Continuum Mechanics 2016:
Solutions to Exercise Set 1

Exercise 1: (Linear elasticity from harmonic oscillators)

Solution:
(a) The new spring constant ky is defined implicitly through
F =knN(L — Leg)- (1)
We have £ — leq = F/k and N = Ley/leq = L /¥, so that

NF
L—Leq:N(f—feq):T. (2)

Upon comparing eqs. (1) and (2), we find

ky = % (3)

(b) We denote the displacements uid:efu(xi, t). Newton’s second law, where f; denotes the sum of
forces on particle 4, yields

’I’I’L’LLz = fz =k ((uiJrl — uz) — (ul — ui,l)) . (4)
Thus,
. k
(xy, t) = - (u(xitr,t) — 2u(xg, t) — u(wi—1,t)) . (5)
(c) We have ;11 = 2; & leq. Taylor expansion of u(z;11,t) yields

Ou(x,t) @ 0%u(x,t)
ox 2 0x?

T=X; T=T;

w(x; £ leg, t) = u(x;, t) £ leg + (’)(ég’q). (6)
Now, since this holds Vz;, we let x; — z, and since x is now also a continuous variable, the
time derivative in eq. (5) becomes partial. Inserting eq. (6) in eq. (5) and omitting the O(£3,)
terms since foq < 1, we obtain
Pu kL2 0%u .
B2 = m oa @

(d) This the wave equation with the wave velocity v = feq+/k/m . Realize this by inserting the
general solution u(z,t) = a(x £ vt).

Exercise 2: (6.5 from Lautrup [1]) Find the eigenvalues \; and eigenvectors v; of

T T T
o= |t T T (8)

T T T
Solution:  Straightforward calculation gives the eigenvalues \y = Ay = 0 and A3 = 37, and
the corresponding eigenvectors vi = [1,—1,0], vo = [1,0,—1] (or any linear combination) and

vy = [1,1,1]. Normalized eigenvectors (as given in the book) are obtained by ¥; = v;/|v,|.

Exercise 3: (6.6 from Lautrup [1]) Alternative formulation: Show that a stress tensor that is
diagonal in all coordinate systems, have identical nonzero entries.



Solution: Let the stress tensor be given by o = diag(o,,0,,0.) in the initial coordinate system.
Consider a rotation by an angle § about some fixed axis, and assume first that this is the z-axis.
The associated rotation matrix is given by

cosf —sinf 0
R = |sinf cosf O0Of. (9)
0 0 1
The stress tensor in the rotated coordinate system is given by
o' =RoR' (10)
oycos?0 +oysin®0 (0, —0,)sinfcosf 0
= | (0 —0y)sinfcosf o,sin*0+0,cos?0 0 (11)
0 0 o

This should also be diagonal, o/ = diag(o,/, 0y, 0./). Therefore the off-diagonal entries must be
zero V0, and so 0, = o,. By symmetry, this argument applies to rotation about both the z- and
y-axes as well, and thus o, = 0, = 0. = tr(o)/3 = —p.

Exercise 4: (6.8 from Lautrup [1])

(a) Show that the average of a unit vector n over all directions obeys

(b) Use this to show that the average of the normal stress acting on a surface element is (minus)
the mechanical pressure.

Solution:

(a) e Method 1: Brute force it. A unit vector n = n(#, ¢) is expressed by

sin @ cos ¢
n= [sinfsing| . (13)
cosf
Hence,
sin”  cos? ¢ (sym.)
n®n= [sin?fsingcos¢  sin®fsin’ ¢ . (14)

sinfcosfcos¢p sinfcosfcos¢p cos?f
Carrying out all six integrals (straightforward, but cumbersome!) over all angles (6, ¢)
and dividing by 47, we get (n ®@ n) = %I, or eq. (12).
e Method 2: Use the insight from Exercise 3. The average of a quantity over all directions

can not itself depend on the direction you evaluate it in. Using our acquired insight, we
can write it on the form

<TL7;’I’Lj> = kéij, (15)
where k is an undetermined constant. Taking the trace of both sides yields
1

which gives eq. (12).
(b) The normal force on a surface element is given by the traction at the surface, TZ-(“) = oy;n;,
projected in the normal direction: f(™ = niTi(n) = n;04n;. Taking the average,
1 044

<f(n)> = (niogn;) = (nin;) oij = §5ij0ij -3 TP (17)

Here we have used that o;; is constant, and the definition of the (mechanical) pressure, p =
—tr(o)/3 = —0yi/3.
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