
PHYSICAL REVIEW E, VOLUME 65, 046109
Multifractal structure of the harmonic measure of diffusion-limited aggregates
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The method of iterated conformal maps allows one to study the harmonic measure of diffusion-limited
aggregates with unprecedented accuracy. We employ this method to explore the multifractal properties of the
measure, including the scaling of the measure in the deepest fjords that were hitherto screened away from any
numerical probing. We resolve probabilities as small as 10235, and present an accurate determination of the
generalized dimensions and the spectrum of singularities. We show that the generalized dimensionsDq are
infinite for q,q* , whereq* is of the order of20.2. In the language off (a) this means thatamax is finite. The
f (a) curve loses analyticity~the phenomenon of ‘‘phase transition’’! at amax and a finite value off (amax). We
consider the geometric structure of the regions that support the lowest parts of the harmonic measure, and thus
offer an explanation for the phase transition, rationalizing the value ofq* and f (amax). We thus offer a
satisfactory physical picture of the scaling properties of this multifractal measure.
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I. INTRODUCTION

Multifractal measures are normalized distributions lyi
upon fractal sets. Such measures appear naturally in a va
of nonlinear physics context, the most well studied be
natural measures of chaotic dynamical systems@1–3#. Other
well-studied examples are the voltage distribution of rand
resistor networks@4,5#. In this paper, we address the ha
monic measure of diffusion-limited aggregates~DLA ! @6#,
which is the probability measure for a random walker co
ing from infinity to hit the boundary of the fractal cluste
This was one of the earliest multifractal measures to be s
ied in the physics literature@7#, but the elucidation of its
properties was made difficult by the extreme variation of
probability to hit the tips of a DLA versus hitting the dee
fjords. With usual numerical techniques it is quite impossi
to estimate accurately the extremely small probabilities
penetrate the fjords. Contrary to harmonic measures of c
formally invariant fractals such as random walks and per
lation clusters whose multifractal properties can be sol
exactly @8,9#, the present multifractal measure posed st
born barriers to mathematical progress.

The multifractal properties of fractal measures in gene
and of the harmonic measure of DLA, in particular, are co
veniently studied in the context of the generalized dim
sionsDq , and the associatedf (a) function@10,11#. The sim-
plest definition of the generalized dimensions is in terms o
uniform covering of the boundary of a DLA cluster wit
boxes of sizel , and measuring the probability for a rando
walker coming from infinity to hit a piece of boundary th
belongs to thei 8th box. Denoting this probability byPi(l ),
one considers@10#

Dq[ lim
l →0

1

q21

ln(
i

Pi
q~ l !

ln l
, ~1!

where the indexi runs over all the boxes that contain a pie
of the boundary. The limitD0[ lim

q→01Dq is the fractal, or
1063-651X/2002/65~4!/046109~8!/$20.00 65 0461
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box dimension of the cluster.D1[ lim
q→11Dq and D2 are

the well-known information and correlation dimensions, r
spectively@2,12,13#. It is well established by now@11# that
the existence of an interesting spectrum of valuesDq is re-
lated to the probabilitiesPi(l ) having a spectrum of ‘‘sin-
gularities’’ in the sense thatPi(l );l a with a taking on
values from a rangeamin<a<amax. The frequency of obser
vation of a particular value ofa is determined by the func
tion f (a), where@with t(q)[(q21)Dq#

f ~a!5aq~a!2t@q~a!#,
]t~q!

]q
5a~q!. ~2!

The understanding of the multifractal properties and
associatedf (a) spectrum of DLA clusters have been a lon
standing issue. Of particular interest are the minimal a
maximal valuesamin and amax relating to the largest and
smallest growth probabilities, respectively.

The minimal value ofa is relatively easy to estimate
since it is related to the scaling of the harmonic measure n
the most probable tip. While the often cited Turkevich-Sch
conjecture@14# that amin satisfies the scaling relationD0
511amin is probably not exact, it comes rather close to t
mark. On the other hand, the maximal value ofa is a much
more subtle issue. As a DLA cluster grows the large branc
screen the deep fjords more and more and the probability
a random walker to get into these fjords~say around the see
of the cluster! becomes smaller and smaller. A small grow
probability corresponds to a large value ofa. Previous lit-
erature hardly agrees about the actual value ofamax. En-
semble averages of the harmonic measure of DLA clus
indicated a rather large value ofamax;8 @15#. In subsequent
experiments on non-Newtonian fluids@16# and on viscous
fingers@17#, similar large values ofamax were also observed
These numerical and experimental indications of a very la
value ofamax led to a conjecture that, in the limit of a large
self-similar cluster some fjords will be exponential
screened and thus causingamax→` @18#.
©2002 The American Physical Society09-1
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If indeed amax→`, this can be interpreted as a pha
transition@19# ~nonanalyticity! in theq dependence ofDq , at
a value ofq* satisfyingq* >0. If the transition takes place
for a valueq* ,0 thenamax is finite. Lee and Stanley@20#
proposed thatamax diverges asR2/ln R with R being the
radius of the cluster. Schwarzeret al. @21# proposed that
amax diverges only logarithmically in the number of adde
particles. Blumenfeld and Aharony@22# proposed that
channel-shaped fjords are important and proposed
amax;Mx/ ln M, whereM is the mass of the cluster; Harr
and Cohen@23#, on the other hand, argued that straight ch
nels might be so rare that they do not make a noticea
contribution, andamax is finite, in agreement with Ball and
Blumenfeld who proposed@24# that amax is bounded. Obvi-
ously, the issue was not quite settled. The difficulty is tha
is very hard to estimate the smallest growth probabilit
using models or direct numerical simulations.

In a recent paper@25#, we used the method of iterate
conformal maps to offer an accurate determination of
probability for the rarest events. The main result that w
announced was thatamax exists and the phase transition o
curs at aq value that is slightly negative. In the prese
paper, we discuss the results in greater detail, and offer
ditional insights to the geometric interpretation of the pha
transition. In Sec. II, we summarize briefly the method
iterated conformal maps and explain how it is employed
compute the harmonic measure of DLA with unpreceden
accuracy. In Sec. III, we perform the multifractal analys
and present the calculation of thef (a) curve. In Sec. IV, we
discuss a complementary point of view of the scaling pr
erties of the rarest regions of the measure, to achieve in
V a geometric interpretation of the phase transition. Sec
VI offers a short discussion.

II. ACCURATE CALCULATION OF THE HARMONIC
MEASURE

A. DLA via iterated conformal maps

Consider a DLA ofn particles and denote the boundary
the cluster byz(s), wheres is an arc-length parametrization
Invoke now a conformal mapF (n)(v) that maps the exterio
of the unit circle in the mathematical planev onto the
complement of the cluster ofn particle in thez plane. On the
unit circle eiu the harmonic measure is uniform,P(u)du
5du/2p. The harmonic measure of an elementds on the
cluster in the physical space is then determined as

P~s!ds;
ds

uF8~n!~eiu!u
, ~3!

where F (n)(eiu)5z(s). Note that in electrostatic parlanc
1/uF8(n)(v)u is the electric field at the positionz5F (n)(v).
Thus, in principle, if we can have an accurate value of
conformal mapF (n)(v) for all valuesv5eiu we can com-
pute the harmonic measure with desired precision. We
see that this is easier said than done, but nevertheless t
the basic principle of our approach.
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We thus need to find the conformal mapF (n)(v). A
method for this purpose was developed in a recent serie
papers@26–28#. The mapF (n)(w) is made from composi-
tions of elementary mapsfl,u ,

F (n)~w!5F (n21)
„fln ,un

~w!…, ~4!

where the elementary mapfl,u transforms the unit circle to
a circle with a semicircular ‘‘bump’’ of linear sizeAl around
the pointw5eiu. We use below the same mapfl,u that was
employed in Refs.@26–30#. With this mapF (n)(w) adds on
a semicircular new bump to the image of the unit circle u
der F (n21)(w). The bumps in thez plane simulate the ac
creted particles in the physical space formulation of
growth process. Since we want to havefixed sizebumps in
the physical space, say of fixed areal0, we choose in thenth
step

ln5
l0

uF (n21)8~eiun!u2
. ~5!

The recursive dynamics can be represented as iteration
the mapfln ,un

(w),

F (n)~w!5fl1 ,u1
+fl2 ,u2

+ . . . +fln ,un
~v!. ~6!

It had been demonstrated before that this method repres
DLA accurately, providing many analytic insights that a
not available otherwise@29,30#.

B. Computing the harmonic measure

In terms of computing the harmonic measure we note
close relationship between Eqs.~3! and ~5!. Clearly, mo-
ments of the harmonic measure can be computed from
ments ofln . For our purpose here we quote a result est
lished in Ref.@27#, which is

^ln
q&[~1/2p!E

0

2p

ln
q~u!du;n22qD2q11 /D. ~7!

To computet(q) we rewrite this average as

^ln
q&5E dsUdu

dsUln
q~s!5E ds

lq11/2~s!

Al0

, ~8!

where s is the arc length of the physical boundary of th
cluster. In the last equality we used the fact thatudu/dsu
5Aln /l0. We stress at this point that in order to measu
these moments forq<0 we mustgo into arc-length repre-
sentation.

To make this crucial point clear we discuss briefly wh
happens if one attempts to compute the moments from
definition ~7!. Having at hand the conformal mapF (n)(eiu),
one can choose randomly as many points on the unit ci
@0,2p# as one wishes, obtain as many~accurate! values of
ln , and try to compute the integral as a finite sum. T
problem is of course that using such an approachthe fjords
are not resolved. To see this we show in Fig. 1, left panel, th
9-2
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MULTIFRACTAL STRUCTURE OF THE HARMONIC . . . PHYSICAL REVIEW E65 046109
region of a typical cluster of 50 000 particles that is bei
visited by a random search on the unit circle, with 50 0
samples. Like in direct simulations using random walks,
rarest events are not probed, and no serious conclusion
garding the phase transition is possible. Another method
cannot work is to try to computêln

q& by sampling on the arc
length in a naive way. The reason is that the inverse m
@F (n)#21(s) cannot resolveu values that belong to dee
fjords. As the growth proceeds, reparametrization squee
theu values that map fjords into minute intervals, below t
computer numerical resolution. To see this, consider the
lowing estimate of the resolution we can achieve in
physical space:

Du5
Ds

uF (n)8u
5Aln

Ds

Al0

, ~9!

or equivalently

Ds

Al0

5
Du

Aln

. ~10!

On the left hand side, we have the resolution in the phys
space relative to the fixed linear size of the particles. W
double precision numerics we can resolve values ofDu
;10216 and since we know that the values ofl30 000can be
as small as 10270 inside the deepest fjords~and see below!,
we see that

Ds

Al0

;
10216

10235
51019. ~11!

Therefore, the resolution in the physcial space that is ne
sary to achieve a meaningful probe of the deep fjord
highly inappropriate.

The bottom line is that to compute the values ofln(s)
effectively we must use the full power of our iterated co
formal dynamics, carrying the history with us, to iterate fo
ward and backward at will to resolve accurately theu andln
values associated with any given particle on the fully gro
cluster.

To do this we recognize that every time we grow a se
circular bump we generate two new branch cuts in the m

FIG. 1. Left panel, the boundary of the cluster probed by
random search with respect to the harmonic measure. Right p
the boundary of the cluster probed by the present method.
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F (n). We find the position on the boundary between eve
two branch cuts, and there compute the value ofln . The first
step in our algorithm is to generate the location of the
points intermediate to the branch cuts@31#. Each branch cut
has a preimage on the unit circle that will be indexed w
three indices,wj ,l

k(l )[exp@iuj,l
k(l )#. The indexj represents the

generation when the branch cut was created~i.e., when the
j th particle was grown!. The indexl stands for the genera
tion at which the analysis is being done~i.e., when the clus-
ter hasl particles!. The indexk represents the position of th
branch cut along the arc length, and it is a function of t
generationl . Note that if two branch cuts belonging to th
same bump are exposed, they get two consecutive ind
Since bumps may overlap during growth, branch cuts
then covered, cf. Fig. 2. Therefore, the maximalk,kmax
<2l . After each iteration the preimage of each branch
moves on the unit circle, but its physical position remai
This leads to the equation that relates the indices of a
exposed branch cut that was created at generationj to a later
generationn,

F (n)~wj ,n
k(n)![F (n)

„fln ,un

21 + . . . +fl j 11 ,u j 11

21 ~wj , j
k̃( j )!…

5F ( j )~wj , j
k̃( j )!. ~12!

Note that the sorting indicesk̃( j ) are not simply related to
k(n), and need to be tracked as follows. Suppose that the
wj ,n21

k(n21) is available. In thenth generation we choose ran
domly a newun , and find two new branch cuts that on th
unit circle are at anglesun

6 . If one ~or very rarely more!
branch cut of the updated listfln ,un

21 (wj ,n21
k(n21)) is covered, it

is eliminated from the list, and together with the sorted n
pair we make the listwj ,n

k(n) .
Next, let us find the midpositions at which we want

compute the value ofln . Having a cluster ofn particles we
now consider all neighboring pairs of preimageswj ,n

k(n) and
wJ,n

k(n)11 that very well may have been created at two diffe
ent generationsj andJ. The larger of these indices (J without
loss of generality! determines the generation of the interm
diate position at which we want to compute the field. W
want to find the preimageuJ,J

k(n) of this midpoint on the unit
circle, to computelk(n) there accurately. Using definition
~12! we find the preimage

el,

FIG. 2. A typical growth process in which an existing branch c
is ‘‘buried’’ under the new bump. Such events reduce the numbe
branch cuts below 2n, with n being the number of particles.
9-3
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arg~uJ,J
k(n)!5@arg~wj ,J

k̃(J)!1arg~wJ,J
k̃(J)11!#/2. ~13!

In Fig. 1, right panel, we show, for the same cluster
50 000, the mapF (J)(uJ,J

k(n)) with k(n) running between 1
andkmax, with J being the corresponding generation of cr
ation of the midpoint. We see that now all the particles
probed, and every single value oflk(n) can be computed.

To compute theselk(n) accurately, we define@in analogy
to Eq. ~12!# for everyJ,m<n,

uJ,m
k(n)[flm ,um

21 + . . . +fl j 11 ,u j 11

21 ~uJ,J
k(n)!. ~14!

Finally, lk(n) is computed from the definition~5! with

F (n)8~uJ,n
k(n)!5fln ,un

8 ~uJ,n
k(n)!•••flJ11 ,uJ11

8 ~uJ,J11
k(n) !

3F (J)8~uJ,J
k(n)!. ~15!

We wish to emphasize the relevance of this equation:
problem with the coarse resolution that was exposed by
~11! occurs only inside the deepest fjords. We note, howe
that the particles inside the deep fjords were deposited w
the clusters were still very small. For small clusters the re
lution of the fjords does not pose a difficult problem. The
fore, when we evaluate the derivativeF (n) inside the deepes
fjord at a pointuJ,n

k(n) , we make use of the fact thatJ!n and
write the derivative in the form

F (n)8~uJ,n
k(n)!5F (J)8~uJ,J

k(n)!•d, ~16!

whered refers to correcting terms. On the left hand side
Eq. ~15! we see that within our limited numerical resolutio
uJ,n

k(n) , uJ,n
k(n)11 and the correponding values ofln are almost

identical whereas for the right hand side~RHS! this is not the
case. By keeping track of the branch cuts we improve
precision inside the fjords dramatically. In other words, t
large screening inside the fjords is simultaneously the pr
lem and the solution. The problem is that we cannot use
standard approach in evaluatingF (n)8. The solution is that
for a point uJ,n

k(n) inside the deepest fjords we always ha
thatJ!n and therefore the evaluation~15! helps to improve
the resolution.

In summary, the calculation is optimally accurate since
avoid as much as possible the effects of the rapid shrink
of low probability regions on the unit circle. Each derivativ
in Eq. ~15! is computed using information from a generati
in which points on the unit circle are optimally resolved.

The integral ~8! is then estimated as the finite su
Al0(k(n)lk(n)

q . We should stress that for clusters of the ord
of 30 000 particles we already compute, using this algorith
lk(n) values of the order of 10270. To find the equivalent
small probabilities using random walks would require ab
1035 attempts to see them just once. This is of course imp
sible, explaining the lasting confusion about the issue of
phase transition in this problem. This also means that all
f (a) curves that were computed before@15,32# did not con-
04610
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verge. Note that in our calculation the small values oflk(n)
are obtained from multiplication rather than addition, a
therefore can be trusted.

III. MULTIFRACAL ANALYSIS OF THE
HARMONINC MEASURE

Having the accurate valueslk(n) we can now compute the
moments~7!. Since the scaling form on the RHS include
unknown coefficients, we compute the values oft(q) by
dividing ^ln

q& by ^l n̄
q
&, estimating

t~q!'2D
ln^ln

q&2 ln^l n̄
q&

ln n2 ln n̄
. ~17!

Results fort(q) for increasing values ofn and n̄ are shown
in Fig. 3, left panel. It is seen that the value oft(q) appears
to grow without bound forq negative. The existence of
phase transition is however best indicated by measuring
derivatives oft(q) with respect toq. In Fig. 3 right panel,
we show the second derivative, indicating a phase transi
at a value ofq that recedesaway from q50 when n in-
creases. Due to the high accuracy of our measurementl
we can estimate already with clusters as small as 20–30
theq value of the phase transition asq* 520.1860.04. It is
quite possible that larger clusters would have indica
slighly more negative values ofq* ~and see below the result
of different methods of estimates!, but we believe that this
value is close to convergence. The fact that this is so can
seen from thef (a) curve that is plotted in Fig. 4. A test o
convergence is that the slope of this function where it
comes essentially linear must agree with theq value of the
phase transition. The straight line shown in Fig. 3 has
slope of20.18, and it indeed approximates very accurat
the slope of thef (a) curve where it stops being analytic. Th
reader should also note that the peak of the curve agrees
D'1.71, as well as the fact thatt(3) is alsoD as expected
in this problem. The value ofamax is close to 20, which is
higher than anything predicted before. It is nevertheless
nite. We believe that this function is well converged, in co
tradistinction with past calculations.

FIG. 3. Left panel, the calculated functiont(q) using clusters of
n and n̄ particles, withn55000, 10 000, 15 000, and 25 000 an
n̄510 000, 15 000, 25 000, and 30 000, respectively. Right pa
the second derivative oft(q) with respect toq. The minima of the
curves get deeper whenn is increased.
9-4
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IV. ALTERNATIVE WAY TO APPROACH
THE PHASE TRANSITION

An alternative way to the multifractal analysis is obtain
by first reordering all the computed values oflk(n) in ascend-
ing order. In other words, we write them as a seque
$ln( i )% i PI , whereI is an ordering of the indices such th
ln( i )<ln( j ) if i , j . The number of samples we consider
usually large and therefore the discrete indexi /N might be
treated as a continuous index 0<x<1 andln as a nonde-
creasing function ofx,

ln[g~x!. ~18!

We next consider the distribution ofp(ln), which is cal-
culated by the usual transformation formula

p~ln!;E d@ln2g~x!#dx5
1

ug8@x~ln!#u
. ~19!

Using the distribution ofln , we now do the following re-
writings:

E
0

2p

ln
qdu5E

0

L

ln
qdu

ds
ds;E

0

L

ln
q11/2ds ~20!

;E
0

`

ln
q11/2p~ln!dln . ~21!

In Fig. 5, we will show that our functiong(x) obeys a power
law for low values ofx,

g~x!;xb for x!1. ~22!

This in turn implies a power-law dependence ofp(ln) on ln

p~ln!;
1

@x~ln!#b21
;ln

(12b)/b for ln!1. ~23!

FIG. 4. Calculated functionf (a) usingt(q) calculated from a
cluster withn530 000 particles. Thisf (a) is almost indistinguish-
able from the one computed withn525 000 particles. We propos
that this function is well converged. The black dot denotes wh
the curve ends, being tangent to the line with slope20.18.
04610
e

This power-law tail means that the moment integral~21!
diverges for values ofq below a critical valueqc given by

qc1
1

2
1

12b

b
521. ~24!

Thus,qc521/221/b. From Eq.~7! we see that the value o
q* satisfied the relation

q* 52qc11522/b. ~25!

In Fig. 5, we show how the values ofln depend onx for
small values ofx. The data are taken from a cluster withn
520 000. Denoting the value ofln that is marked as a ful
circle by lc , the figure supports the existence of the pow
law ~22! for values ofln smaller thanlc . Needless to say
this also implies thatp(ln) scales according to Eq.~23!. By
averaging over 16 clusters of sizen520 000, we estimate the
slope in Fig. 5 to beb'8.55 or

q* 520.2360.05. ~26!

Obviously, this result is in agreement with our direct calc
lation in Sec. III.

V. GEOMETRICAL INTERPRETATION OF THE
PHASE TRANSITION

At this point we would like to interpret the origin of th
phase transition, which in light of the last section stems fr
the power-law behavior ofp(ln) for small values ofln . We
first identify the region on the cluster that supports the l
values ofln that belong to the power-law tail ofp(ln).

Consider again Fig. 5. The point denoted above aslc
defines the maximum value for which we see a power law
ln vs x. Therefore, the set responsible for the phase tra
tion is the union of bumps with a value ofln for which ln
,lc . This set is referred to below as the ‘‘critical set,’’ an
is shown in Fig. 6, both on the background of the rest of
cluster, and as an isolated set. This figure suggests a geo

e

FIG. 5. Values ofln sorted in ascending order with respect
the variablex5 i /N. This function is a pure power law for values o
ln x smaller than the position of the circle. The power law is ch
acterized by an exponentb'8.55. This is consistent with a phas
transition forq* '20.23.
9-5
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JENSEN, LEVERMANN, MATHIESEN, AND PROCACCIA PHYSICAL REVIEW E65 046109
ric interpretation: the fjords in the figure all seem to have
characteristic angle. We will try first to confirm this impre
sion using careful numerics.

Clearly, the set has several fjords; we consider them in
vidually. Figure 7 shows an example of such a fjord. F
each fjord we find the point with the minimum probabili
and use this for defining the bottom~or deepest point!. Sec-
ond, from the inside, we move to the two adjacent poi
which together with the deepest point define an angle. T
angle is recorded, and we move to the next pair of poi
and so on until the value ofln exceedslc . Figure 7, right
panel shows how the angle varies with the number of stepk.
For most of the fjords considered the angle is quite large
a small number of steps~up to 3 to 4 steps!. As more steps
are taken the angle settles on a characteristic value aro
which it fluctuates. For a larger number of steps we reach
outer parts of the fjord and the angle does no longer refl
the geometry inside the fjord. The dependence of the an
on k as shown in Fig. 7 is typical for all the fjords of the s
causing the phase transition and therefore we see a pe
the distribution of all the measured angles. This peak ide
fies an angle that is characteristic to the fjords. Figure 8 is
distribution of such typical angles over one cluster. We
termine the characteristic angle, saygc by locating the maxi-
mum of the distribution. Finally, we calculated the avera
of the charateristic anglegc over 15 clusters of sizen

FIG. 6. Set of all particles that are associated with values ofln

belonging to the power-law region shown in Fig. 5. In the left pan
we show the set on the background of the cluster in gray; and in
right panel, the set isolated from the rest of the cluster.

FIG. 7. Left panel, a typical deep fjord resolved on the scale
the particles. From the deepest particle the angle is compute
explained in the text. Right panel, the change of the measured a
g as a function of the number of stepsk away from the deepes
particle. The angle settles on a value that depends only weakly ok.
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520 000. On the basis of that we determine the angle to

gc535°66°. ~27!

Finally, we can offer a geometrical model to interpret t
phase transition. The results presented in this section indi
that to a reasonable approximation the least accessible fj
can be modeled as a wedge of included anglegc . In the
Appendix, we compute the power law expected forp(ln) for
a wedge. The final result is

p~ln!;ln
2(2h23)/2(h21) , ~28!

wheregc5p/h. Using our numerical result forgc and Eq.
~25! we predict finallyq* 520.2460.05. Obviously, this is
in agreement with the previous findings.

In addition, we should comment on the interpretation
f (amax) that is the value of thef (a) curve at the point of
loss of analyticity. Within the wedge model offered here, th
must be the fractal dimension of the set of wedges that s
port the scaling law~28!. We have attempted to determin
this dimension numerically by counting the number of fjor
in the critical set shown in Fig. 7 as a function of the numb
of pariclesn in the cluster. While the result of such a calc
lation is consistent with the proposition, the available sta
tics is not sufficient to establish it firmly. We thus conclud
with the proposition as a conjecture, i.e., thatf (amax) can be
interpreted as the dimension of the set of fjords that belo
to the critical set.

VI. CONCLUDING REMARKS

In conclusion, we have used the method of iterated c
formal maps to compute accurately the harmonic measur
DLA clusters of moderate size. We have explained that
must use the full power of the method in order to overco
the strong contraction of the regions on the unit circle t
belong to the deep fjords. By iterating back and forth, us
the fact that we own the history of the iteration scheme,
could resolve probabilities as small as 10235. Using this data
we could establish beyond doubt that the generalized dim
sions@or, equivlently, thef (a) function# lose analyticity at a
negative value ofq, implying the existence ofamax. In order
to understand the loss of analyticity, we offer a geome

l,
e

f
as

gle

FIG. 8. Distribution of anglesg as determined by the procedur
exemplified in Fig. 7 over the set shown in Fig. 6.
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picture. We identified the critical set on the cluster as hav
harmonic probabilities that belong to the power-law tail
p(ln). Considering this set we identified fjords that can
modeled as wedges of characteristic angle. Taking s
wedges as a model for the fjords of the critical set, we fou
a value ofq* that is very close to the one computed usi
other methods. We thus propose that the point of nonana
icity can be interpreted as resulting from the power-law
pendence of the harmonic measure in the fjords belongin
the critical set.
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APPENDIX: WEDGE MODEL FOR THE FJORDS OF THE
CRITICAL SET

1. The conformal map and the electric field

The conformal function

x~w!5S i
w11

w21D 1/h

~A1!

maps the outside of the unit circle to the inside of a wed
with opening anglegc5p/h, whereh>1 allowsgc be vary
between 0 andp. To calculate the electric fieldE, we need
the inverse ofx:

x21~z!5
zh1 i

zh2 i
. ~A2!

From here we see thatx21(0)521 and

F21~r exp@ ip~161!/2h#!→1 as r→`. ~A3!

Thus, the unit circle is unfolded onto the wedge; shifting t
point w521 to the originz50; and rotating and stretchin
the upper half circle onto the real axis and the lower h
circle to the other ray of the wedgereip/h. The electric field
follows from its definition

E~z!5U d

dz
ln@x21~z!#U52h

uzu
1

uzh1z2hu
. ~A4!

On the real axis close to the centerz50, i.e., forz5r!1 it
becomes

E~r!5
2h

r

1

rh1r2h
'2hrh21 for r!1, ~A5!

while for larger is goes like
04610
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E~r!5
2h

r

1

rh1r2h
'2hr2(h11) for r@1. ~A6!

Exactly the same relations hold for the upper ray.

2. The probability measure for ln

The linear size of the particles in mathematical spaceAln
is proportional to the electric field,

Aln~u!5Al0E„F~eiu!…. ~A7!

Thus, the probability measure of theln is directly related to
the probability measure of the electric field. SinceE is the
same for the two rays of the wedge, it is sufficient to co
sider it only on the real axis. Starting from the uniform di
tribution of theu values in mathematical space, it follows

15
dP~u!

du
5

dP~E!

dE UdE

drUUdr

duU
5

dP

dEUdE

drUU2 i
d

dr
ln@F21~r!#U21

5
dP

dEUdE

drUE21 ~A8!

or

dP~E!;UdE

dr
~r!U21

E dE. ~A9!

The derivative of the electric field follows from~A5! or
~A6!,

UdE

dr
~r!U5 2h

r2

u~h11!rh2~h21!r2hu

~rh1r2h!2
, ~A10!

yielding

dP~E!;
r~rh1r2h!

u~h11!rh2~h21!r2hu
dE. ~A11!

For small r corresponding to a small field and thus sm
Aln we get

dP~E!;rdE;E1/~h21! ~A12!

or

dP~Aln!;Aln
21/~h21!dAln. ~A13!

For the probability density ofln this means

dP~ln!5
dP~Aln!

dAln

dln

2Aln

~A14!

;ln
2(2h23)/2(h21)dln.

~A15!
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