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Scaling exponent of the maximum growth probability in diffusion-limited aggregation

Mogens H. Jensen,1 Joachim Mathiesen,1 and Itamar Procaccia2

1The Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark
2Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 4 December 2002; published 17 April 2003!

An early ~and influential! scaling relation in the multifractal theory of diffusion limited aggregation~DLA !
is the Turkevich-Scher conjecture that relates the exponentamin that characterizes the ‘‘hottest’’ region of the
harmonic measure and the fractal dimensionD of the cluster, i.e.,D511amin . Due to lack of accurate direct
measurements of bothD andamin , this conjecture could never be put to a serious test. Using the method of
iterated conformal maps,D was recently determined asD51.71360.003. In this paper, we determineamin

accurately with the resultamin50.66560.004. We thus conclude that the Turkevich-Scher conjecture is in-
correct for DLA.
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Multifractal measures are normalized distributions lyi
upon fractal sets. As such, they present rich scaling pro
ties that have attracted considerable attention in the last
decades. In this paper, we address the harmonic measu
diffusion limited aggregates~DLA ! @1#, which is the prob-
ability measure for a random walker coming from infinity
hit the boundary of the fractal cluster. This was one of
earliest multifractal measures to be studied in the phy
literature@2#, but the elucidation of its properties was ma
difficult by the extreme variation of the probability to hit th
tips of a DLA versus hitting the deep fjords. Thus, the u
derstanding of its scaling properties has been a long stan
issue. These scaling properties are conveniently studied
ing the notion of generalized dimensionsDq , and the asso-
ciated f (a) function @3,4#. The simplest definition of the
generalized dimensions is in terms of a uniform covering
the boundary of a DLA cluster with boxes of size,, and
measuring the probability for a random walker coming fro
infinity to hit a piece of boundary that belongs to thei th box.
Denoting this probability byPi(,), one considers@3#

Dq[ lim
,→0

1

q21

ln (
i

Pi
q~, !

ln ,
, ~1!

where the indexi runs over all the boxes that contain a pie
of the boundary. The limitD0[ lim

q→01Dq is the fractal or
box dimension of the cluster.D1[ lim

q→11Dq and D2 are
the well known information and correlation dimensions,
spectively@5–7#. It is well established by now@4# that the
existence of an interesting spectrum of valuesDq is related
to the probabilitiesPi(,) having a spectrum of ‘‘singulari-
ties’’ in the sense thatPi(,);,a with a taking on values
from a rangeamin<a<amax. The frequency of observatio
of a particular value ofa is determined by the functionf (a),
where@with t(q)[(q21)Dq]

f ~a!5aq~a!2t„q~a!…,
]t~q!

]q
5a~q!. ~2!
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Of particular interest are the values of the minimal a
maximal values,amin and amax, relating to the largest and
smallest growth probabilities, respectively. The maxim
value amax was a subject of a long controversy that w
settled only recently~cf. Refs.@8,9#, and references therein!.
The issue ofamin appears to be one of the last of the mul
fractal properties of DLA that has resisted settling. This
the subject of this paper.

Consider DLA clusters containingn particles of radius
Al0, and denote the radius of the minimal circle that co
tains the cluster asRn . An incoming random walker from
infinity has some probability to hit any of the existing pa
ticles of the cluster. Denote the maximal of these probab
ties aspmax. The average of these probabilities over ma
clusters ofn particles appears to scale as

^pmax&;SAl0

Rn
D amin

;n2amin /D, ~3!

where for the last step we have used the obvious scaling
n;(Rn /Al0)D. Turkevich and Scher have made the pla
sible assumption that the position of the cluster particle
sociated withpmax is at the outermost tip of the cluster. Thu
a scaling relation can be derived by stating that upon add
a new particle to the cluster,Rn will grow by one unitAl0
with probability pmax or will not grow at all with probability
12pmax. Then

dR

dn
;Al0pmax;n1/D21, ~4!

where again the last step stems from the definition of
fractal dimension. Equating the right-hand side of Eqs.~3!
and ~4! we get the Turkevich-Scher conjecture@11#

D511amin . ~5!

We will show here that this conjecture is incorrect simp
because the position of maximal probability isnot at the
outermost tip of the DLA cluster. In fact, one can introdu
©2003 The American Physical Society02-1
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in analogy to Eq.~3! a scaling law for the probability to hi
the actual tip of the cluster~the particle which is a furthes
away from the origin!, i.e.,

^ptip&;SAl0

Rn
D a t ip

;n2a t ip /D. ~6!

A scaling law

D511a t ip ~7!

is then a tautology. We will show that for DLAa t ip
.amin .

To achieve accurate estimates ofamin ~and in passing of
a t ip), we resort to the method of iterated conformal ma

FIG. 1. The average ofpmax ~upper, black line! andptip ~lower,
gray line! versusn. The average is over 20 clusters of sizes up
n5100 000. From the values of the slopes we estimateamin

50.68160.014 anda t ip50.71360.012.
04240
s

that was shown to be extremely useful for dealing with DL
and related growth processes. The method was amply
scribed before, so we just remind the reader that it is ba
on compositions of fundamental conformal mapsfl,u which
map the exterior of the unit circle to its exterior, except fo
little bump ateiu of linear size proportional toAl. The com-
position of these mappings is analogous to the aggregatio
random walkers in the off-lattice DLA model. We shall he
use the mapping introduced in Ref.@10#, which produces two
square root singularities that we refer to as the branch c
and the tip of the bump which we refer to as the microt
The dynamics is given by

F (n)~w!5F (n21)
„fln ,un

~w!…, ~8!

whereF (n) maps the exterior of the unit circle to the exteri
of the cluster ofn bumps. The size of thenth bump is con-
trolled by the parameterln and in order to achieve particle
of fixed size we have that, to leading order,

ln5
l0

uF (n21)8~eiun!u2
. ~9!

Using the iterated conformal maps it is very easy to ke
track of where the maximum growth probability is locate
and where the outermost tip is as more particles are ad
Let us assume that at the (n21)th growth step, the site with
the largest probability is located at the angleumax on the unit
circle, i.e., for allu,

1

uF (n21)8~eiumax!u
>

1

uF (n21)8~eiu!u
. ~10!

When we add a new bump in thenth growth step, the
position of maximal probability may not change~up to rep-
ersus
FIG. 2. The upper panel shows data of^pmax& versusn for l050.8, 0.9, 1.0, 1.1, 1.2. The lower panel shows the same data plotted v
the scaling variable defined in Eq.~12!. The estimated values ofb andd that lead to the best data collapse, using least squares, arebmax

50.389,dmax50.505. We therefore have fromD'1.713 thatamin'0.666.
2-2
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arametrization of the angleumax) or move to the new bump
We can easily find the reparametrized angle and determ
the new position from

pmax,n5maxH 1

uF (n)8„fln ,un

21 ~eiumax!…u
,

1

uF (n)8~eiun!uJ .

~11!

If pmax,n is located atun we put umax5un in the (n11)th
growth step. Similarly, we track the positionuzumax on the
cluster by finding the valueu t ip that assigns the maxima
value of uF (n)(eiu)u. We computeptip there as 1/uF (n)8u.

A direct measurement ofamin and a t ip is displayed in
Fig. 1. From the direct measurement we findamin'0.681,
while a t ip'0.713. Clearly, the latter is in agreement wi
Eq. ~7!, while the former is in disagreement with Eq.~5!
~taking as a datum the result of Ref.@12#, D51.713
60.005).

The direct measurement, while correct, cannot guara
that very slow convergence of the power laws as a func
of n may somehow hide an asymptotic identity ofamin and
a t ip . To remove this problem, we now adopt the scali
function technique of Ref.@12# to achieve an accurate dete
mination of amin . In this approach, one acknowledges th
Eq. ~3! may be realized only asymptotically for high valu
of n. For low and medium values ofn, ^pmax&, which is a
function of the discreten and of l0, is in fact a scaling
function of a single scaling variable,

FIG. 3. Data ofamin estimated using Eq.~15! with ñ5n11.
The data are fitted with a cubic polynomial. The polynomial int
sects they axis at the valueamin50.665. Using upper and lowe
values ofd, d50, andd51 we estimate the following bounds o
the value ofamin , 0.662,amin,0.669.
04240
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ee
n

t

^pmax&5 f d,b~x!,
~12!

x5
1

Al0

~n1d!2b,

where we have denotedb5amin /D. The difference with Eq.
~3! is that f d,b is in general not a linear function of its argu
ment, except at exceedingly small values ofx, whenn is very
large. In Fig. 2, we demonstrate the existence of the sca
function and the excellent data collapse achieved using it
the upper panel, we plotf d,b(l0 ,n) for five values ofl0 and
1<n<250. In the lower panel, the same data are collap
using the single scaling variable. We draw the reader’s at
tion to the following two observations:~i! the data collapse is
available immediately, even for the smallest values ofn @12#,
and ~ii ! the scaling function is not linear throughout th
range explored here. Thus, the scaling law~3! is not obeyed
yet for values ofn of the order of a few hundreds. The set
parametersb andd which give the best data collapse in th
lower panel areb50.389 andd50.505. These parameter
are used in the lower panel and give the estimateamin
50.666 when assuming that the fractal dimension isD
51.713.

An even more accurate determination ofamin is achieved
next. Taking the data collapse as an evidence for the e
tence of a scaling function, we conclude that for any tw
pairs of numbers (n,l0) and (n̄,l̄0) that satisfy the equation

1

Al0

~n1d!2amin /D5
1

Al̃0

~ ñ1d!2amin /D, ~13!

it follows that

-

FIG. 4. The value ofRn as a function ofn ~upper curve! and the
position of the bump belonging toamin ~lower curve! in a typical
DLA.
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f d,b~l0 ,n!5 f d,b~ l̃0 ,ñ!. ~14!

These equations offer a calculational procedure. We

^pmax& for a givenn and l0, and then for another valuen̄
seek the valuel̄0 for which ^pmax& is the same. From Eq
~13!, we then deduce that

amin5
1

2
D

ln l02 ln l̃0

ln~n1d!2 ln~ ñ1d!
. ~15!

In Fig. 3, we present the results of such a calculation w
n̄5n11, and 1<n<250. Sinced is not knowna priori, we
used the valued50.505 that was extracted from the da
collapse in Fig. 2. We checked the sensitivity tod by brack-
eting the results withd50, andd51 respectively. The data
in Fig. 3 correspond tod50.505. Fitting the data with a
cubic polynomial and extrapolating tox→0, we get the
valueamin'0.665. On the other hand, if we repeat the p
cedure using the values of 0<d<1 we are able to bracke
the estimate in the interval
B.

04240
d

h

-

0.662,amin,0.669. ~16!

We thus conclude the analysis with the estimateamin
50.66560.004.

Finally, we explain why the Turkevich-Scher conjectu
~5! fails. The reason is that the points corresponding topmax
andptip are not at all the same in typical DLA. In Fig. 4, w
present the calculated value ofRn , computed from the posi-
tion of largestuzu on the cluster, compared with the positio
corresponding to the maximal harmonic measure. We
that the position of maximal probability fluctuates wildl
and the fluctuations do not appear to go down with the
crease in the cluster size. The loss of the conjecture~5!
means that there is no clear connection between the spec
of singularitiesf (a) and the fractal dimension of DLA. As
said above, the relation~7! is a tautology once the existenc
of the scaling law~6! has been established@13#. Since the
value ofa t ip has nothing to do with the edge of thea spec-
trum, it appears as hard to determine it from first princip
as to determine the dimensionD itself.
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