Exercises Week 9

Longitudinal vibrations of a long elastic rod

Consider the continuum limit equation obtained in Week 6 for the coupled springs, i.e. the Navier-Cauchy equation in one dimension,

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} u(x, t)}{\partial t^{2}}-\frac{\partial^{2} u(x, t)}{\partial x^{2}}=0, \tag{1}
\end{equation*}
$$

where u is the displacement and c is the speed of sound. We will now solve the equation for a rod of length L with the boundary conditions

$$
\left\{\begin{align*}
\sigma_{x x}(L, t) & =0 \tag{2}\\
u(0, t) & =0 \\
\left.\frac{\partial u}{\partial t}\right|_{t=0} & =0 \\
u(x, 0) & =\alpha x
\end{align*}\right.
$$

1) Explain what these boundary conditions mean physically. Is the rod initially strained? How is it fixed in space?
We will try to find a solution by separation of variables, that is a solution on the form

$$
\begin{equation*}
u(x, t)=T(t) X(x) \tag{3}
\end{equation*}
$$

2) By inserting the product form in Eq. (1), show that one obtains the two equations

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}=\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=-\lambda^{2} \tag{4}
\end{equation*}
$$

with a separation constant λ.
3) Show next that the full solution that satisfies the boundary conditions assumes the form

$$
\begin{equation*}
u(x, t)=\sum_{n} A_{n} \cos \left(\lambda_{n} c t\right) \sin \left(\lambda_{n} x\right), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{n}=\left(\frac{1}{2}+n\right) \frac{\pi}{L} \tag{6}
\end{equation*}
$$

For $t=0$, we obtain from the boundary condition, the following equation for the coefficients A_{n}

$$
\begin{equation*}
\alpha x=\sum_{n} A_{n} \sin \left(\lambda_{n} x\right), \tag{7}
\end{equation*}
$$

4) Find the coefficients A_{n} (how well do you remember the Fourier-transformation?? ;) and plot the solution by truncating the sum Eq. (5) at a finite n. The coefficients should be

$$
A_{n}=\frac{2 \alpha(-1)^{n} L}{\pi^{2}(1 / 2+n)^{2}}
$$

Radial vibration of a linear elastic sphere

Find the characteristic frequencies for the radial vibrations of a linear elastic sphere in vacuum. Note that for radial vibrations, the displacement field is rotation free and can therefore be written as the gradient of a scalar field $\varphi(r, t)$, i.e.

$$
\begin{equation*}
\mathbf{u}(r, t)=\nabla \varphi(r, t)=\partial_{r} \varphi(r, t) \mathbf{e}_{r} \tag{8}
\end{equation*}
$$

You can further assume $\varphi(r, t)$ can be written on product form

$$
\begin{equation*}
\varphi(r, t)=f(r) e^{i \omega t} \tag{9}
\end{equation*}
$$

Since the sphere is assumed to vibrate in vacuum there will be no stresses acting from the outside on the sphere, that is use the boundary condition

$$
\begin{equation*}
\sigma_{r r}(a)=0, \tag{10}
\end{equation*}
$$

where a is the radius of the sphere. Note that you could as well solve directly the radialsymmetric Nacvier-Cauchy equation without introducing the auxiliary scalar field φ.

Exercises from the book

$12.8,12.10,24.1,24.4,24.6$

