
Introduction to the Finite Element Method

Marek K. Misztal
Niels Bohr Institute
misztal@nbi.ku.dk

March 28, 2016

1 Introduction

The finite element methods (FEM) is a family of numerical methods designed
to find approximate solutions to linear, partial differential equations (PDEs)
on a variety of domains. It relies on domain decomposition into simpler ele-
ments (triangles, tetrahedra, quadrilaterals, etc.) and interpolation of the
solution based on a discrete set of values defined at specified domain sites.
By applying the Galerkin method, the original PDE is converted into a weak
formulation, which can be written as a linear system of equations. The
Galerkin method ensures a solution that minimizes (although not strictly)
the residual between the actual solution and the functions from the space of
approximate solutions.
This note is meant as a practical guide to obtaining the linear, finite element
formulations of Poisson-like PDEs, with emphasis on deriving equations suit-
able for numeric implementation. Because of that, this note makes use of
the matrix notation, rather than tensor notation.

1.1 Focus problems

Problem A (Poisson’s equation) Let Ω be a bounded, compact subset
of R2. Find such u : Ω→ R, that

∇2u = 0 (1)

u(x)
∣∣
∂Ω

= u0(x) (2)

Problem B (Stokes’ equation)* Compute the laminar, steady state flow
through a finite pipe (in 2D), due to applied pressure difference between the

1

inlet and the outlet.
Here Ω ⊂ R2 is the geometric representation of the pipe. We introduce ∂Ωin

to denote the inlet surface, ∂Ωout to denote the outlet surface, ∂Ωin∩∂Ωout =
∅. Further, ∂Ωs = ∂Ω − (∂Ωin ∪ Ωout) denotes the solid wall. Formally, we
seek such u : Ω→ R2 and p : Ω→ R, that

∇2u−∇p+ f = 0, (Stokes’ equation) (3)

∇ · u = 0, (continuity equation) (4)

subject to the Dirichlet boundary conditions

u(x)
∣∣
∂Ωs

= 0, (5)

p(x)
∣∣
∂Ωin

= pin, (6)

p(x)
∣∣
∂Ωout

= pout, (7)

where pin and pout are constant values.

2 Discretization

2.1 Domain discretization

In order to numerically solve the PDE, we first have to approximate the
domain with a finite number of simpler, geometric objects (referred to as
elements). Popular types of elements include

• simplicial : segments in 1D, triangles in 2D, tetrahedra in 3D,

• quadrilateral (in 2D),

• hexahedral (in 3D).

From now we focus on simplicial domains in 2D, which are known as triangle
meshes. Most of the following equations significantly simplify in the 1D case,
and the overall procedure is very similar in the 3D case. We will denote the
vertices (or nodes) of the mesh xi, i = 1, 2, . . . , N , and the triangle elements
Ωe, e = 1, 2, . . . ,M . Typically, the number of elements in the mesh M
scales linearly with the number of vertices N . Elements are only allowed to
intersect along the common edge (no T-junctions allowed). We define the
entire discrete domain as

Ω =
M⋃
e=1

Ωe. (8)

2

Once we have decided on the domain type, we have to decide on how to dis-
cretize the solution. In this note, we focus on linear schemes, i.e. ones where
the approximate solution is given as a piece-wise linear function. Higher-
order schemes are often more robust, however, they require maintaining the
values of the solution’s derivatives. Having a piecewise linear approximation
of the solution ũ(x) requires us to store only a finite number of its values,
typically at the vertices or elements’ centres. For now we will focus on vertex-
centred schemes, i.e. where we specify ui = ũ(xi), for i = 1, 2, . . . , N .

2.2 Solution space

The decisions we have made about the discretization determines the solution
space, i.e. the set of admissible solutions. These are constructed through
interpolation, based on the nodal values, using interpolant functions ϕi for
i = 1, 2, . . . , N , such that

ϕi(xj) =

{
1 if i = j
0 if i 6= j

,
N∑
i=1

ϕi(x) = 1. (9)

Then the interpolated (approximate) solution is defined as

ũ(x) =
N∑
i=1

ui ϕi(x) = ϕ̂(x)T û, (10)

where ui = u(xi) for i = 1, 2, . . . , N are the (stored) nodal values of the solu-
tion, ϕ̂(x) = [ϕ1(x), ϕ2(x), . . . , ϕN(x)]T and û = [u1, u2, . . . , uN]T . Formally,
the solution space is defined as:

S =
{
f : Ω→ T ;∃

(
α̂ ∈ TN

)
f(x) = ϕ̂(x)T α̂

}
. (11)

Here we focus on linear elements with linear shape functions. In this case
∇ϕi(x)|Ωe = const. The gradient of the interpolated function ũ is well-defined
in the interior of each element Ωe, and is given by

∇ũ(x) =
N∑
i=1

ui∇ϕi(x) = (∇ϕ̂(x))T û, (12)

where

RN×2 3 ∇ϕ̂(x) =

[
∂xϕ1(x) ∂xϕ2(x) . . . ∂xϕN(x)
∂yϕ1(x) ∂yϕ2(x) . . . ∂yϕN(x)

]T
. (13)

3

2.3 Galerkin method

The Galerkin method allows us to find the quasi-best approximation of the
real solution to the PDE among the functions from the solution space S.
The specific details of the mathematics behind the Galerkin method are out
of scope of this note, and are available in specialized literature. In short, the
Galerkin solution ug ∈ S is found by transforming the PDE

Lu = 0, (14)

where L is a linear operator (for example L = ∇2 for the Poisson problem)
into its weak formulation

∀ (w̃ ∈ T) 〈w̃,Lũ〉 = 0, (15)

where 〈·〉 is the inner product in the space of the solution functions, and T is
the set of admissible test functions (w̃), T = {v ∈ S : v(x)|∂Ω = 0}. Under
the L2-norm, this becomes

∀ (w̃ ∈ T)

∫
Ω

w̃(x)TLũ(x) dΩ = 0. (16)

3 Poisson’s equation

3.1 Galerkin method in practice

The weak formulation of the Problem A reads

∀(w̃ ∈ T)

∫
Ω

w̃T∇2ũ dΩ = 0, (17)

where ũ, w̃ : R2 → R. By applying the divergence theorem, we obtain∫
Ω

w̃T∇2ũ dΩ =

∮
∂Ω

w̃T (∇ũ)T n̄dS −
∫

Ω

(∇w̃)T ∇ũ dΩ, (18)

where n̄ is the normal vector to ∂Ω. Note that because w(x)|∂Ω = 0, the first
term on the right hand side vanishes. Now recall that ∇ũ(x) = (∇ϕ̂(x))T û
and ∇w̃(x) = (∇ϕ̂(x))T ŵ, which allows us to rewrite Eq. (18) into a linear
equation ∫

Ω

∇w̃(x)T∇ũ(x) dΩ =

∫
Ω

ŵT∇ϕ̂(x) (∇ϕ̂(x))T û dΩ (19)

= ŵT

{∫
Ω

∇ϕ̂(x) (∇ϕ̂(x))T dΩ

}
û (20)

= ŵTKû, (21)

4

where K is an N × N real matrix (called the stiffness matrix of the PDE),
with coefficients defined as Kij =

∫
Ω
∇ϕi(x) · ∇ϕj(x)dΩ. We have arrived at

an equivalent form of Eq. (17)

∀
(
ŵ ∈ RN

)
ŵTKû = 0, (22)

which is fulfilled by û such that

Kû = 0. (23)

3.2 Matrix assembly*

We can learn more about the structure of matrix K by rewriting the integral
over Ω as a sum of integrals over each element Ωe

K =

∫
Ω

∇ϕ̂(x) (∇ϕ̂(x))T dΩ =
M∑
e=1

∫
Ωe

∇ϕ̂e (∇ϕ̂e)T dΩ =
M∑
e=1

Ke, (24)

where ∇ϕ̂e = ∇ϕ̂(x)|Ωe = const, and Ke is the element stiffness matrix.
In the 2D case with triangle elements, only three shape functions are non-
zero over a given element Ωe (the three shape functions associated with the
triangle’s vertices). That means, only three out of N rows of ∇ϕ̂e are non-
zero. That also means that Ke has at most nine non-zero coefficients, forming
a 3× 3 submatrix

Ke
3 = |Ωe|

 ∇ϕe
i · ∇ϕe

i ∇ϕe
i · ∇ϕe

j ∇ϕe
i · ∇ϕe

k

∇ϕe
j · ∇ϕe

i ∇ϕe
j · ∇ϕe

j ∇ϕe
j · ∇ϕe

k

∇ϕe
k · ∇ϕe

i ∇ϕe
k · ∇ϕe

j ∇ϕe
k · ∇ϕe

k

 , (25)

where |Ωe| is the volume (area) of the element Ωe. Note that matrix K has at
most 9M non-zero coefficients, which is one order of magnitude lower than
its size N2. This sparsity property is important from the point of view of
numeric performance, allowing to solve the linear system using fast, iterative
solvers (such as the conjugate gradient, GMRES, etc.).

3.3 Dirichlet boundary conditions

In order to complete solving Problem A we have to enforce the Dirichlet
boundary conditions

u(x)|∂Ω = u0(x). (26)

In terms of the piecewise-linear function ũ(x) represented by a discrete vector
û(x), such boundary conditions now read

ui = ũ(xi) = ũ0(xi) = u0i for i ∈ ID, (27)

5

where ID is the set of indices of the nodes lying on the Dirichlet boundary, and
u0i are the prescribed nodal values. There are two ways of enforcing such
boundary conditions: the first one reduces to elimination of the unknown
values corresponding to the indices from ID from the linearised form of the
PDE (and appropriately modifying the stiffness matrix K). The second one is
the Lagrange multipliers method. It requires stating the Dirichlet conditions
in a matrix form

Bû = û0, (28)

where û, û0 ∈ RND , ND is the number of the boundary nodes, and the matrix
B ∈ RNB×N is constructed so that each row corresponds a single index from
ID, and has a single non-zero value (typically 1) at the column corresponding
to the index of the boundary vertex. In order to incorporate the boundary
conditions into the Galerkin system of equations, a new, larger system is
solved [

K BT

B 0

] [
û
λ

]
=

[
0
û0

]
, (29)

where λ ∈ RNB is the vector of Lagrange multipliers corresponding to the
Dirichlet boundary conditions.

3.4 Vector functions*

All the formulas above remain valid if we operate with vector-valued func-
tions, e.g. when u : R2 → R2 in the Poisson problem. However, such
representation is not best suited for numerical implementation. In practice,
we often expand the discrete solution vector

R2N 3 û = [u1, u2, . . . , uN]T (30)

into the “long” form

R2N 3 ǔ = [u1x, u1y, u2x, u2y, . . . , uNx, uNy]
T . (31)

For the relation ũ(x) = ϕ̂(x)T û = ϕ̌(x)T ǔ to hold, we have to replace

RN 3 ϕ̂(x) = [ϕ1(x), ϕ2(x), . . . , ϕN(x)]T (32)

with

R2N×2 3 ϕ̌(x) = [I2ϕ1(x), I2ϕ2(x), . . . , I2ϕN(x)]T , (33)

6

where I2 is the 2 × 2 identity matrix. Finally, in order to avoid introducing
3-tensors, we define

∇ϕ̌(x) =


∂xϕ1(x) 0 ∂xϕ2(x) · · · ∂xϕN(x) 0

0 ∂xϕ1(x) 0 · · · 0 ∂xϕN(x)
∂yϕ1(x) 0 ∂yϕ2(x) · · · ∂yϕN(x) 0

0 ∂yϕ1(x) 0 · · · 0 ∂yϕN(x)


T

.

(34)
This way

(∇ϕ̌(x))T ǔ =


∑

i uix∂xϕi(x)∑
i uiy∂xϕi(x)∑
i uix∂yϕi(x)∑
i uiy∂yϕi(x)

 =


∂xũx(x)
∂xũy(x)
∂yũx(x)
∂yũy(x)

 ≡ ∇ũ(x). (35)

Note that under this notation (∇w̃)T∇ũ, as seen in Eq. (18) corresponds
to the full contraction between the Jacobians of w̃ and ũ. After establishing
those relations we can repeat the procedure from Section 3.1, obtaining the
new stiffness matrix R2N×2N 3 K2 =

∫
Ω
∇ϕ̌(x) (∇ϕ̌(x))T dΩ.

4 Stokes’ equation*

We now focus on Problem B.

µ∇2u−∇p+ f = 0, (36)

∇ · u = 0. (37)

Notice that this time we are seeking two functions u : Ω→ R2 and p : Ω→ R.
There are many approaches to discretizing those two fields, however here
we will only focus on the (minimal) linear, staggered approach, where u is
sampled at mesh nodes and interpolated using linear shape functions (as in
the previous example), however p is sampled at the centers of the elements
and is constant over each element; p(x) = ξ̌(x)T p̌, where p̌ ∈ RM is the
vector of discrete pressure values and ξ̌(x) ∈ RM is the vector of element-
wise constant shape functions. The weak formulation Eq. (36) reads

∀ (w̃ ∈ T)

∫
Ω

w̃T
[
µ∇2ũ−∇p̃+ f̃

]
dΩ = 0, ũ ∈ S, p̃ ∈ P , (38)

where S and T are defined as in the previous section, and P is the pressure
solution space, spanned by ξ̂(x). The first term

∫
Ω
µw̃T∇2ũ dΩ we have

already linearised in the previous section. The third term
∫

Ω
w̃T f̃ dΩ is left

7

to the reader as an exercise, and will be omitted in the remainder of this
note. What remains is the pressure term, to which we apply the divergence
theorem ∫

Ω

w̃T∇p̃ dΩ =

∫
∂Ω

p̃w̃T n̄ dS −
∫

Ω

(∇ · w̃)T p̃ dΩ. (39)

Again, the first term on the right hand side vanishes, and we rewrite the
second term as∫

Ω

(∇ · w̃)T p̃ dΩ =

∫
Ω

w̌T (∇ · ϕ̌) p̃ dΩ = w̌T

∫
Ω

(∇ · ϕ̌) p̃ dΩ. (40)

where ∇ · ϕ̌(x) = [∂xϕ1(x), ∂yϕ1(x), ∂xϕ2(x), . . . , ∂xϕN(x), ∂yϕN(x)]T . Now,
rather than expanding p̃(x) = ξ̌(x)T p̌, we skip right to the decomposition
into sum of integrals, while remembering that p̃ is constant in each element,
p(x)|Ωe = pe.

w̌T

∫
Ω

(∇ · ϕ̌) p̃ dΩ = w̌T

M∑
e=1

{∫
Ωe

(∇ · ϕ̌) dΩ

}
pe = w̌TPp̌, (41)

where P ∈ R2N×M , and the e-th column Pe of P is given as

Pe = |Ωe| [∂xϕ1|Ωe , ∂yϕ1|Ωe , . . . , ∂xϕN |Ωe , ∂yϕN |Ωe]T . (42)

Once again, due to the properties of the linear shape functions, at most six
out of 2N values in each column are non-zero. Finally, Eq. (38) becomes
(save for the body force term)

∀
(
w̌ ∈ R2N

)
w̌T (µKǔ + Pp̌) = 0, (43)

which is fulfilled as long as

µKǔ + Pp̌ = 0. (44)

4.1 Continuity equation

The weak formulation of the continuity equation ∇ · u = 0 can be easily
obtained by substituting ũ = (ϕ̌(x))T ǔ into the volume integral of ∇ · u∫

Ω

∇ · ũ dΩ =

∫
Ω

(∇ · ϕ̌(x))T ǔ dΩ =
M∑
e=1

{∫
Ωe

(∇ · ϕ̌)T dΩ

}
ǔ (45)

= PT ǔ. (46)

8

Finally, the full system of linear equations of the steady state flow (without
the boundary conditions) reads[

µK P
PT 0

] [
ǔ
p̌

]
=

[
0
0

]
. (47)

Note that in the absence of boundary conditions, the solution to this system
is trivially ǔ = 0, p̌ = 0.

9

	Introduction
	Focus problems

	Discretization
	Domain discretization
	Solution space
	Galerkin method

	Poisson's equation
	Galerkin method in practice
	Matrix assembly*
	Dirichlet boundary conditions
	Vector functions*

	Stokes' equation*
	Continuity equation

