Continuum Mechanics 2016:

Solutions to Exercise Set 1

Exercise 1: (Linear elasticity from harmonic oscillators)

Solution:

(a) The new spring constant k_{N} is defined implicitly through

$$
\begin{equation*}
F=k_{N}\left(L-L_{\mathrm{eq}}\right) . \tag{1}
\end{equation*}
$$

We have $\ell-\ell_{\text {eq }}=F / k$ and $N=L_{\text {eq }} / \ell_{\text {eq }}=L / \ell$, so that

$$
\begin{equation*}
L-L_{\mathrm{eq}}=N\left(\ell-\ell_{\mathrm{eq}}\right)=\frac{N F}{k} . \tag{2}
\end{equation*}
$$

Upon comparing eqs. (1) and (2), we find

$$
\begin{equation*}
k_{N}=\frac{k}{N} . \tag{3}
\end{equation*}
$$

(b) We denote the displacements $u_{i} \stackrel{\text { def }}{=} u\left(x_{i}, t\right)$. Newton's second law, where f_{i} denotes the sum of forces on particle i, yields

$$
\begin{equation*}
m \ddot{u}_{i}=f_{i}=k\left(\left(u_{i+1}-u_{i}\right)-\left(u_{i}-u_{i-1}\right)\right) . \tag{4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\ddot{u}\left(x_{i}, t\right)=\frac{k}{m}\left(u\left(x_{i+1}, t\right)-2 u\left(x_{i}, t\right)-u\left(x_{i-1}, t\right)\right) . \tag{5}
\end{equation*}
$$

(c) We have $x_{i \pm 1}=x_{i} \pm \ell_{\text {eq }}$. Taylor expansion of $u\left(x_{i \pm 1}, t\right)$ yields

$$
\begin{equation*}
u\left(x_{i} \pm \ell_{\mathrm{eq}}, t\right)=u\left(x_{i}, t\right) \pm\left.\ell_{\mathrm{eq}} \frac{\partial u(x, t)}{\partial x}\right|_{x=x_{i}}+\left.\frac{\ell_{\mathrm{eq}}^{2}}{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}\right|_{x=x_{i}}+\mathcal{O}\left(\ell_{\mathrm{eq}}^{3}\right) . \tag{6}
\end{equation*}
$$

Now, since this holds $\forall x_{i}$, we let $x_{i} \rightarrow x$, and since x is now also a continuous variable, the time derivative in eq. (5) becomes partial. Inserting eq. (6) in eq. (5) and omitting the $\mathcal{O}\left(\ell_{\text {eq }}^{3}\right)$ terms since $\ell_{\text {eq }} \ll 1$, we obtain

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{k \ell_{\mathrm{eq}}^{2}}{m} \frac{\partial^{2} u}{\partial x^{2}} \tag{7}
\end{equation*}
$$

(d) This the wave equation with the wave velocity $v=\ell_{\mathrm{eq}} \sqrt{k / m}$. Realize this by inserting the general solution $u(x, t)=\tilde{u}(x \pm v t)$.

Exercise 2: (6.5 from Lautrup [1]) Find the eigenvalues λ_{i} and eigenvectors \mathbf{v}_{i} of

$$
\boldsymbol{\sigma}=\left[\begin{array}{ccc}
\tau & \tau & \tau \tag{8}\\
\tau & \tau & \tau \\
\tau & \tau & \tau
\end{array}\right]
$$

Solution: Straightforward calculation gives the eigenvalues $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=3 \tau$, and the corresponding eigenvectors $\mathbf{v}_{1}=[1,-1,0], \mathbf{v}_{2}=[1,0,-1]$ (or any linear combination) and $\mathbf{v}_{3}=[1,1,1]$. Normalized eigenvectors (as given in the book) are obtained by $\hat{\mathbf{v}}_{i}=\mathbf{v}_{i} /\left|\mathbf{v}_{i}\right|$.

Exercise 3: (6.6 from Lautrup [1]) Alternative formulation: Show that a stress tensor that is diagonal in all coordinate systems, have identical nonzero entries.

Solution: Let the stress tensor be given by $\boldsymbol{\sigma}=\operatorname{diag}\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ in the initial coordinate system. Consider a rotation by an angle θ about some fixed axis, and assume first that this is the z-axis. The associated rotation matrix is given by

$$
\mathbf{R}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \tag{9}\\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The stress tensor in the rotated coordinate system is given by

$$
\begin{align*}
\boldsymbol{\sigma}^{\prime} & =\mathbf{R} \boldsymbol{\sigma} \mathbf{R}^{\top} \tag{10}\\
& =\left[\begin{array}{ccc}
\sigma_{x} \cos ^{2} \theta+\sigma_{y} \sin ^{2} \theta & \left(\sigma_{x}-\sigma_{y}\right) \sin \theta \cos \theta & 0 \\
\left(\sigma_{x}-\sigma_{y}\right) \sin \theta \cos \theta & \sigma_{x} \sin ^{2} \theta+\sigma_{y} \cos ^{2} \theta & 0 \\
0 & 0 & \sigma_{z}
\end{array}\right] \tag{11}
\end{align*}
$$

This should also be diagonal, $\boldsymbol{\sigma}^{\prime}=\operatorname{diag}\left(\sigma_{x^{\prime}}, \sigma_{y^{\prime}}, \sigma_{z^{\prime}}\right)$. Therefore the off-diagonal entries must be zero $\forall \theta$, and so $\sigma_{x}=\sigma_{y}$. By symmetry, this argument applies to rotation about both the x - and y-axes as well, and thus $\sigma_{x}=\sigma_{y}=\sigma_{z}=\operatorname{tr}(\boldsymbol{\sigma}) / 3=-p$.

Exercise 4: (6.8 from Lautrup [1])
(a) Show that the average of a unit vector \mathbf{n} over all directions obeys

$$
\begin{equation*}
\left\langle n_{i} n_{j}\right\rangle=\frac{1}{3} \delta_{i j} . \tag{12}
\end{equation*}
$$

(b) Use this to show that the average of the normal stress acting on a surface element is (minus) the mechanical pressure.

Solution:

(a) - Method 1: Brute force it. A unit vector $\mathbf{n}=\mathbf{n}(\theta, \phi)$ is expressed by

$$
\mathbf{n}=\left[\begin{array}{c}
\sin \theta \cos \phi \tag{13}\\
\sin \theta \sin \phi \\
\cos \theta
\end{array}\right] .
$$

Hence,

$$
\mathbf{n} \otimes \mathbf{n}=\left[\begin{array}{ccc}
\sin ^{2} \theta \cos ^{2} \phi & & \text { (sym.) } \tag{14}\\
\sin ^{2} \theta \sin \phi \cos \phi & \sin ^{2} \theta \sin ^{2} \phi & \\
\sin \theta \cos \theta \cos \phi & \sin \theta \cos \theta \cos \phi & \cos ^{2} \theta
\end{array}\right] .
$$

Carrying out all six integrals (straightforward, but cumbersome!) over all angles (θ, ϕ) and dividing by 4π, we get $\langle\mathbf{n} \otimes \mathbf{n}\rangle=\frac{1}{3} \mathbf{I}$, or eq. (12).

- Method 2: Use the insight from Exercise 3. The average of a quantity over all directions can not itself depend on the direction you evaluate it in. Using our acquired insight, we can write it on the form

$$
\begin{equation*}
\left\langle n_{i} n_{j}\right\rangle=k \delta_{i j} \tag{15}
\end{equation*}
$$

where k is an undetermined constant. Taking the trace of both sides yields

$$
\begin{equation*}
3 k=\left\langle n_{i} n_{i}\right\rangle=1 \quad \Longrightarrow \quad k=\frac{1}{3}, \tag{16}
\end{equation*}
$$

which gives eq. (12).
(b) The normal force on a surface element is given by the traction at the surface, $T_{i}^{(\mathbf{n})}=\sigma_{i j} n_{j}$, projected in the normal direction: $f^{(\mathbf{n})}=n_{i} T_{i}^{(\mathbf{n})}=n_{i} \sigma_{i j} n_{j}$. Taking the average,

$$
\begin{equation*}
\left\langle f^{(\mathbf{n})}\right\rangle=\left\langle n_{i} \sigma_{i j} n_{j}\right\rangle=\left\langle n_{i} n_{j}\right\rangle \sigma_{i j}=\frac{1}{3} \delta_{i j} \sigma_{i j}=\frac{\sigma_{i i}}{3}=-p . \tag{17}
\end{equation*}
$$

Here we have used that $\sigma_{i j}$ is constant, and the definition of the (mechanical) pressure, $p=$ $-\operatorname{tr}(\boldsymbol{\sigma}) / 3=-\sigma_{i i} / 3$.
[1] B. Lautrup. Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World. CRC Press, second edition, 2011.

