Week 8

Fractures by Anti-Plane Shear Stress

1. The Navier-Cauchy equation is,

$$
\begin{equation*}
\mathbf{f}+\mu \nabla^{2} \mathbf{u}+(\lambda+\mu) \nabla(\nabla \cdot \mathbf{u})=0 \tag{1}
\end{equation*}
$$

where \mathbf{f} is a volumetric body force and \mathbf{u} is the displacement vector. Since we are given that the only non zero displacement is

$$
\mathbf{u}=u_{z}(x, y) \hat{z}
$$

we immediately see that $\nabla . \mathbf{u}=0$. We are also told that there are no body forces and therefore, $\mathbf{f}=0$. Therefore, one can easily see that the Navier-Cauchy equation reduces to

$$
\begin{equation*}
\nabla^{2} \mathbf{u}=\frac{\partial^{2} u_{z}(x, y)}{\partial z^{2}}=0 \tag{2}
\end{equation*}
$$

2. The following relations will be useful,

$$
\begin{align*}
\frac{\partial w}{\partial y} & =i \tag{3}\\
\frac{\partial \bar{w}}{\partial y} & =-i \tag{4}
\end{align*}
$$

We see that,

$$
\begin{align*}
u_{z y} & =\partial_{y} u_{z} \tag{5}\\
& =\frac{1}{2}\left(\frac{\partial \psi}{\partial y}+\frac{\partial \bar{\psi}}{\partial y}\right) \tag{6}\\
& =\frac{1}{2}\left(\frac{\partial \psi}{\partial w} \frac{\partial w}{\partial y}+\frac{\partial \bar{\psi}}{\partial \bar{w}} \frac{\partial \bar{w}}{\partial y}\right) \tag{7}\\
& =\frac{i}{4}\left(\frac{\partial \psi}{\partial w}-\frac{\partial \bar{\psi}}{\partial \bar{w}}\right) \tag{8}
\end{align*}
$$

where we have used (3) and (4) in going from (5) to (8).
3 . We now integrate (8) with respect to w.

$$
\begin{align*}
\int u_{z y} d w & =\frac{i}{4}\left(\int \frac{\partial \psi}{\partial w} d w-\int \frac{\partial \bar{\psi}}{\partial \bar{w}} d w\right) \tag{9}\\
\int \frac{\sigma_{z y}}{2 \mu} d w & =\frac{i}{4}\left(\int \frac{\partial \psi}{\partial w} d w-\int \frac{\partial \bar{\psi}}{\partial w} \frac{\partial w}{\partial \bar{w}} d w\right) \tag{10}\\
\int \frac{\sigma_{z y}}{2 \mu} d w & =\frac{i}{4} \psi(w) \tag{11}\\
\frac{-\Sigma w}{i \mu} & =\psi(w) \tag{12}\\
\psi(w) & =\frac{i \Sigma w}{\mu} \tag{13}
\end{align*}
$$

In (10), we have used the fact that $\frac{\partial w}{\partial \bar{w}}=0$. In going from (14) to (15), we have taken the asymptotic limit of the stress tensor component $\sigma_{z y}$ at infinity while performing the integral over w.
4. In the parametrized form, the unit tangent vector can be represented as,

$$
\hat{\mathbf{t}}=\frac{\partial \mathbf{r}}{\partial s}=\left[\begin{array}{c}
\frac{\partial x}{\partial s} \tag{14}\\
\frac{\partial y}{\partial s}
\end{array}\right]
$$

The unit normal should be orthogonal to this tangent vector and we can easily see that

$$
\hat{\mathbf{n}}=\left[\begin{array}{c}
-\frac{\partial y}{\partial s} \tag{15}\\
\frac{\partial x}{\partial s}
\end{array}\right]
$$

satisifies $\hat{\mathbf{t}} . \hat{\mathbf{n}}=0$. The no jump boundary condition is thus given by,

$$
\begin{align*}
\sigma \cdot \hat{\mathbf{n}} & =0 \tag{16}\\
\sigma_{z x} n_{x}+\sigma_{z y} n_{y} & =0 \tag{17}\\
\frac{\partial u_{z}}{\partial x} \frac{\partial y}{\partial s}-\frac{\partial u_{z}}{\partial y} \frac{\partial x}{\partial s} & =0 \tag{18}
\end{align*}
$$

where we have used the relations

$$
\begin{aligned}
\sigma_{z x} & =2 \mu u_{z x}=2 \mu \partial_{x} u_{z} \\
\sigma_{z y} & =2 \mu u_{z y}=2 \mu \partial_{y} u_{z}
\end{aligned}
$$

5. Let us take the first term in (18). We rewrite the strain component as follows,

$$
\begin{align*}
u_{z x} & =\frac{1}{2} \frac{\partial}{\partial x}[\psi(w)+\bar{\psi}(w)] \tag{19}\\
& =\frac{1}{2}\left[\frac{\partial \psi}{\partial w} \frac{\partial w}{\partial x}+\frac{\partial \bar{\psi}}{\partial \bar{w}} \frac{\partial \bar{w}}{\partial x}\right] \tag{20}\\
& =\frac{1}{2}\left[\frac{\partial \psi}{\partial w}+\frac{\partial \bar{\psi}}{\partial \bar{w}}\right] \tag{21}\\
& =\frac{1}{2}\left[\frac{\partial \psi}{\partial y} \frac{\partial y}{\partial w}+\frac{\partial \bar{\psi}}{\partial y} \frac{\partial y}{\partial \bar{w}}\right] \tag{22}\\
& =\frac{1}{2}\left[\frac{\partial \psi}{\partial y} \frac{-i}{2}+\frac{\partial \bar{\psi}}{\partial y} \frac{i}{2}\right] \tag{23}\\
& =\frac{i}{4}\left[-\frac{\partial \psi}{\partial y}+\frac{\partial \bar{\psi}}{\partial y}\right] \tag{24}
\end{align*}
$$

Similarly we obtain,

$$
\begin{equation*}
u_{z y}=\frac{i}{4}\left[-\frac{\partial \psi}{\partial x}+\frac{\partial \bar{\psi}}{\partial x}\right] \tag{25}
\end{equation*}
$$

Substituting (24) and (25) into (18), we find that

$$
\begin{equation*}
\frac{\partial \psi}{\partial s}=\frac{\partial \bar{\psi}}{\partial s} \tag{26}
\end{equation*}
$$

6. Since it is fair to assume that $\psi=\bar{\psi}$, let us now consider a form of the analytic function Ψ as given below

$$
\begin{align*}
\psi & =\frac{i \Sigma}{\mu}\left(w-\frac{1}{w}\right) \tag{27}\\
& =\frac{i \Sigma}{\mu}\left(w-\frac{w \bar{w}}{w}\right) \tag{28}\\
& =\frac{i \Sigma}{\mu}(w-\bar{w}) \tag{29}
\end{align*}
$$

The complex conjugate of this function gives

$$
\begin{align*}
\bar{\psi} & =\frac{-i \Sigma}{\mu}(\bar{w}-w) \tag{30}\\
& =\frac{i \Sigma}{\mu}(w-\bar{w}) \tag{31}
\end{align*}
$$

This form of Ψ also satisfies the asymptotic limit trivially and so it is justified to assume this particular form.
7. The complex variable $w=r e^{i \theta}$ in polar coordinates. In this case, we consider a unit circle in the complex plane and set $r=1$. The mapping is then given by

$$
\begin{align*}
z=f(w) & =\frac{1}{2}\left(w+\frac{\alpha}{w}\right) \tag{32}\\
& =\frac{1}{2}\left(e^{i \theta}+\alpha e^{-i \theta}\right) \tag{33}\\
& =\frac{1}{2}[(\cos \theta+i \sin \theta)+(\alpha \cos \theta-i \alpha \sin \theta)] \tag{34}\\
& =\frac{1}{2}[\cos \theta(\alpha+1)-i \sin \theta(\alpha-1)] \tag{35}
\end{align*}
$$

(35) is the equation of an ellipse with major axis $2 a=(\alpha+1)$ and minor axis $2 b=(\alpha-1)$
8. When $\alpha=1$, we find that (35) reduces to,

$$
\begin{equation*}
z=f(w)=1 \cdot \cos \theta \tag{36}
\end{equation*}
$$

When $\theta=0$ and $\theta=\pi$,

$$
\begin{gathered}
z=1 \cdot \cos 0=1 \\
z=1 \cdot \cos \pi=-1
\end{gathered}
$$

When $\theta=\frac{\pi}{2}$ and $\theta=\frac{3 \pi}{2}$,

$$
z=1 \cdot \cos \frac{\pi}{2}=1 \cdot \cos \frac{3 \pi}{2}=0
$$

9. We are asked to show that the boundary condition given by $\boldsymbol{n} . \nabla u_{z}=0$ is conformal invariant between the w and the z domains under the conformal mapping given by

$$
z=f(w)=\frac{1}{2}\left(w+\frac{1}{w}\right)
$$

which has the inverse mapping $w=\Phi(z)$. This means that we mush show,

$$
\begin{equation*}
\left(\boldsymbol{n} . \nabla u_{z}\right)_{w}=0 \rightarrow\left(\boldsymbol{n} . \nabla u_{z}\right)_{z}=0 \tag{37}
\end{equation*}
$$

modulo some analytic non-zero function which in this case is some function of the mapping itself. We know $\boldsymbol{a} \cdot \boldsymbol{b}=\mathcal{R}(\overline{\boldsymbol{a}} \boldsymbol{b})$ where \boldsymbol{a} and \boldsymbol{b} are two complex vectors In the w domain, we have

$$
\begin{equation*}
\nabla \rightarrow \partial_{\bar{w}}=\partial_{x}+i \partial_{y}, w, \tag{38}
\end{equation*}
$$

Since $w=\mathrm{e}^{i \theta},|w|=1$ and, if we consider the curve describing the crack, then θ serves as the parameter describing the curve. We know that $\hat{\boldsymbol{n}}=-i \hat{\boldsymbol{t}}$, and the unit tangent vector is defined to be

$$
\begin{align*}
\hat{\boldsymbol{t}} & =\frac{\frac{d f}{d \theta}}{\left|\frac{d f}{d \theta}\right|} \tag{40}\\
& =\frac{\frac{d f}{d w} \frac{d w}{d \theta}}{\left|\frac{d f}{d w}\right|} \tag{41}\\
& =\frac{i w \frac{d f}{d w}}{\left|\frac{d f}{d w}\right|} \tag{42}
\end{align*}
$$

and the unit normal is then given by,

$$
\begin{equation*}
\hat{\boldsymbol{n}}_{z}=\frac{w \frac{d z}{d w}}{\left|\frac{d f}{d w}\right|} \tag{43}
\end{equation*}
$$

and

$$
\partial_{\bar{w}} \rightarrow \partial_{\bar{z}}
$$

Putting it all together, we find

$$
\begin{align*}
\overline{\hat{\boldsymbol{n}}}_{z} \cdot \nabla u_{z} & =\frac{\bar{w} \frac{d \bar{z}}{d \bar{w}}}{\left|\frac{d f}{d w}\right|} \partial_{\bar{z}} u_{z} \tag{44}\\
& =\frac{\bar{w} \frac{d \bar{z}}{d \bar{w}}}{\left|\frac{d f}{d w}\right|} \frac{d \bar{w}}{d \bar{z}} \partial_{\bar{w}} u_{z} \tag{45}\\
& =\frac{1}{\left|\frac{d f}{d w}\right|} \bar{w} \partial_{\bar{w}} u_{z} \tag{46}
\end{align*}
$$

The factor $\left|\frac{d f}{d w}\right|$ is non-zero by definition and the rest of it given by $\bar{w} \partial_{\bar{w}} u_{z}$ is just $\left(\boldsymbol{n} . \nabla u_{z}\right)_{w}=0$ in the w domain which is zero. Therefore, the conformal invariance preserves the boundary condition.
10. We know that the stress is given by

$$
\begin{align*}
\sigma_{z y} & =2 \mu u_{z y} \tag{47}\\
& =\frac{\mu i}{2}\left(\frac{\partial \psi}{\partial w}-\frac{\partial \bar{\psi}}{\partial \bar{w}}\right) \tag{48}
\end{align*}
$$

From the mapping relation, we obtain,

$$
\begin{equation*}
w=z \pm \sqrt{z^{2}-1} \tag{49}
\end{equation*}
$$

and since we are given that

$$
\begin{equation*}
\psi(w)=\frac{i \Sigma}{\mu}\left(w-\frac{1}{w}\right) \tag{50}
\end{equation*}
$$

we can obtain by using (49) in (50),

$$
\begin{equation*}
\psi(z)=\frac{i \Sigma}{\mu}\left(z \pm \sqrt{z^{2}-1}-\frac{1}{z \pm \sqrt{z^{2}-1}}\right) \tag{51}
\end{equation*}
$$

If we use the above in the stress relation (48), we obtain

$$
\begin{equation*}
\sigma_{z y}=\frac{\mu i}{2}\left(\frac{\partial \psi}{\partial z} \frac{\partial z}{\partial w}-\frac{\partial \bar{\psi}}{\partial \bar{z}} \frac{\partial \bar{z}}{\partial \bar{w}}\right) \tag{52}
\end{equation*}
$$

The divergence is most easily seen by simply focussing attention on one of the derivatives contained in (52), in this case

$$
\begin{equation*}
\frac{\partial \psi}{\partial z}=\frac{i \Sigma}{\mu}\left[1 \pm \frac{z}{\sqrt{z^{2}-1}}+\frac{1}{\sqrt{z^{2}-1}\left(z \pm \sqrt{z^{2}-1}\right)}\right] \tag{53}
\end{equation*}
$$

In the case of a thin crack, we know that $y \simeq 0$ whereas $-1 \leq x \leq 1$, and we see that as we approach the edges, the second term in (53) diverges.

