It will always appear. Similarly, the line
vanishing of the transmission amplitude asv→0 is a feature
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common to all potentials that do not have a zero-ene
bound state.2

The final barrier penetration factor is also familiar and
expected whenever there is strong attenuation. Conside
transmission amplitude for a strongly repulsive but otherw
arbitrary potential using the WKB approximation.3 The re-
sulting transmission amplitude is readily calculated, a
shows that the factor exp(2mb) is replaced by

expF2E
0

b
AV~x!dxG . ~12!

A localized repulsive barrier of sufficient strength will tran
mit an instantaneous image of the derivative of the incom
signal according to Eq.~9! independent of the details of bot
the potential barrier and the pulse. Apparent superlum
behavior is a robust phenomenon.

A. The time delay

The above results can also be expressed as a time del
the pulset defined as the difference between the time ac
ally required for transmission across the barrier and the t
required for a free wave to travel the same distance. In
case of a square barrier and a low-frequency pulse,t52b.
Negative values oft correspond to apparent superlumin
propagation. For the modulated carrier wave Eq.~10!, one
may expandT(v) about the carrier frequencyv0 and obtain

T~v!'uT~v0!ueiF(v0)ei (v2v0)F8(v0), ~13!

whereF(v) is the phase ofT(v). The second exponentia
factor gives rise to the time delayt(v0)5F8(v0) through
the Fourier exponential in Eq.~4!. Familiar results from
quantum mechanics for purely repulsive potentials remind
that F(v) is less than 0 for allv and thatF(0)5F(`)
50.4 The time delay is necessarily negative for sufficien
small v0 and apparent superluminal effects can be obser
for all repulsive potentials. The time delay changes sign

2Consider scattering from an arbitrary potential that is zero exc
in the interval 0<x<b with an interior solutionw(x). Join this
interior solution to the right-moving plane wave expiv(x2b) at x
5b with the usual requirement of continuity of the wave functio
and its first derivative. In the limitv→0, w(b)51 andw8(b)50.
Similarly, join the interior solution to the linear combinatio
A exp(ivx)1B exp(2ivx) at x50. If w8(0)Þ0, the coefficientsA
and B will diverge like 1/v. The transmission amplitudeT(v)
5e2 ivb/A will vanish linearly with v unlessw8(0) is zero. The
condition thatw8(0)5w8(b)50 is precisely the condition that th
potential should support a zero-energy bound state.

3We consider a potential that is strongly repulsive for all 0<x
<b and zero elsewhere. Hence, it is appropriate to match the p
wave solutions directly to the WKB wave function.

4This second result is a consequence of Levinson’s theorem w
relates the asymptotic behavior of the phase shift to the numbe
bound states supported by the potentialn through F(0)2F(`)
5np. There are no bound states for purely repulsive potentials
1-3
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some value ofv0 comparable to the height of the potenti
barrier, and it approaches zero from above asv0 tends to
infinity. Apparent superluminality is a very general pheno
enon.

IV. CONCLUSIONS

Using the model of a Klein-Gordon equation with a p
tential, we have presented a simple description of the ap
ent superluminal phenomena seen in waveguides: L
frequency waves seem to traverse such barriers in zero t
04410
-

r-
-
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Strongly repulsive barriers always transmit an attenuated
age of the spatial derivative of the incident signal. When
signal consists of a modulated carrier wave, the envelop
this wave is transmitted unaltered. We have attempted
demonstrate that the phenomena described here are bot
tremely general and noncontroversial. Their experimen
observation does not challenge received wisdom and in
sense compromises our confidence in general notions of
sality. It will be interesting to see whether this interesting a
general consequence of wave theory will have practical
plications.
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