
Week 8

Fractures by Anti-Plane Shear Stress

1. The Navier-Cauchy equation is,

f + µ∇2u + (λ+ µ)∇(∇.u) = 0 (1)

where f is a volumetric body force and u is the displacement vector. Since we are given that
the only non zero displacement is

u = uz(x, y)ẑ

we immediately see that ∇.u = 0. We are also told that there are no body forces and therefore,
f = 0. Therefore, one can easily see that the Navier-Cauchy equation reduces to

∇2u =
∂2uz(x, y)

∂z2
= 0 (2)

2. The following relations will be useful,

∂w

∂y
= i (3)

∂w̄

∂y
= −i (4)

We see that,

uzy = ∂yuz (5)

=
1

2

(
∂ψ

∂y
+
∂ψ̄

∂y

)
(6)

=
1

2

(
∂ψ

∂w

∂w

∂y
+
∂ψ̄

∂w̄

∂w̄

∂y

)
(7)

=
i

4

(
∂ψ

∂w
− ∂ψ̄

∂w̄

)
(8)

where we have used (3) and (4) in going from (5) to (8).

3. We now integrate (8) with respect to w.∫
uzydw =

i

4

(∫
∂ψ

∂w
dw −

∫
∂ψ̄

∂w̄
dw

)
(9)∫

σzy
2µ

dw =
i

4

(∫
∂ψ

∂w
dw −

∫
∂ψ̄

∂w

∂w

∂w̄
dw

)
(10)∫

σzy
2µ

dw =
i

4
ψ(w) (11)

−Σw

iµ
= ψ(w) (12)

ψ(w) =
iΣw

µ
(13)

In (10), we have used the fact that ∂w
∂w̄ = 0. In going from (14) to (15), we have taken the

asymptotic limit of the stress tensor component σzy at infinity while performing the integral
over w.

4. In the parametrized form, the unit tangent vector can be represented as,

t̂ =
∂r

∂s
=

[
∂x
∂s
∂y
∂s

]
(14)

The unit normal should be orthogonal to this tangent vector and we can easily see that

n̂ =

[
−∂y∂s
∂x
∂s

]
(15)
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satisifies t̂.n̂ = 0. The no jump boundary condition is thus given by,

σ.n̂ = 0 (16)

σzxnx + σzyny = 0 (17)

∂uz
∂x

∂y

∂s
− ∂uz

∂y

∂x

∂s
= 0 (18)

where we have used the relations

σzx = 2µuzx = 2µ∂xuz

σzy = 2µuzy = 2µ∂yuz

5. Let us take the first term in (18). We rewrite the strain component as follows,

uzx =
1

2

∂

∂x

[
ψ(w) + ψ̄(w)

]
(19)

=
1

2

[
∂ψ

∂w

∂w

∂x
+
∂ψ̄

∂w̄

∂w̄

∂x

]
(20)

=
1

2

[
∂ψ

∂w
+
∂ψ̄

∂w̄

]
(21)

=
1

2

[
∂ψ

∂y

∂y

∂w
+
∂ψ̄

∂y

∂y

∂w̄

]
(22)

=
1

2

[
∂ψ

∂y

−i
2

+
∂ψ̄

∂y

i

2

]
(23)

=
i

4

[
−∂ψ
∂y

+
∂ψ̄

∂y

]
(24)

Similarly we obtain,

uzy =
i

4

[
−∂ψ
∂x

+
∂ψ̄

∂x

]
(25)

Substituting (24) and (25) into (18), we find that

∂ψ

∂s
=
∂ψ̄

∂s
(26)

6. Since it is fair to assume that ψ = ψ̄, let us now consider a form of the analytic function Ψ as
given below

ψ =
iΣ

µ

(
w − 1

w

)
(27)

=
iΣ

µ

(
w − ww̄

w

)
(28)

=
iΣ

µ
(w − w̄) (29)

The complex conjugate of this function gives

ψ̄ =
−iΣ
µ

(w̄ − w) (30)

=
iΣ

µ
(w − w̄) (31)

This form of Ψ also satisfies the asymptotic limit trivially and so it is justified to assume this
particular form.
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7. The complex variable w = reiθ in polar coordinates. In this case, we consider a unit circle in
the complex plane and set r = 1. The mapping is then given by

z = f(w) =
1

2

(
w +

α

w

)
(32)

=
1

2

(
eiθ + αe−iθ

)
(33)

=
1

2
[(cos θ + i sin θ) + (α cos θ − iα sin θ)] (34)

=
1

2
[cos θ(α+ 1)− i sin θ(α− 1)] (35)

(35) is the equation of an ellipse with major axis 2a = (α+ 1) and minor axis 2b = (α− 1)

8. When α = 1, we find that (35) reduces to,

z = f(w) = 1. cos θ (36)

When θ = 0 and θ = π,
z = 1. cos 0 = 1

z = 1. cosπ = −1

When θ = π
2 and θ = 3π

2 ,

z = 1. cos
π

2
= 1. cos

3π

2
= 0

9. We are asked to show that the boundary condition given by n.∇uz = 0 is conformal invariant
between the w and the z domains under the conformal mapping given by

z = f(w) =
1

2

(
w +

1

w

)
which has the inverse mapping w = Φ(z). This means that we mush show,

(n.∇uz)w = 0→ (n.∇uz)z = 0 (37)

modulo some analytic non-zero function which in this case is some function of the mapping
itself. We know a.b = R(āb) where a and b are two complex vectors In the w domain, we
have

n̂→ w (38)

∇ → ∂w̄ = ∂x + i∂y (39)

Since w = eiθ, |w| = 1 and, if we consider the curve describing the crack, then θ serves as the
parameter describing the curve. We know that n̂ = −it̂, and the unit tangent vector is defined
to be

t̂ =
df
dθ∣∣∣ dfdθ ∣∣∣ (40)

=
df
dw

dw
dθ∣∣∣ dfdw ∣∣∣ (41)

=
iw df

dw∣∣∣ dfdw ∣∣∣ (42)

and the unit normal is then given by,

n̂z =
w dz
dw∣∣∣ dfdw ∣∣∣ (43)
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and
∂w̄ → ∂z̄

Putting it all together, we find

¯̂nz.∇uz =
w̄ dz̄
dw̄∣∣∣ dfdw ∣∣∣∂z̄uz (44)

=
w̄ dz̄
dw̄∣∣∣ dfdw ∣∣∣

dw̄

dz̄
∂w̄uz (45)

=
1∣∣∣ dfdw ∣∣∣ w̄∂w̄uz (46)

The factor
∣∣∣ dfdw ∣∣∣ is non-zero by definition and the rest of it given by w̄∂w̄uz is just (n.∇uz)w = 0

in the w domain which is zero. Therefore, the conformal invariance preserves the boundary
condition.

10. We know that the stress is given by

σzy = 2µuzy (47)

=
µi

2

(
∂ψ

∂w
− ∂ψ̄

∂w̄

)
(48)

From the mapping relation, we obtain,

w = z ±
√
z2 − 1 (49)

and since we are given that

ψ(w) =
iΣ

µ

(
w − 1

w

)
(50)

we can obtain by using (49) in (50),

ψ(z) =
iΣ

µ

(
z ±

√
z2 − 1− 1

z ±
√
z2 − 1

)
(51)

If we use the above in the stress relation (48), we obtain

σzy =
µi

2

(
∂ψ

∂z

∂z

∂w
− ∂ψ̄

∂z̄

∂z̄

∂w̄

)
(52)

The divergence is most easily seen by simply focussing attention on one of the derivatives
contained in (52), in this case

∂ψ

∂z
=
iΣ

µ

[
1± z√

z2 − 1
+

1√
z2 − 1(z ±

√
z2 − 1)

]
(53)

In the case of a thin crack, we know that y ' 0 whereas −1 ≤ x ≤ 1, and we see that as we
approach the edges, the second term in (53) diverges.
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