
Continuum Mechanics, Week 12

1 Steady Hagen-Poiseuille Flow

We consider a pipe containing an incompressible Newtonian fluid, as shown in figure 1. The flow

is driven by a uniform body force (force per unit volume) along the symmetry axis, generated

by imposing a pressure at the inlet. This is known as Hagen-Poiseuille flow, named after the

two scientists who solved the problem experimentally in the 19th century. It is one of the few

theoretical viscous analysis that can be carried out analytically.

x

y

zR

L

p1

p2

Figure 1: A pipe with constant radius R of length L contains a Newtonian fluid

with constant density ρ, dynamic viscosity µ and kinematic viscosity ν = µ/ρ.

The pressure at the inlet (outlet) is denoted p1 (p2). Gravitational effects are

neglected.

We are interested in finding the steady-state laminar flow field (Re . 2000) and pressure, so

we assume a long pipe (L � R) such that the velocity profile is purely axial, vr = vθ = 0. The

governing equations in polar coordinates for our axisymmetric system (∂θ = 0) thus read

∂zvz = 0 (continuity) (1.1)

∂rp = 0 (r-momentum, N.S.) (1.2)

−∂zp+ µ∇2vz = ρvz∂zvz (z-momentum, N.S.) (1.3)

with no-slip boundary condition vz(R) = 0. The incompressiblity gives us that vz = vz(r) and

from (1.2) we conclude that p = p(z), so (1.3) becomes

−∂zp+ µ(∂rrvz + r−1∂rvz) = 0. (1.4)

The last equation (1.4) balances the pressure force and the viscous damping in our system.

Question 1 Apply ∂z to (1.4) and find an expression for p(z).
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Question 2 Use the expression for p(z) in the governing equation (1.4) and solve the resulting ODE

for vz(r). Comment on the shape and its properties. How about viscosity, do we see the effects of

that?

Question 3 Using the expression for vz(r), find the mass flow rate ṁ =
∫
A
ρvz · dA and the shear

stress. Does the latter behave as we expect?

2 Unsteady Hagen-Poiseuille Flow

Having found the steady-state value, we now want to do a full analysis of the flow and assume

it is initially at rest. A constant pressure p1 is imposed at the inlet at t = 0, which sets the fluid

in motion.

The only change to the governing equations is that we need to add the time derivative to

(1.3), so we now have

ρ∂tvz = −∂zp+ µ∇2vz (2.1)

= P + µ
1

r
∂r(r∂rvz) (2.2)

subject to the no-slip boundary conditions

vz(R, t) = 0 for all t > 0 (2.3)

vz(r, t) = 0 for all t ≤ 0 (2.4)

This is an initial boundary value problem involving a Laplacian with axisymmetric geometry and

the Hankel transform is a useful tool for such systems. Specifically, if vz(r) satisfies the Dirichlet

conditions in some closed closed interval [0, R], then its finite Hankel transform of zero order and

its inverse are defined by1

v∗z(ki, t) = H0[vz(r, t)](ki, t) =

∫ R

0

dr vz(r, t)rJ0(kir) (2.5)

vz(r, t) =
2

R2

∞∑
i=1

v∗z(ki, t)
J0(kir)

J2
1 (kiR)

, 0 ≤ r ≤ R (2.6)

where Ji is the ith order Bessel function of first kind and ki the positive roots of J0(kiR) = 0.

The usefulness of (2.5) to our problem ultimately comes from the standard recurrence relation

for Bessel functions, all of which is outlined in appendix A.

Question 4 Use the main result (A.10), H0[r−1(rf ′)′](k) = −k2H0[f ](k) to write (2.2) in ki-space.

Solve the resulting ODE (e.g., by Laplace transforming it). You should get

v∗z (ki, t) =
PRJ1(kiR)

µk3i

(
1− e−kiνt

)
. (2.7)

1Just like the Fourier transform has the sinusoidal kernel exp(iωt), the kernel of the Hankel transform consists

of the complete set of orthogonal Bessel functions.
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Question 5 We now have an expression for v∗z (ki, t). Transform it back to real-space using (2.6). Use

that

R2 − r2 =
8

R

∞∑
i=1

k−3
i

J0(kir)

J1(kiR)
. (2.8)

Comment on the final expression. How is this similar to a diffusion process?

Question 6 Rescale the solution with the characteristic parameters R and vz,max and plot it. It

should look like figure 2.
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Figure 2: Scaled velocity profile of a laminar flow with Re = 64 at different scaled

times, t∗ = t/tc, where tc = R/vz,max is the characteristic time.
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A Hankel Transform of Axisymmetric Laplacian

In this appendix we will briefly touch upon the general properties of the Hankel transform that

enables us to solve our axisymmetric problem. We first look at the νth order Hankel transform

of differentials, namely (a prime denotes the derivative wrt. r)

Hν [rν−1(r1−νf(r))′](k) =

∫ ∞
0

dr rν(r1−νf(r))′Jν(kr) (A.1)

= [rf(r)Jν(kr)]
∞
0 −

∫ ∞
0

dr r1−νf(r)[rνJν(kr)]′ (A.2)

for ν ≥ −1/2. The first term vanishes as r →∞, because the existence of the Hankel transform

requires that rf(r) → 0 in this limit (in our finite case the no-slip boundary condition ensures

that the term vanishes at the upper limit). The lower limit is trivially satisfied for well-behaved

functions, so the first term vanishes all together. We proceed by invoking the standard recurrence

relation for Bessel functions

[rνJν(kr)]′ = krνJν−1(kr), (A.3)

which gives us

Hν [rν−1(r1−νf(r))′](k) = −k
∫ ∞
0

dr rf(r)Jν−1(kr) (A.4)

= −kHν−1[f(r)](r). (A.5)

Taking ν = 1 we end up with the identity

H1[f ′(r)](k) = −kH0[f(r)](k). (A.6)

Following this approach once again together with the relation [r−νJν(kr)]′ = −kr−νJν+1(kr)

yields

Hν [r−1−ν(r1+νf(r))′](k) = kH1+ν [f(r)](r) (A.7)

and taking ν = 0 yields a second identity

H0[r−1(rf(r))′](k) = kH1[f(r)](k). (A.8)

These two relations enable us to Hankel transform the Laplacian in (2.2),

H0[r−1(rf ′(r))′](k) = kH1[f ′(r)](k) (A.9)

= −k2H0[f(r)](k). (A.10)
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