Exercises Week 10

Exercises from the book

12.6, 13.5, 13.9, 13.10, 20.1

Optional or if time permits: Potential flow around a corner

The real and imaginary parts of a holomorphic (analytic) function in the complex plane, $f=\psi+i \phi$, are always harmonic, that is they satisfy the Laplace equation

$$
\nabla^{2} \psi=0 \quad \text { and } \quad \nabla^{2} \phi=0 .
$$

In terms of complex variables, we can write the in-plane Laplace equation on the form

$$
0=\nabla^{2} \psi=\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \psi=4 \frac{\partial^{2} \psi}{\partial \bar{z} \partial z},
$$

where $z=x+i y$.
In a potential flow, the velocity of the fluid is given by the gradient of a harmonic function (potential) ψ, that is

$$
\mathbf{v}=\binom{\partial_{x} \psi}{\partial_{y} \psi}
$$

In complex variables the complex velocity v is given by the derivative of the function f

$$
v=2 \frac{\partial \psi}{\partial \bar{z}}=\frac{\partial \psi}{\partial x}+i \frac{\partial \psi}{\partial y}
$$

We shall now use the potential for a uniform flow with velocity k in the x -direction

$$
\begin{equation*}
\psi=k \operatorname{Re}[z] \tag{1}
\end{equation*}
$$

to find the flow around a corner.

- First you will have to find the conformal mapping from the domain consisting of the points $r \exp (i \theta)$ with $r>0$ and $0 \leq \theta \leq 3 \pi / 2$ shown in the figure to the upper half-plane. Try with mappings on the form $\Phi(w)=w^{\alpha}$.
- Use the conformal mapping together with Eq. (1) in order to find an expression for the flow potential and the fluid velocity around the corner. Use the fact that $\psi(\Phi(w))$ is harmonic.
- Calculate the pressure along the line segment $r \exp (i 3 \pi / 4)$ where $r>0$ (the dashed line in the figure).

