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Rotation-induced grain growth and stagnation in phase-field crystal models
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We consider grain growth and stagnation in polycrystalline microstructures. From the phase-field crystal
modeling of the coarsening dynamics, we identify a transition from a grain-growth stagnation upon deep
quenching below the melting temperature Tm to a continuous coarsening at shallower quenching near Tm.
The grain evolution is mediated by local grain rotations. In the deep quenching regime, the grain assembly
typically reaches a metastable state where the kinetic barrier for recrystallization across boundaries is too large
and grain rotation with subsequent coalescence or boundary motion is infeasible. For quenching near Tm, we find
that the grain growth depends on the average rate of grain rotation, and follows a power-law behavior with time,
with a scaling exponent that depends on the quenching depth.
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Introduction. Polycrystalline microstructures are typically
formed by thermal processes such as quenching or annealing of
melts, through the nucleation and growth of grains of different
crystallographic orientation. Since these microstructures have
a controlling role on the large scale material properties,
e.g., mechanical, magnetic, and optical properties, and yield
strength, it is crucial to understand their formation and late-
stage evolution.

Curvature-driven grain growth is described in two
dimensions (2D) by the von Neumann–Mullins growth law
and predicts a linear growth of the average grain area
〈A〉 ∼ t that follows directly from the linear relationship
between grain-boundary normal velocity and curvature [1,2].
However, one common intriguing finding in experiments
with thin metallic films and molecular dynamics simulations
of annealed polycrystalline systems is that the coarsening
deviates substantially from the curvature-driven growth [3,4].
Instead, the grain area size increases as 〈A〉 ∼ tα , where the
value of the scaling exponent α may depend nontrivially
on a number of controlling factors, such as the annealing
temperature, grain size, grain-boundary mobility, and surface
energy. For instance, the growth kinetics in nanocrystalline
Fe was experimentally observed to be controlled by the grain
size, leading to a superdiffusive growth, α ≈ 2 [5]. However,
at mesoscales, the coarsening law in metallic thin films is
typically subdiffusive, α ≈ 1/2 [6,7]. A unified theoretical
foundation for the anomalous grain growth is still lacking,
despite numerous attempts to generalize the phenomenological
normal growth model to include additional mechanisms that
control the growth rate [8,9].

Grain-growth stagnation is another anomalous behavior to
the classical picture of a curvature-driven scaling law that
occurs in a wide range of materials ranging from metallic
thin films [7,10] to ice [11]. Although the thermodynamically
stable state consists of a single crystal, the kinetics towards
equilibrium goes through an energy landscape with possi-
ble metastable states where grain growth stagnates. Several
mechanisms have been identified to cause stagnation, such as
boundary pinning by impurities, the presence of a boundary
melt, or thin films between grains [4]. Experiments [12]
have revealed an intermittent grain-boundary dynamics that

is hard to reconcile with the classical picture of uniform grain
growth [13]. Based on molecular dynamics simulations [4], it
has been argued that the grain-boundary roughness controls
the boundary mobility, hence the overall grain growth, and
that the presence of a small fraction of low-mobility, smooth
grain boundaries can lead to stagnation. Grain rotation and
grain coalescence due to a coupling between the normal
growth and tangential motion have been recently suggested
as important processes in the evolution of high-purity poly-
crystalline materials [8,9]. The experimental observations on
grain rotation have been further backed by models reproducing
the subdiffusive scaling behavior of grain growth dominated
by grain rotation and coalescence [9].

In this Rapid Communication, we present numerical results
on the anomalous coarsening dynamics of polycrystalline films
and the influence of grain rotation. We use the phase-field
crystal model that has been shown to be an efficient approach
to modeling various aspects of polycrystalline dynamics on
diffusive time scales [14–17]. We observe a transition between
a dynamical state where grains continuously coarsen and a
state where grain growth stagnates, with a crossover time
that diverges as the quenching depth is lowered. Our setup
consists of initial crystal seeds of random lattice orientations in
a two-dimensional undercooled melt. The crystals are seeded
at random sites chosen from a uniform distribution. At these
sites we plant a small crystal seed, consisting of seven atoms
in a hexagonal configuration with an angular orientation also
chosen from a random uniform distribution. Without lack of
generality, the system might as well be seeded by adding
random noise to the initial density field of the undercooled
melt. The latter approach would not change any of our
results. During crystal growth, we track the lattice orientation
and the area occupied by the individual grains. Figure 1
shows a few snapshots of polycrystalline textures during a
coarsening process. At the early stages in the coarsening
process, the mean grain area increases at a rate that depends
on the quenching temperature. The grain growth continues on
longer time scales only for shallow undercoolings below the
melting temperature Tm, whereas it crosses over to a stagnation
plateau when the melt is deeply quenched to temperatures
much lower than Tm. The saturation value of the mean grain
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FIG. 1. (Color online) Time snapshots of grain growth in a
polycrystalline material taken at simulation time steps (a) t = 400,
(b) t = 12000, (c) t = 36 000, and (d) t = 225 000. The system size
is 1024 by 1024, which corresponds to approximately 100 by 100
atom units, and the simulation has been run with the temperature
controlling parameter set to a2 = −0.05 (corresponding to a relatively
cold system). The individual grain colors denote the lattice orientation
in radians. In the last frame the grain growth has reached a fixed state
where even relatively high levels of thermal noise cannot reactivate
grain-boundary migration or internal rearrangement.

area depends nontrivially on the quenching temperature [see
Figs. 3 and 2(b)].

The model. The phase-field crystal (PFC) model operates
on microscopic length scales and diffusive time scales, and
thus constitutes an efficient computational alternative to
traditional atomistic methods that are constrained on short
time scales comparable to atomic vibrations. The PFC method
has been applied to different nonequilibrium phenomena in
(poly)crystalline materials including phase transitions [14,18],
and elastic and plastic deformations [16,19]. The coarse-
grained time resolution of the PFC method allows for an
efficient modeling of slow dynamics of dissipative structures
such as grain boundaries and crystal defects. In the simplest
formulation, the evolution of the PFC density field ψ is
governed by an overdamped, diffusive equation of motion on
the form

∂ψ

∂t
= ∇2 δF[ψ ; T ]

δψ
, (1)

where the static free-energy functional F[ψ ; T ], which
determines the equilibrium properties of the crystal phase,
has the phenomenological form of the Swift-Hohenberg free
energy, but can also be derived from microscopic details
using the density functional theory [14]. Here, we consider
the free-energy functional as derived from the density func-
tional theory for a hexagonal (fcc) crystal lattice in 2D and
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FIG. 2. (Color online) (a) shows a phase diagram with points
indicating the two simulation protocols used. In protocol I, simula-
tions were carried out along the coexistence line, and in protocol II,
simulations were carried out for a fixed mean density ψ0. The average
grain area in the stagnated state for the two protocols is shown as a
function of a2 in (b). We observe that for values of a2 approaching
from below 0.03, the grain areas become of the order of the system
size before growth stagnates. For simulations according to protocol II,
the average change in grain orientation vs the average grain area is
shown in (c). At low temperatures (low values of a2), grain rotation
and grain growth quickly stagnates. Close to the melting temperature
grain rotation goes down while the grain growth remains fast.

given as

F[ψ ; T ] =
∫

dr
[

1

2
ψ(∇2 + 1)2ψ + a2

2
ψ2 − 1

6
ψ3 + 1

12
ψ4

]
,

(2)

where the parameter a2 and the mean density ψ0 are related
to the critical melting temperature Tm according to the phase
diagram in Fig. 2(a). The phase diagram is computed by the
one-mode approximation and common tangent construction.
The local terms in Eq. (2) correspond to the coarse-grained free
energy of an ideal gas, whereas the nonlocal term follows from
the lowest-order gradient expansion of the interactions that
allow for a periodic ground state corresponding to a triangular
lattice in 2D.

Several extensions of Eq. (1) have been proposed by
introducing additional time scales for faster acoustic relaxation
of the elastic fields. The modified PFC model proposed in
Ref. [16] is based on a two-time-scale dynamics of the PFC
mimicked by a second-order time derivative of the ψ field,
where the fast time scale resolves the rapid elastic relaxation.
The fast dynamics related to phonons is taken into account
by a three-time-scale dynamics of the PFC that can be
derived from a generalized hydrodynamics of solids [20].
Since polycrystalline dynamics is a dissipative process, the fast
elastic relaxation time scale does not influence the coarsening
dynamics. Thus, for simplicity, we present numerical results
obtained from the diffusive PFC given by Eq. (1), although
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similar results were achieved from test simulations including
elastic relaxations.

We solve numerically Eq. (1) using a pseudospectral
method similar to that in Ref. [21], where time is propagated
using an exponential time difference method. Simulations
are carried out according to two protocols [see Fig. 2(a)],
protocol I, where we follow the lower boundary of the solid-
liquid coexistence region in the phase diagram, i.e., the crystal
density and the parameter a2 are changed simultaneously,
and protocol II, where the average density is fixed and the
parameter a2 is varied. The parameter a2 is chosen in the range
−0.15 to 0.03. For the simulations along the coexistence line,
mean density ψ0 varies between −0.1 and 0.02.

The individual crystal orientations can be extracted from the
phase-field crystal density by using a wavelet transformation
[22]. Calculating the magnitude of the gradient in the grain
orientation, we observe that the orientation changes most
rapidly across grain boundaries. We can use this together with
a watershed algorithm to identify individual grains (see Fig. 1).

Results and discussion. Polycrystalline microstructures,
formed by grain nucleation and growth from an undercooled
melt, initially coarsen with time at a rate depending on the
quenching temperature. Figure 3 shows the average grain
areas as functions of time for fixed crystal densities (i.e.,
according to simulation protocol II in the phase diagram).
The late-stage evolution is characterized by a crossover to a
grain-growth stagnation regime where the steady-state mean
grain area increases as the quenching depth is decreased. We
observe that the crossover time ts depends nontrivially on
the quenching temperature, such that its value diverges as
T → Tm. As long as the stagnation state is reached before
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FIG. 3. (Color online) Mean grain size as a function of time
for different quenching depths. We observe a transition from fast
stagnation at large quenching depths (low values of a2) to a power-law
scaling of grain size at shallow quenching depths (larger values of a2).
In the latter case, i.e., for high temperatures, the scaling exponent is
approximately α = 1/2. Each line is averaged over five simulations
of a system of size L = 1024. For a2 = 0.03, we have further included
simulations of a system of size L = 2048. Two lines corresponding
to power laws with exponents 1/4 and 1/2 have been added as guides
to the eye.
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FIG. 4. (Color online) Individual grain trajectories in a lattice
orientation and grain area diagram (a2 = 0.03, protocols I and II). The
areas of the individual grains have been normalized by the average
size to a given time. The time evolution along the trajectories is
indicated by the color legend. Note that the big grain separated from
all the smaller grains is formed by consecutive alignment and merging
of smaller grains.

the grain sizes become comparable to the system size, we have
not observed a significant change in the average grain areas
when varying the system size. In Fig. 2(b), we show for the two
protocols the average grain size in the stagnated state (when
there is no more dynamics) as a2 is increased. For simulation
protocol II, we observe a rapid increase in the grain sizes before
the coexistence line is crossed.
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FIG. 5. (Color online) Grain rotation over area change |�θ/�A|
in a fixed time step �t = 1500 is shown as a function of the area
divided by the mean area (at a given time step) A/〈A〉 (a2 = 0.03). We
observe a systematic decrease in the rotation per area as the grain area
is increased. The colors of the individual points, indicated by the color
legend, represent the time at which a data point was observed. We
note that there seems to be no clear difference in this plot between the
early- and late-stage dynamics. The local average value of |�θ/�A|
is shown together with the sample variation (standard deviation),
marked by error bars in black, and the line on top is a best fit with a
power law. The best fit yields an exponent β = 1.25 ± 0.06.
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By tracking the angular evolution of the individual grains
and their change in areas, we have considered in detail the
correlation between the rotation rate and growth rate of
the grains. In Fig. 4, we show the grain trajectories in the
space of their misorientation and area size. We notice that at
the early stages in the coarsening process, the small grains
tend to follow a random meandering in the misorientation
space, i.e., small grains rotate much more than bigger grains.
However, in the later coarsening stage, the grain-boundary
network is between large grains with selected misorientations.
Also, we notice that some of the big grains suddenly disappear,
which is an indication of coalescence where one grain rotates
until its lattice orientation aligns with that of one of its
neighbors. In Fig. 2(c), we observe that for low temperatures
the grain stagnation is concomitant with a rapid decrease in
grain rotation.

In general, the amount of grain rotation per change in area
goes up for small grains (see Fig. 5). A best fit suggests,
for relatively large areas, a scaling relation between the grain
misorientation change and area change on the form∣∣∣∣ �θ

�A

∣∣∣∣ ∼ A−β, (3)

where the scaling exponent is estimated to be β = 1.25 ± 0.06
for a2 = 0.03. If the grain rotation is solely due to the coupling
to the normal motion, i.e., rdθ/dt = 	vn, the conservation of
the number of dislocations along the grain boundary implies

that r(t)θ (t) = const, or, equivalently, θ (t) ∼ A−1/2(t) [8].
Consequently, it follows that β = 3/2. We ascribe the dif-
ference between the measured and predicted value of β to the
variation in misorientation that a grain has in a polycrystalline
matrix with its neighbors. At low quenching, the crystals
are softer and the grain-boundary network more “greased,”
allowing for sliding, dislocation reactions, or even premeltings.
We have further performed simulations (not shown here) where
we observe that in protocol I and for a2 > 0.03 most of the
energy is dissipated in grain growth rather than grain rotation.
Equivalently, grain rotation eventually stops when crossing
from below the line to the solid-liquid coexistence region.

In summary, we have studied the anomalous coarsening
and grain-growth stagnation in polycrystalline films using the
phase-field crystal model. We find that the coarsening law is
characterized by a power-law increase of the mean grain area
for higher quenching temperatures, and for lower quenching
temperatures we observe a temperature-dependent crossover to
a stagnated state. This suggests that the subdiffusive coarsen-
ing law is non-universal, although the probability distribution
of grain size has shown to be robust against temperature
variations. Moreover, we observe that the late-stage coarsening
is accompanied by a sudden decrease in grain rotation and a
simultaneous stagnation.
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