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We propose a theoretical model for branching instabilities in 2-dimensional fracture, offering predictions for
when crack branching occurs, how multiple cracks develop, and what is the geometry of multiple branches.
The model is based on equations of motion for crack tips which depend only on the time dependent stress
intensity factors. The latter are obtained by invoking an approximate relation between static and dynamic stress
intensity factors, together with an essentially exact calculation of the static ones. The results of this model are
in qualitative agreement with a number of experiments in the literature.
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I. INTRODUCTION

The phenomenon of crack division, i.e., the splitting of a
single primary crack into two or more branches, whose dy-
namics develops independently, is studied in thin plates of
different materialssglasses, plastics, metals etc.d f1g. A clas-
sical example from more than thirty five years ago is shown
in Fig. 1, which exhibits a crack pattern observed in a thin
araldite platef2g. In this example the cracks go throughout
the thickness of the sheet. This is to be distinguished from
apparently similar side branching instabilities in which side
branches appear in addition to the main crack, when the ve-
locity of propagation exceeds a critical valuef3,4g. There
exists an important difference between the two phenomena:
in the former cases all the branches crack through the plates
ssometime referred to as “macrobranching”d, whereas in the
latter experiments, near the onset of the instability, the side
branches have a width which is considerably smaller than the
thickness of the platessometime referred to as “microbranch-
ing”d. Notwithstanding attempts to interpret the latter phe-
nomenon using 2-dimensional theoriesf5,6g, it appears that
the interaction of crack fronts of different thickness necessi-
tates a 3-dimensional theory which is daunting at present. In
this paper we limit our discussion to a 2-dimensional theory
that pertains only to plates with cracks going through the
plate.

The aim of this paper is to develop an approximate theory
of crack dynamics, including crack bifurcations and multiple
crack competition. More specifically, we address the follow-
ing questions.

s1d Given a straight propagating crack in a 2-dimensional
material, when and how the first bifurcation occurs? The
bifurcation event itself was studied successfully in a recent
paper by Adda-Bediaf5g. In our approach we are able to
examine the dynamics of the bifurcated cracks.

s2d Given a bifurcated crack, what is the stability of a
symmetric branched configuration? We show that there exists
an instability towards geometric perturbations, making one
branch growing on the expense of the other which gets ar-
rested.

s3d What is the geometry of multiplestwo or mored
branches? Obviously the interaction between multiple
branches results in curved cracks. The model that we propose

is able to follow the dynamics and the resulting geometry.
s4d How consecutive bifurcations come about, and what

are the resulting crack patterns?
s5d Can one apply the 2-dimensional theory developed

here to microbranching? The answer will be shown to be
negative; there are crucial 3-dimensional aspects of micro-
branching that need the 3-dimensional theory in its entirety
for an appropriate treatment.

In order to answer all these questions, we take the point of
view that the dynamics of the tip of each crack is determined
by the elastic field in its very vicinity. Near each tip one
expands the stress field as usual,

si jsr,u,td = KIstd
Si j

I su,vd
Î2pr

+ KIIstd
Si j

IIsu,vd
Î2pr

. s1d

Here v is the instantaneous tip velocity,hr ,uj are polar co-
ordinates at the crack tip andt is time.KIstd andKIIstd are the
dynamic stress intensity factors, and the functionsS are
known universal functions ofu andv.

The central element in our model is the adoption of the
Hodgdon-Sethna equations for the crack tipsf7g. These
equations were derived in the context of quasistatic crack
propagation, and were shown to be in agreement with quasi-
static experiments inf8g. Here we employ these equations in
the dynamic context, invoking the results and their compari-
son with experiments for justification. Consider a local coor-
dinates system located at the crack tip, in whicht̂ and n̂
denote the tangential and normal directions respectively. For
the crack tip locationr tip we write the equations

FIG. 1. Crack pattern in an araldite tensile sheetf2g.
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]r tip

]t
= vt̂ ,

] t̂

]t
= − fKIIstdn̂. s2d

Here v is the instantaneous crack tip velocity, andf is a
positive material function. Note that the first of Eqs.s2d is
nothing but a geometric kinematic relation that assumes local
smoothness of the crack trajectory. The second equation re-
sults from symmetry considerations, but much physics is hid-
den in the material functionf. Needless to say, these equa-
tions appear simpler than they really are. The actual
calculation of the dynamic stress intensity factors for evolv-
ing cracks of complicated geometry is very far from trivial.
The bulk of Sec. II is devoted to the presentation of approxi-
mate schemes to compute these objects. The main idea is to
relate the dynamic stress intensity factors to their static coun-
terpartf9g, and then to compute the latter using the method
of iterated conformal maps that had been presented for frac-
ture problems in recent papersf10,11g. This material is re-
viewed in Sec. III.

Having at hand the stress intensity factors one can use
them in Eqs.s2d for each crack tip. In Sec. IV we describe
how this is done for multiple branch dynamics. We demon-
strate that the theory is successful in describing crack bifur-
cations, crack arrest, and successive bifurcations. The geom-
etry can be studied in great detail and compared with
available experiments. Finally, in Sec. V we consider the
applicability of this theory to microbranching. As mentioned
above, the conclusion is negative. Section VI offers a sum-
mary of the paper and some concluding remarks.

II. DYNAMICS OF MULTIPLE CRACKS

To implement Eqs.s2d we need first to compute the dy-
namic stress intensity factors, and second the velocityv at
the tip of each branch in a multiple branch configuration. We
start with the stress intensity factors.

A. Estimating the dynamic stress intensity factors

The first task is the calculation of thedynamicstress in-
tensity factors for a branched configuration. To this aim we
invoke the formalism developed inf9g, in which the dynamic
stress intensity factors were related to their static counter-
parts. Based on some specific examples an approximate form
of the dynamic stress intensity factors was obtained as a
product of thestaticstress intensity factorsKI

s andKII
s sof the

instantaneous frozen configurationd and universal functions
of the instantaneous velocity. For each mode of fracture one
writes

KIstd . kIsvdKI
sstd,

KIIstd . kIIsvdKII
s std. s3d

We note that both the dynamic and the static stress intensity
factors are considered time-dependent. For the static objects

this dependence means freezing the actual configuration that
is obtained at timet. The universal functions of the velocity
are given by

kIsvd = SS−
1

v
D 1 − v/cR

Î1 − v/cd

,

kIIsvd = SS−
1

v
D 1 − v/cR

Î1 − v/cs

s4d

andSszd is given by

Sszd = expF−
1

p
E

1/cd

1/cs

tan−1S4h2Îsh2 − cd
−2dscs

−2 − h2d
scs

−2 − 2h2d2 D
3

dh

z + hG . s5d

Here cR, cd and cs are the Rayleigh, dilatational and shear
wave speeds, respectively.

This approximation was shown in the classical theory of
fracture mechanics to be essentially exact for semi-infinite
straight cracksf12g. In our earlier work we applied this ap-
proximate methodology for describing interacting large and
small cracksf9g. The separable form of the dynamic stress
intensity factors is trivially correct for very small velocities,
since the functionskI and kII tend to unity forv→0. For
finite velocities the separable form is not exact, but we ex-
pect it to yield good approximations when the velocities are
small fractions of the typical wave speed and the typical
distance between the evolving tips is small. In fact, when
there are more wave reflections between the various branches
of our crack, the better is the approximate form. Once two or
three wave reflections have taken place the dominant dy-
namic interaction is the self interaction of the crack tip with
its immediate vicinity, and the dynamical part of this inter-
action is fully contained in the functionskI and kII . Physi-
cally stated, under the specified conditions the waves deliver
the required mechanical information that makes the approxi-
mation tenable. We will demonstrate below that such condi-
tions are satisfied throughout the dynamics of the branching
instability, therefore allowing us to use the separable form
quite confidently in the present context. Nevertheless it
should be stated that it is difficult to quantifya priori the
range of validity of the approximation. Therefore we invoke
the final results and their agreement with various experimen-
tal results to support the quality of the approximation.

Clearly, this approximation is a huge simplification, call-
ing for solving the static equilibrium field equations rather
than the full dynamical field equations. Of course, one still
has to face the difficult problem ofstatic non-trivial geom-
etries, but this problem was solved quitegenerallyusing the
method of iterated conformal mapsf10g, and demonstrated in
the context of complex crack geometries inf11g.

B. The velocity of the crack tips

To close Eqs.s2d as a consistent mathematical system we
need to compute the velocity of each tip in terms of the
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dynamic stress intensity factors. The basic idea is to employ
the energy balance that equates the energy release rate into
the crack tip regionsdenoted byGd to the dissipation in-
volved in the crack propagationsdenoted byGd. The classical
theory of linear elasticity fracture mechanicsf12g provides
the energy release rate into each tip region:

G =
1 − n2

E
fAIsvdKI

2 + AIIsvdKII
2g, s6d

whereE andn are the Young’s modulus and Poisson’s ratio,
respectively, andAIsvd and AIIsvd are universal functions
given by

AIsvd =
v2Î1 − v2/cd

2

s1 − ndcs
2Dsvd

,

AIIsvd =
v2Î1 − v2/cs

2

s1 − ndcs
2Dsvd

,

Dsvd = 4Îs1 − v2/cd
2ds1 − v2/cs

2d − s2 − v2/cs
2d2. s7d

Note that Dsvd vanishes at the Rayleigh wave speed,v
= ±cR.

For concreteness, consider a two-dimensional infinite me-
dium loaded at infinity with a uniform constant tensile stress
syy

` . A long straight crack propagates at an instantaneous ve-
locity V; at some critical velocity, when the crack length isL,
the crack bifurcates into two branches of lengthsh,ij!L
with tip velocitieshvij, defining angleshlipj with respect to
the direction of the crack prior to the bifurcation. Freezing
the crack just at the bifurcation we denote its static stress
intensity factor asKI

s0d.
At each tip of the bifurcated crack we define the normal-

ized stress intensity factors

FI =
KI

s

KI
s0d , FII =

KII
s

KI
s0d . s8d

EquatingG to G we can rewrite Eq.s6d at each branch tipas

EG

1 − n2 = gIsvdFI
2fKI

s0dg2 + gIIsvdFII
2fKI

s0dg2, s9d

with

gIsvd ; AIsvdkI
2svd,

gIIsvd ; AIIsvdkII
2svd. s10d

Under the assumption thatG is velocity independent we ob-
serve that the left-hand side of Eq.s9d contains only material
parameters. Therefore, a similar equation holds for the pure
mode I crack propagating with velocityVb just before the
branching event,

EG

1 − n2 = gIsVbdfKI
s0dg2. s11d

We conclude that the instantaneous velocityvi of each crack
tip is determined byVb according to

gIsVbd = gIsvidFI
2 + gIIsvidFII

2 ∀ i . s12d

Note that it would be better to index the stress intensity
factor with an indexi to stress that each tip contributes its
own equation to the set. We avoid it in order not to overbur-
den the notation. Notwithstanding, in case for which the dis-
sipation functionG becomes velocity dependent, we should
introduceGsvid /GsVbd on the left-hand sidesLHSd of Eq.
s12d. Bearing in mind thatgIsVbd is a decreasing function, the
result of such a change would be a reduction inVb f5g.

On physical grounds one seeks solution of these relations
for non-negative branch velocitiesvi. In Ref. f5g it was
shown that under theassumptionthat the branches start their
evolution quasi-staticallysi.e., vi =0d a solution appears first
for symmetric branching atVb=vc<0.475cs. For higher ve-
locities Vb.vc one can have bifurcations in which the
branches start off at a finite velocity.

Finally, we bring the equations of motion to their final
form as used below. We have no experimental information
about the material functionf in Eqs.s2d. Accordingly we will
assumef constant, measure velocities in units ofcs, and
length in units ofcs/ fKI

s0d. Let u be the angle between the
tangential unit vector and thex axis. Denoting the tip posi-
tion of the straight crack at bifurcation asrb, ,i ;ur i

tip−rbu.
We rewrite now the tangential and normal unit vectors at the
tip of the crack in termsu and a rescaled timetKI

s0df → t.
These changes transform Eqs.s2d into

],i

]t
= vi ,

]ui

]t
= − kIIsvidFII . s13d

These equations, in conjunction with Eqs.s12d, define our
dynamical system. Note that the velocities are measured in
units of cs. We selectedn=0.25 which impliescd=Î3cs and
cR=0.9194cs. It is important to notice that the set of equa-
tions for each branch tip is coupled to the equations for the
other tips via the functionsFI and FII . All the results pre-
sented below are obtained by the following procedure: for
each instantaneous branched configuration the functionsFI
andFII are calculated using the method of iterated conformal
mappings, then the velocities of the tips are calculated using
Eqs.s12d and finally the increments in length and angle are
calculated according to Eqs.s13d.

III. STATIC BRANCHED CONFIGURATIONS

A crucial ingredient in our model is the calculation of the
static stress intensity factors for an arbitrary branched crack
configuration. The general approach to this problem, based
on the method of iterated conformal mappings, is presented
in all detail in Ref.f10g. The essential building block is the
composition of the conformal map from the exterior of the
unit circle to the exterior of the complicated crack shape,
using a functional iteration of a fundamental conformal map
that adds one single bump to the unit circle. This scheme
enables us to solve for the entire stress field for any branched
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crack configuration. The static stress intensity factors are ex-
tracted from the near tip fields using the method explained in
f10g. In the present context the crack tips are dressed by a
finite curvature determined by the size of the bump of the
fundamental map which is added at each iteration. While
appropriate for comparison with most realistic experiments,
where some blunting of the crack tip is always present, this
finite curvature means that comparison with mathematical
models with infinitely sharp cracks should be done with care.

In the literature there is only limited amount of works
presenting calculations of stress intensity factors for in-plane
problems with branched crack configurations. In Ref.f5g
such a calculation for an infinitesimal symmetric branched
configuration is provided using a numerical solution of an
integral equation. In order to ascertain the reliability and ac-
curacy of our calculation we consider first a similar configu-
ration, choosing the length, of each branch such that, /L
=0.5310−3. We could not select a smaller ratio due to the
finite curvature of the crack tipsin addition, our numerical
scheme which is based on truncated Fourier expansions can-
not deal efficiently with minute geometric details, since the
series truncation becomes inaccurated. The normalized stress
intensity factorsFI andFII as a function ofl, where 2pl is
the angle between the branchesssee insetd are shown in Fig.
2. This figure should be compared with Fig. 4 in Ref.f5g. It
is clear that the figures are in good agreementsthe locations
of the maximum ofFI and zero crossing ofFII are nearly
identicald, although there is a slight overestimation inFI due
to finite size effects.

Second, we considered an asymmetric branched configu-
ration in which both branches have the same length, /L
=0.5310−3, while one of them is located in the direction of
the main crack and the other creates an angle ofpl relative
to that direction. The normalized stress intensity factorsFI

andFII for both tips as a function ofl are shown in Fig. 3.
To our best knowledge there is no calculation available in the
literature for this configuration. Since mode III models are
usually in a qualitative agreement with their in-plane coun-
terparts we present in the Appendix the calculation for a
mode III asymmetric branched configuration and present the
resulting normalized stress intensity factors in Fig. 4. Indeed,
the mode I component of the in-plane calculation shows the
same qualitative behavior as its mode III counterpart.

FIG. 2. The normalized stress intensity factorsFI and FII as a
function of l, where 2pl is the angle between the branchesssee
insetd. The ratio of branch length and the main crack is, /L=0.5
310−3.

FIG. 3. The normalized stress intensity factorsFI and FII for
both tips as a function ofl, wherepl is the angle between the
branchesssee insetd. The ratio of branches length and the main
crack is, /L=0.5310−3.

FIG. 4. The mode III normalized stress intensity factor for an
asymmetric branched configuration.pl is the angle between the
branches and the ratio of the branches length and the main crack
length is, /L=0.5310−3. The upperslowerd curve corresponds to
the forward directionsinclinedd branch.
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IV. THE DYNAMICS OF MULTIPLE BRANCHES

In Ref. f5g it was found that under the conditions that the
branches start off quasistaticallyswith zero velocityd and
with KII <0, the critical velocity isVb=vc<0.475cs and the
branching anglelp is 0.13p. Note thatl is determined by
the zero crossing ofKII presented in Fig. 2. The velocity is
“critical” in the sense that it is the first velocity for which
branching is energetically possible. Since there is no specifi-
cation of the mechanism of branching, one should treat it as
a lower bound for the branching velocity. For everyVb.vc
one can find a solution with the samel ssince it is deter-
mined by the independent conditionKII <0d, but with a non-
vanishing velocity of the branches. Indeed, experimentally it
appears that the branches do not emerge quasistatically as
implied by the solution off5g. Note that as long asVb is not
much larger thanvc, the branches velocities are relatively
small. Bearing in mind that the distance between the tips is
also relatively small, we can use the separable form of the
dynamic stress intensity factors quite confidently. In this sec-
tion we analyze the post-branching dynamics for various
physical conditions.

A. Stability analysis

Motivated by the experimental evidence that symmetric
branches do not emerge quasistaticallyf13,14g, we study the
stability of the symmetric configuration against small geo-
metrical perturbations. We consider the possibility that dy-
namical instabilities prevent the development of the branch-
ing event even though it is energetically allowed atVb=vc.
Consider a symmetric branched configuration with, /L
=0.5310−3 and l=0.13. Introduce a positive small pertur-
bationd,=0.5310−2, to the length of one of the branches,
and integrate the dynamical Eqs.s12d and s13d for various
Vb.vc. Note that asVb increases so does the velocity of the
emerging branches. Figure 5 presents the resulting dynamics
for Vb=0.50 andVb=0.55. A representative resulting crack
pattern is shown in the inset; the unperturbed branch com-
petes with the perturbed one and eventually dies outsi.e., it
gets arrested due to screening effectsd. The velocities of the
branches are plotted as a function of time. The time to arrest
can be identified as the point where the velocity of the un-
perturbed branch vanishes. By comparing the data for the
two branching velocities, it is clear that the time to arrest
increases substantially asVb increases, therefore we deduce
that the increment of instabilitydecreaseswith increasingVb.
We conclude that symmetric branched configurations are un-
stable against small geometrical perturbations at least for the
branching velocities we considered. We should stress that
largerVb’s are not considered here due to the expected dete-
rioration in the quality of the approximation embodied in the
separable form of the dynamic stress intensity factors. In this
regime it is reasonable to believe that other dynamic effects
are important and might stabilize the symmetric configura-
tion. In particular if the functionGsvd is an increasing func-
tion of the velocity, then the faster and longer branch would
be relatively punished and its velocity would reduce, allow-
ing the shorter branch to catch up. Similarly a velocity de-
pendence offsvd may contribute further stabilizing factors.

The resulting dynamics are such that the unperturbed branch
is arrested, while the perturbed one returns after a short time
to the original crack path. Therefore, the main effect of these
attempted branching events is the sudden deceleration of the
crack. We suggest to interpret the instability as a possible
explanation for the fact that in macrobranching events the
branches do not emerge quasistaticallyf13,14g since then the
configuration is very sensitive to perturbations and probably
cannot be observed on macroscopic scales. On the other
hand, for larger branching velocities, for which the branches
emerge with finite velocities, both branches coexist, they are
less unstable to small perturbations and therefore can grow to
observable sizes.

In the framework of stability analysis we also consider the
final length of the arrested branch. Denoting byD, the dif-
ference between the final branch length and its initial length
,, we show in Fig. 6 the relative change in lengthD, /, as a
function of Vb for two values of the fixed ratiod, /,. The
dependence seems to be approximately linear for both. Note
that the continuation of the lines intersects thex axis at the
critical branching velocity Vb=vc<0.475, below which
branching is energetically forbidden. In passing, we note the
resemblance of Fig. 6 to the experimental results obtained in
f3g for the microbranching instability. There it was found
ssee Fig. 3 inf3gd that the branch length increases approxi-
mately linearly with the mean crack velocity and vanishes
for the critical one.

B. Successive branching events

In light of the observation of asymmetric branch growth
with one of them arrested, we follow now the evolution of
the surviving branch. This branch then accelerates to the
critical branching velocity and may bifurcate again. In this
subsection we study the patterns formed by such multiple

FIG. 5. The velocities of the branches as a function of time for
Vb=0.50 andVb=0.55. The resulting dynamics are such that the
unperturbed branch is arrested, while the perturbed one returns after
a short time to the original crack path. A representative resulting
crack pattern is shown in the inset. See text for details.
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successive branching events. In Fig. 7 we present the crack
pattern that was formed by three successive branching
events. At the first event we introduced a positive small per-
turbationd,=2310−2, to the length of the lower branch. At
the second event we introduced a symmetric configuration
with the same, andl with no perturbation added by hand.
We stopped the evolution of the system at the onset of the
third event since within our numerical precision we could not
determine its outcome; in some cases it turned out that the
upper branch outruns the lower and in others vice versa. The
results shown in Fig. 7 are in qualitative agreement with the
experimental results shown in Fig. 8. Unfortunately we can-
not offer a quantitative comparison due to the paucity of
experimental details, in particular the time dependence of the
crack evolution. In our theory velocities and lengths are res-
caled as explained above, and we therefore can compare only
the postmortem geometry.

We note here that the seemingly up-down anti-correlation
between the winning branches of successive events in Fig. 7
is reminiscent of the spatial ordering observed in the micro-

branching instabilityssee Fig. 4c inf4gd. This similarity, in
conjunction with the resemblance discussed in relation with
Fig. 6, suggests that our 2-dimensional theory might have
captured some of the features of the microbranching instabil-
ity, although it cannot be directly applied in that casessee
Sec. Vd.

C. Symmetric branching

As discussed above, at higher branching velocities, sym-
metric branches can coexist for a longer time, and it is inter-
esting to determine the typical profiles of such symmetric
branches. Consider an experiment in which a crack of length
L in a long strip of widthW bifurcates and two symmetric
branches of length, emerge. As the branches start propagat-
ing with KII <0, they cannot change their direction as long as
,!L ,W. On the other hand, when, grows to the order of
the smaller betweenL andW, the branches will curve. In our
theory there is only one lengthL sthe system is infinited and
we study the curving of branches of length comparable toL.

Figure 9 shows several branching scenarios for different
branching lengthL. It is tempting, after the example off3g,
to fit power laws to these profiles. The different profiles can
be approximated in the limited range that we consider by a
power lawy,xz with 0.7,z,0.8. The fit in the figure cor-
responds toz=0.8 and was added as a guide for the eye. It
should be immediately said however that the profiles are
neither universal nor true power laws. They represent a tran-
sient behavior between two straight lines. Initially the
branches start off with an anglelp=0.13p. Finally there is
an asymptotic fixed angle that depends on the geometry of
the system. In an infinite medium this final angle satisfies
0,l,0.13, while in a strip of finite widthl=0, i.e., the
branches propagate eventually parallel to the boundaries of
the strip.

FIG. 6. The relative change in lengthD, /, as a function ofVb

for d,=2310−2, slower curved andd,=0.5310−2, supper curved.
Note that the continuation of the lines intersects thex axis at the
critical branching velocityVb=vc<0.475, below which branching
is energetically forbidden.

FIG. 7. The crack pattern that was formed by three successive
branching events. The branching velocity was set toVb=0.5, i.e.,
slightly more thanvc. We introduced a positive small perturbation
d,=2310−2, to the length of the lower branch. Upon reaching the
branching velocity again we introduced a symmetric configuration
with the same, andl with no perturbation added by hand. The bar
shows the scale of the process relative to the initial crack lengthL.

FIG. 8. A crack pattern in a tensile 260312035 mm araldite
platef1g. The plate was notched symmetrically at the edge. Due to
minute asymmetries in the production of the notches, only one of
them propagates. A second branching event can be observed after
some time. In this event almost symmetric branches emerge from
the branching point and coexist until one outruns the other and then
curves towards the symmetry line. Attempted branching events can
be clearly observed before the successful branching event took
place. All these features are in qualitative correspondence with our
discussion.
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As an example of the relevance of our calculation to ac-
tual crack branching events, Fig. 10 shows two shadow pho-
tographs of different stages of a symmetric branching event
in a glass platef1g. The left panel shows the onset of branch-
ing with straight branches as long as, is smaller thanL and
W. The right panel shows the developed branching configu-
ration. The similarity with Fig. 9 is obvious.

V. HOW ABOUT MICROBRANCHING?

With the relative success of the model proposed here in
reproducing the typical geometry of macrobranches it is of
course tempting to see whether also the geometry of micro-
branches can be gleaned from the present 2-dimensional
theory. To this aim we have attempted to follow the dynam-
ics of a side branch in an asymmetric configuration in which
the main branch is forced to emerge in the forward direction,
see the inset of Fig. 3. We selectedl=0.2 such thatKII of the
side branch is approximately zero. This initial configuration
was introduced as a constraint on the system to reflect the
local symmetry breaking observed in experimentsf3g. Gen-
erally, this asymmetry results in a velocity difference be-
tween the side branch and the main branch.

Figure 11 shows a typical resulting configuration in which
the velocity of the main branch fluctuates in a way similar to
the experimentally observed velocity fluctuations, while the
side branch was almost immediately arrested. Since we were
mainly interested in the dynamics of the side branch, i.e., its
trajectory and lifetime, we concluded that a model that treats
the main macroscopic branch and the microscopic side
branch on equal footings is doomed to fail. The meaning of
this result is that the energy flux into the microscopic side-
branch is dramaticallyunderestimatedin a 2-dimensional
model. We tried to increase artificially the energy release rate
G into the near tip region of the side branch by a constant
factor, such as to increase its initial velocity. Nevertheless,
the velocity of the side branch dropped immediately to zero,
reflecting the huge screening effect of the main branch.
Therefore, although some of our results in Sec. IV show
similarities with various features of the microbranching in-
stability, we propose that the phenomenon of microbranching
is essentially 3-dimensional and cannot be modeled directly
by a 2-dimensional theory.

VI. SUMMARY AND CONCLUSIONS

In summary, we have introduced dynamical equations of
motion for crack tips which depend only on the stress inten-
sity factors at the tips. Generally speaking, the calculation of
these objects is daunting. By adopting an approximate sepa-
rable form for the dynamic stress intensity factors in terms of
their static counterparts and universal velocity dependent
functions we achieved a huge simplification that results in
tractable dynamics. Instead of complicated field equations
we can reduce the theory to ordinary differential equations
for the crack tips. Complex events like crack bifurcations,
branch competition, branch arrest and successive bifurca-
tions are studied in detail and compared with experiments.
The good news is that the comparison with experiments is
encouraging; more quantitative comparisons call for new ex-
periments that will take into account the proposed insights,
including measuringfsvd. The bad news is that the quality of
the approximation cannot be easily assessed from first prin-
ciples. One expects that for low velocities and small dis-
tances between the multiple crack tips the approximation
should be quite good. What is the range of validity can at this
point be gleaned only from comparison with experiments,
and these are relatively old and not detailed enough, maybe
giving the false impression of a good agreement. It thus

FIG. 9. Symmetric branching dynamics for different branching
lengthL with Vb=0.5. The plot shows the various crack patterns in
rescaled coordinates. A power lawy,xz with z=0.8 was added as
a guide for the eye.

FIG. 10. Two shadow photographs of a symmetric branching
event in a 300310039 mm glass platef1g. The left panel shows
the early stages of the branching process where the branches are
almost straight, while the right panel shows the developed curved
branching configuration.

FIG. 11. A typical resulting configuration for asymmetric
branching. The side branch is almost immediately arrested, while
the main branch temporarily deflected from its straight path. The net
effect of such an event is a strong fluctuation in the velocity of the
main branch. The bar shows the scale of the process relative to the
initial crack lengthL.
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seems very worthwhile to conductnewexperiments in light
of this theory in order to test it in some detail. The gained
transparency and simplicity of the theory seems a very good
motivation for such an undertaking.
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APPENDIX: STATIC MODE III ASYMMETRIC
BRANCHING

The aim of this appendix is to derive the static stress
intensity factors at the tips of an asymmetric branched mode
III configuration. Since the mode III problem is described by
Laplace equation for the displacement fielduzsx,yd

¹2uzsx,yd = 0, sA1d

the solution of this problem is readily given if the conformal
map, z=Fsvd, from the exterior of the unit circle to the
exterior of a branched crack configuration is known. The
general formalism for obtaining such a map is known in the
literature for a long timef2g. Here we adapt the general
formalism to the problem at hand and solve it. Consider the
following map

Fsvd = Av−1sw − eia1dl1sw − eia2dl2sw − eia3dl3, sA2d

whereA is a real constant, 0,a1,a2,a3,2p andl3=2
−l1−l2. The points heiakj are mapped to the origin and
therefore are branch points. Forak−1,u,ak the phase of
Fsvd is fixed by the crack branch angle and a local maxi-
mum of uFsvdu is obtained ateibk. The parameters of the
map, i.e.,A, hakj and hbkj, can be calculated by demanding
that for v=1 argszd=0 and by the conditionsF8seibkd
=0,uFseibkdu=,k. Here h,kj are the lengths of the crack
branches. These three conditions can be translated into the
following set of equations

o
j=1

3

a jl j = 2p,

o
j=1

3

l jcotSa j − bk

2
D = 0,

4Ap
j=1

3 UsinSbk − a j

2
DUl j

= ,k, sA3d

which can be solved numerically. Having the conformal map
for the required configuration at hand we are mainly inter-

ested in the stress intensity factors for the various crack tips.
The solution for Eq.sA1d is given by

uzsx,yd =
1

2m
fwszd + wszdg, sA4d

wherewszd is an analytic function. The stress components in
polar coordinates are given by

srzsr,ud − isuzsr,ud = eiuw8sreiud = eiu w̃8svd
F8svd

. sA5d

Here the tilde denotes the usual transplantation. In the near
vicinity of a given crack tipzk we use the following expan-
sion:

srzsr,ud =
KIII

Î2pr
sinsu/2d + OsÎrd,

suzsr,ud =
KIII

Î2pr
cossu/2d + OsÎrd. sA6d

These two equations can be rewritten as

srzsr,ud − isuzsr,ud =
− ieiu/2KIII

Î2pr
+ OsÎrd. sA7d

On the other hand, near the crack tips we can expand the
conformal map to obtain

z− zk = Fsvd − Fsvkd .
1

2
F9svkdsv − vkd2,

F8svd . F9svkdsv − vkd = Î2F9svkdsz− zkd. sA8d

The last expression, in the light of Eq.sA5d, shows the ex-
plicit relation between the square root singularity of the
stress field near the crack tip and the derivative of the con-
formal map. Let us denotez−zk=reisdkp+ud with dk=o j=1

k−1l j
and consider the direction tangent to the crack tip, i.e.,u
=0. By comparing Eq.sA5d with Eq. sA7d we obtain

KIII = iw̃8svkdÎ p

F9svkdeidkp . sA9d

With this result at hand we can calculate the stress intensity
factor at each tip since the solution in thev plane is known
to be

w̃svd = − isyz
` Afv − v−1g, sA10d

wheresyz
` is the applied stress at infinity. Now we are in a

position to analyze infinitesimal asymmetric branched con-
figurations. We choose,1=L , ,2=,3=, , l1=1−l and l2
=l with , /L=0.5310−3. The resulting stress intensity fac-
tors are presented in Fig. 4 in the text.
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