
Continuum mechanics Week 12

Answer Exercises Week 12

Radial vibration of a linear elastic sphere

Find the characteristic frequencies for the radial vibrations of a linear elastic sphere in
vacuum.

Answer

We need to solve the Navier-Cauchy equation for a radial-symmetric problem with the
boundary condition

σrr(a) = 0,

where a is the radius of the sphere.

First we note that for a radial-symmetric problem we have that ∇×u = 0 and that we
only have longitudinal vibrations of the sphere,

∂2uL

∂t2
= c2L∇2uL = c2L∇∇ · uL.

Here we have used that ∇2uL = ∇∇·uL−∇×∇×uL = ∇∇·uL. There are two more
or less similar ways to solve this equation, the first one is to solve directly the equation.

Direct approach

If we insert a solution on the form ur = g(r)eiωt, we end with the following equation for
the radial component

−k2g(r) = g′′(r) +
2

r
g′(r)− 2

r2
g(r),

where k = ω/cL. If you look up in your quantum mechanics books or something similar,
you will see that this is the Bessel equation and that the solution, which is consistent
with the boundary conditions, is the first Bessel function j1,

ur(r, t) = Aj1(kr)e
iωt = A

(
sin kr

r2
− cos kr

r

)
eiωt,

where A is a constant to be matched by the boundary conditions.
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Alternative approach

We can alternatively use that the displacement field is rotation free and therefore can
be written as the gradient of a scalar field uL = ∇ϕ. Inserting this in the wave equation
we get

∂2∇ϕ
∂t2

= c2L∇∇2ϕ

which is equivalent to

∇
(
∂2ϕ

∂t2
− c2L∇2ϕ

)
= 0.

Integrating once we get
∂2ϕ

∂t2
= c2L∇2ϕ.

Similar to the displacement field, the scalar field will also be radial-symmetric, we there-
fore seek a solution to the problem on the form

ϕ = f(r)eiωt

If we insert this in the equation above (using the spherical expression of the Laplace
operator), we get an equation for f

−k2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
We can rewrite the right hand side, such that equation assumes the form

−k2f =
1

r

∂2

∂r2
(rf) (1)

If we introduce an auxiliary function ψ = rf the equation reads

ψ′′ = −k2ψ (2)

which has a solution ψ = A sin kr. We disregard the cosine solution because we want
ψ(r = 0) = 0. It then follows that

f(r) = A
sin kr

r
. (3)

This expression should be familiar to people with Bessel functions fresh in mind. We
now determine possible values of k from the boundary condition σrr(a) = 0.

We first use that
σrr(r) = 2µurr + λ(urr + 2utt) (4)
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which then becomes (with urr = ∂2rϕ and utt = (∂rϕ)/r)

σrr(a) = ρc2Lf
′′(a) + 2ρ(c2L − 2c2T )f ′(a)/a (5)

where we have omitted the time factor – please verify if this expression is correct.

Putting this to zero we have the following equation for ka

0 = c2L

(
2 sin ka

a3
− 2ka cos ka

a3
− k2a2 sin ka

a3

)
+ 2(c2L − 2c2T )

(
ka cos ka

a3
− sin ka

a3

)
(6)

which can be written on the form

tan ka =
ka

1−
(

kacL
2cT

)2 . (7)

From this equation we can numerically or graphically solve for the characteristic values
of ka and corresponding frequencies.
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