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Products of random matrices
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We derive analytic expressions for infinite products of randox2matrices. The determinant of the target
matrix is log-normally distributed, whereas the remainder is a surprisingly complicated function of a parameter
characterizing the norm of the matrix and a parameter characterizing its skewness. The distribution may have
importance as an uncommitted prior in statistical image analysis.
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I. INTRODUCTION show that the determinant ¢i#] has a log-normal distribu-
tion. Secs. IV and V will be devoted to the determination of
Considerable effort has been invested over the past hathe explicit form of P for d=2. We shall first write the
century in determining the spectral properties of ensemblegiffusion equation using an appropriate parametrizatio¥. of
of matrices with randomly chosen elements and in discoverThe resulting partial differential equation will then be solved
ing the remarkably broad applicability of these results tosubject to the boundary condition th&(Y) supports only
systems of physical interest. In spite of a similarly rich set ofthe identity matrix in the limit ofr—0. This explicit solu-
potential applicationge.g., in the statistical theory of Mar- tion will require new integrals involving Jacobi functions.

kov processes and in various chaotic dynamical systems ifihe derivation of these integrals will be given in the Appen-
classical physigs the properties of products of random ma- (ix.

trices have received considerably less attention. See[ Ref.
for a survey of products of random matrices in statistics and
Ref.[2] for a review of physics applications.
The purpose of the present manuscript is to consider in The normalized probability distribution i€or given N
some detail the limit foN—o of the ensemble of matrices and variabler)
.
1+ \fﬁ Xn)

,
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1+ N Xn ] (D where the integrand is a product of functions for each

.
1+ \[ﬁ xz) .
matrix element ofY and the average runs over all the random
where >0 is a real parameter and th¢, are realdxd  matrices. Pealing off thilth factor in the product and using
matrices with all elements drawn at random on a distributioronly that theX,, are statistically independent, we derive the
of zero mean and unit variance. If this distribution has com+ollowing exact recursion relation
pact support, the probability that the matkxshould become
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nonpositive definite vanishes fdéd—o0. In one dimension, T

d=1, it is well known from the law of large humbers that Pn(Y,7)={ det 1+ N X

logY has a Gaussian distribution, but because of the non-

commutativity of matrix products, the distribution is much r V7P N-1

more complicated fod=2. XPn-1| Y 1+ VX T , 3
In this paper we derive some general properties for the X

I|_m|t|ng distribution P(Y). and determ|ne_|t e>_<pI|C|tIy fo.'d where the average is over tiNth random matrix, here re-

=2. In Sec. Il we establish a compact diffusion equation for . . :

s ) . . namedX. The determinantal prefactor &% _, is the Jacobi

the distribution valid for anyl. In Sec. Il we derive a simple . - :

. o determinant arising from the general matrix rule

expression for any average over the distribution, and we
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with M=1++/7/N X. Since IP 1 aZ(Yikyjkp) ©
ﬂ(ZM)” B aT 2 (7Yi€&YJ—€

T ikMej 5

without any explicit reference td. Defining the average of a
function f(Y) by
the Jacobian is block-diagonal withidentical blocks, and
the prefactor follows.
The recursion relation3) is of the Markovian type with <f>:f fFY)P(Y) dY (10
the initial distributionPy(Y,7)=4[Y—1]. It converges for
N—co under very general conditionsvhich we shall not  with dY=II;;dY;;, we obtain from Eq(9)
discuss here towards a limiting distribution P(y,7)

2
=limy_.Pn(Y,7). Expanding the recursion relation to i(f) _ E Y o°f (11)
O(1/N) and using the fact that all the matrix elementsXof ar 2\ KGYaY)
are statistically independent with zero mean and unit vari- ) o o o
ance, This equation permits in principle the determination of the
moment of any product of matrix elements. The first two are
(Xij)x=0,  (XijXu)x= i 5j1 , (6)  foundto be
we obtain to leading order (Yij)=46ij, (12
[ Pno1 1, (YijYi)=e™8yd . (13
Py=Pn-1t | — 5, T 3d(d+ )Py
T The exponential growth of the averages with “time”is a
Pnog 1 PPy_1 consequence of the multiplicative nature of the problem.
+(d+1)Yj TU + EYiijkm , The determinanD =de{ Y] is, according to the definition

of the product(1), an infinite product of random real num-

with implicit summation over all repeated indices. The as-2€rs that converge towards unity, and Ignust have a

sumed convergence towards a limiting distribution require<>aussian distribution according to the law of large numbers.
the expression in the parentheses to vanish in the limit, s§S Mean and variance are, however, different from those of

that the one-dimensional distributio8). The distribution of the
determinant is also an average

P 1 P 1 9P
g2 et =Y Y ————— F(D)=(8(D—defY])). 14
= 5d(d+)P+(d+1)Y, t 2Y'lekaYi€ang' (D)=(4( YD) (14)
(7)  Using the fact that
This is a diffusion equation of the Fokker-Planck type with adef Y]
playing the role of time. It must be solved subject to the =de(Y]Yj’il, (15

initial condition thatP(y,0)=8[Y—1]. Mij
Both the diffusion equation and the initial condition are
invariant with respect to an orthogonal transformatién

—MTYM, where M is an orthogonal matrix satisfying

we obtain the following equation fdf:

JF 1 J*D?F)

MTM=1. Since the number of free parameters in an or- —=—d

thogonal transformation igd(d—1), the number of “dy- Jr 2° 9D?

namic” variables in the distribution is>—3d(d—1)=3(d 5

+1). Since the distribution only has support for i =d(F+2D£+ED2£ _ (16)
>0, this number consists af independent eigenvalues and D 27 sD2

2d(d—1) rotation angles in a singular value decomposition.
For d=1 the solution to Eq(7) which approache$[Y  Apart from the factord in front, this is identical to the dif-
—1] for ——0 is fusion equation9) in one dimension. Consequently the de-
terminant has a log-normal distribution

Pat(¥) 1 r{ (log Y+ 7/2)? @ ,
=1(Y)= exg ———|. 1 logD+ 7d/2
Y277 27 F(D)= exp[—( 2 ) } (17)
DV2m7d 2rd
As expected, it is a log-normal distribution.
which is obtained from Eq(8) by replacingr by rd. The
Il AVERAGES distribution has support only for positive valuesf It can

be shown in generdland we shall demonstrate it explicitly
Remarkably, Eq(7) may be written in the much simpler for d=2 below that the distribution of the determinant fac-
form torizes inP.

066124-2



PRODUCTS OF RANDOM MATRICES PHYSICAL REVIEW B6, 066124 (2002

IV. THE CASE d=2 2 o
f deJ dy2 sinh 24G(, 0)=1. (25)
0 0

The first nontrivial case id=2 where the general matrix

is first parametrized using a quaternion or 4-vector notation
This normalization integral&5) suggest that it is more con-

Yot+tVYs Yi—Y, g venient to employ still another variable
= . 1
Yi+Ys Yo—Y3 (18

Y2+ Y2+ Y3+Y3

z=cosh 2= ———F———.
4 Y2-Y2+Y3-Y3

In this representation the determinant becomes a metric with (26

two “space” and two “time” dimensions

2 U2 w2 U2 With this variable the normalization integral takes the form
D=Y5—-Yi+Y5—Y;5. (19

2 0
The structure of this expression and the positivityDosug- f def dzG(z,0)=1, (27)
0 1

gest the following parametrization in terms of one imaginary

and two real angles: and the diffusion equatio24) becomes

Yo= VDcoshy cosé, 20
o= VDcoshy (209 IG 1 2z &G 10,78 1)072@ o8
—— ——+272——+(z°-1)—.
Y,= \Dsinhy cosg, (20b ot 4z+1 962 0z ( 972
Y,=\/Dcoshy sind, (200  This equation must be solved with the boundary condition
that P(Y) in the limit 7—0 reduces to a product of delta
Y= \/Dsinhy sin ¢. (2000  functions which select only the identity matrix. This evi-

dently requiresYo,—1 andY;,3—0 and, consequenth)
The Jacobi determinant of the transformation from—1, z—-1, and6—0. SinceF(D)— &(D—1), the initial

1Y0,Y1,Y2,Y3} to {D, 4,0, 4} is simply condition takes the form
J~D sinhy coshy. (22) G(z,0)—8(z=1)8(6) (7—0). (29

Orthogonal 2< 2 matrices are generated by the matf%(),  The limiting distribution should be approached from above
which is associated witlY,. Thus, an orthogonal transfor- (j.e., fromz>1).
mation rotates the anglg, andP(Y,7) must be independent  The form of the diffusion equatiori28) reveals thatG
of ¢ as indicated above. may naturally be expanded in a Fourier series
In these variables the diffusion equatitf) simplifies to

1 < .
P P PP 1 PP G(z,6)=5— 2 Gy(z)e"’ (30)
—6P+6D—+D2F+ (1+tanr?¢)— T n==c

with coefficients that obey
1 aP  1*P
+ Z(tanhﬁ-f' cothy) 07—1/,4' 4 7 (22 G, - E ) 27 aG, 0 &ZGn
T 4 z+1

> (3
. . . . . (92
Taking into account the factor dd in the Jacobi determi-
nant, we replace the original distributighwith the product For the special case=0, we recognize Legendre’s differ-

of the determinant distributioR (D) given in Eq.(17) and  ential operator on the right. The normalization condition only

an as yet unknown function af and 6, affectsG, and becomes
1 e}
P=5F(D)G(w.0), (23 J dz Gy(z)=1. (32
0
and find thatG satisfies the diffusion equation The initial condition(29) implies that
Fle PG 1 9G Gn(z2)—d(z—1) (7—0) (33
(9—=—(1+tanf?z//)—+ (tanhy+ cothyy) — 5 "
T 4 for all n.
15°G
+- = (24) V. EXPLICIT SOLUTION
4 5,/,2

All that remains is to determine the angular functions
The corresponding normalization integral is found from theG,(z). One relatively simple way is to use Sturm-Liouville
Jacobi determinant, theory, and we now outline the main steps in this procedure.
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The differential operatof“Hamiltonian”) appearing on
the right-hand side of Eq31) may be written
g n? 2z

J
- (72 1) ——
" &z(z 1 dz 4 z+1’ (34

which shows that it is Hermitian. Let the spectral variable
(which denumerates the eigenvalues and may be both dis ,
crete and continuolibe denoted, and letg{”(z) be the
eigenfunction corresponding to the eigenval(g 0.

HIP(2) =1 (2). (35)

The Hermiticity of H guarantees that the eigenvalues are real
and that the eigenfunctions are both orthogonal and complet
on the interval kz<<w,

® ) O v
L dzd(2){(2)=—15. (36)
Kn FIG. 1. Plot ofG(z,6) for 7=1. Notice the characteristic log-
() (D) )¢ or , normal tapering of the ridge as a function nf and the nearly
Er Hn'9n’(2)8y°(2") = 8(z—2"), (37)  Gaussian distribution i aroundé=0.

The special case=0 was stated without proof by Mehler in

1881[3]. The general case is proven in the Appendix.
Sincegﬁf)(l)= 1, the final solution becomes a simple su-

perposition of the discrete and continuous contributions

Gn(z,ﬂ:Z wPgN(1)gN(2)expA V7). (39 G, = GUiscy geont (43)

with a suitable measurg" .
The solution of the diffusion equatiof81) with initial
condition (33) takes the form

where the discrete contributigfior n=2) is
In view of the completened87), these functions indeed sat- a )

2 L2
isfy the initial conditions at-—=0. The appearance gﬂ)(l) GUsi(z, 7) = 1+z|" S (n+ 1 _ k)
in this expression requires the eigenfunctions to be regular at now 2 k=1 2
z=1.

_(n2 _ _ 12
We now present the complete solution of the eigenvalue X PO (z)e~ (M2 VAT D2ZKD7 (44

problem. (Further details are given in the Appendixhe _ o
eigenvalue spectrum contains discrete val(fes n=2) as  The continuous contribution is

well as a continuum 14 7\"2 (o
11 (n+1 |2 n Gz, 7= T) f dtpa(V
——n2——+(—— , k=12 l=], 0
(r) 2 4 2 2 (on) — (n%/2+ 1/4+1?)
Ay 1 XPCinsyeri(2)e (49
—-n?———t2, 0<t<w . , - -
2 4 with un(t) given by Eq.(42). Thus, we arrive at the final
result. The probability for drawing a givenxX2 matrixY is
The properly normalized discrete eigenfunctions are Jacobi F(D *
polynomials PY T =5 5 Go(z,7)+2 2, Gy(z,7)cosng
/2 T =t (46)
n+1 1+z\"
YW=\ k-] PY@. (40)

with F(D) given by Eq.(17) and G,(z,7) given by Egs.
(43)—(45). As noted previously, th&,(z,7) are independent
of the sign ofn so that? is manifestly real. In Fig. 1 the
functionG(z, ) (the expression in parentheksis plotted for

n/2 =1
PO, 1yr2+it(2) (41) '

while the eigenfunctions in the continuum are Jacobi func
tions of complex index

1+z

v
n 2

) ] ) VI. NUMERIC APPROXIMATION
with the measure obtained from the integ{@®) as ) ) _ ) ]
Given the relative complexity of our final analytic result,

(42) it is satisfying to note that it is easy to obtain a simple and
accurate approximate form which is suitable for numerical

ttanhwt, n even,
t cothwt, n odd.

w)=
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applications. Specifically, consider Eg8). The complicated APPENDIX: JACOBI FUNCTIONS

coupling between the variablésandz are a consequence of o 35001 functions are related to the hypergeometric
the factor of 2z/(z+1) appearing in the first term on the functions

right of this equation. This factor changes by only a factor of

2 over the interval &z=<x. A simple separable approxima- pON o (2)= 2,:1( n+1 —it, n+1 +it1: 1-2z
tion can thus be obtained by replacing this single factor by a e 2 2 2
constantf. The most appropriate value o&lf <2 evidently (A1)

depends onr. With this replacement, our final result can be i t real. and obey the orthogonality relation
approximated as '

, =(1+z|\" 0 S(t—t')
F(D) < , fl 5| 9ZP e e DPOR 1 (D=
P(Y,T)wﬁGo(z,r)n;w exfin6— frn?/4]. n o)

(47)

In order to findu,(t) for arbitraryn, it is helpful to consider
the asymptotic form of these functions by using the standard

Here, thed-dependent term is known as Fourier’s ring. Forrelation for hypergeometric functions

7=1 and the choicé=1.23, this approximate form yields a

root mean square error of 0.035. Comparison with the inte- F(a b.C.Z):(l_Z)—aF(C)F(b_a)
gral of the square of, this suggests an error of less than Y I'(b)I'(c—a)
2%. A maximum error of 4% is encounteredzt0 and 6 1
=0. Similar results are found for other valuesofising an XF a,c—b;a—b+1;—)
appropiate value of. The error increases slowly with in- 1-z
creasing values of. I'(c)(a—b
Additional approximations are possible and introduce +(1—2z)°"° (©T(a-b)
little additional error. For example, Fourier’s ring can be I'(@)T'(c—b)
written in a form which converges rapidly for large 1
XF|b,c—a;b—a+1;——|. (A3
+o 1-z
exdiné—frn?/4 .
n;oc H /4] This form allows us to see that
i PO it (D —2|A(1)|z "2 YZcog ¢y +tInz)
o — _ ’ t
= f—Tk;_m exd — (0—2km)2/afr]. (48) iz (Ad)
asz—o. Here,
We note also thay(z,7) can be approximated with surpris- [ (2it)2n2+v2-it
ing accuracy asA exd —uz’], where u and y are smooth A(t)= (A5)

functions ofr and A is a normalization constant. I'(n/2+1/2+it) (= n/2+ 1/2+it)

and ¢, is the phase oA(t). Using this asymptotic form, we
VIl. CONCLUSIONS can perform the integral in EqA2) by using the variable
u=logz adding a convergence factor of exp¢u), and fi-
We have analytically derived the distribution of an infinite nally taking the limitu— 0. The result is simply
product of random X 2 matrices. In statistical image analy-
sis, it may be used as an uncommitted prior for morphing 2 15 n
and warping 4], with desirable properties not shared by the [A)] w2+ (t—t)2 2" (AB)
usual priors based on elastic membranes. The distribution of
such matrices may be evaluated numerically at a moderafEhe factor in brackets is a familiar representation afd?t
cost in computer time and converges reasonably fast becauset’) in the limit x—0. Standard relations for the gamma
of the strong exponential damping. We have also outlined &unction immediately yield Eq(36). This confirms the re-
numeric approximation with sufficient precision for practical sults of Mehler{3] for the special case=0. The extension

applications. to n>0 would appear to be new.
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