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We show that the fractal growth described by the dielectric breakdown model exhibits a phase transition
in the multifractal spectrum of the growth measure. The transition takes place because the tip splitting
of branches forms a fixed angle. This angle is 17 dependent but it can be rescaled onto an “effectively”
universal angle of the diffusion-limited aggregation branching process. We derive an analytic rescaling
relation which is in agreement with numerical simulations. The dimension of the clusters decreases
linearly with the angle and the growth becomes non-ractal at an angle close to 74° (which corresponds

to p = 4.0 * 0.3).
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Fractal growth and patterns are common phenomena of
nature. The prototype model for a mathematical descrip-
tion of fractal growth is the diffusion-limited aggregation
(DLA) model [1]. The growth in this model is determined
by the electric field (called the harmonic measure) around
the emerging fractal cluster. The harmonic measure pos-
sesses multifractal scaling properties and, recently, a new
insight into the behavior of this measure was presented by
applying the method of convoluted conformal mappings
[2]. In particular, it has been demonstrated that there ex-
ists a singular behavior in the multifractal spectrum, and
this singularity is a signature of a phase transition in the
thermodynamics formalism of the spectrum [3]. The phase
transition in the DLA cluster occurs at a specific moment
q. of probabilities of the growth. It has further been
demonstrated that the geometrical property of the DLA
cluster, which gives rise to this transition, is the existence
of a specific branching angle for each new offspring on
the cluster [4]. For DLA, this critical branching angle was
found to be around 27°. Another approach, which defines
a characteristic angle in the DLA process, is to consider
the stability of a finger growing in a wedge [5].

The DLA model has been nicely generalized to the di-
electric breakdown model (DBM) [6] where the growth
probabilities at a specific site of the cluster are determined
by the value of the electric field (or the harmonic mea-
sure) raised to a power 7; i.e., the growth measure at the
interface follows p,(s)ds ~ |E(s)|"ds, where DLA cor-
responds to the case n = 1. With varying values of 7
clusters of different geometry are grown each with their
own characteristic properties of the multifractal spectrum.
These multifractal properties have not been outlined be-
fore, and it is the purpose of this Letter to examine in
detail possible critical points and phase transitions in the
thermodynamic formalism of the harmonic measure for the
dielectric breakdown model, at varying values of 7.

The structure of the clusters of the DBM model emerges
from an on-going proliferation and screening, hence stag-
nation, of branches. In particular, the protruding branches
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will create fjords where the harmonic measure decreases
rapidly compared to what happens around the tips. The
multifractal properties are best studied using the recently
proposed model of iterated conformal maps [2], since the
deep fjords are numerically “invisible” to the original ap-
proach where random walkers are used as probes (see [3]).
The model is based on compositions of simple conformal
maps ¢, ¢ which take the exterior of the unit circle to its
exterior, except for a little bump at e’? of linear size propor-
tional to v/A. We shall here use the mapping introduced in
[2] which produces two square root singularities which we
refer to as the branch cuts, and the tip of the bump which
we refer to as the microtip. The composition of these map-
pings is analog to the aggregation of random walkers in the
off-lattice DLA model. The dynamics is given by

O (w) = @Dy, 4, (W)]. (1)
where ®" brings the exterior of the unit circle to the
exterior of the aggregate of n particles. The size of the
n'th bump is controlled by the parameter A,, and in order
to achieve particles of fixed size we have that, to leading
order,

Ag
An 5 (2)

~ 0D (eifn)
The growth probability p;(s) at the interface of a DLA
cluster of size n is, in the electrostatic picture, proportional
to the electric field

pi(s)ds ~ |E(s)lds ~ 7. 3)

In this case the measure on the unit circle is uniform. When
the electric field in the dielectric breakdown model [6] is
raised to the power 7, the measure is no longer uniform,

E|"
D) g~ EV 4

pn(a)de ~ Pn[S(e)] 40 IE|
~ @' "dp . )

Numerically, we use the Monte Carlo technique introduced
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in [7] in order to choose 6 according to the distribution p,.
We vary the number of iterations 7 linearly such that for
n = 1.25, T = 50, and for n = 4, T = 400.

Below, we consider both the growth measure and the
harmonic measure. The growth measure is used to de-
rive the multifractal properties, whereas the harmonic mea-
sure is used to determine the physical properties. Let us
emphasize that to describe the growth we always use the
growth measure. First, we consider the growth measure
and the phase transition in the corresponding multifractal
spectrum.

The moments of the growth probability scale with char-
acteristic exponents, the generalized dimensions [8],

[pq(s)ds ~ (1/R)(q—1)Dq _ n(l—q)Dq/D, (5)

where n is the number of particles and R is the linear size
of the cluster.

Numerically, we approximate the integral on the left-
hand side by the sum of the field evaluated along the mi-
crotips of the bumps produced by the bump mappings. The
field in DLA will for clusters of size 20000 assume val-
ues below 1072°, and it follows from (3) that it is im-
possible with the numerical precision on the unit circle
(A6 = 107'%) to maintain a reasonable resolution in the
physical space As = % = 10*. We therefore use the
resolution increasing approach introduced in [3] where one
keeps track on the dynamics of the branch cuts.

An easy way to see the existence of a phase transition
in the multifractal spectrum is to look at the distribution of
pr sampled along the tips of the bumps. The distribution
will for the smallest values of p, < ¢ (below some cutoff
value c) scale with a characteristic exponent (1 — 8)/8.
The value of S is calculated by reordering the N computed
values of p, in ascending order. In other words, we write
them as a sequence { p,, (i)};es, where I is an ordering of
the indices such that p, (i) = p,(j)if i < j. We treat the
discrete index i/N as a continuous index 0 =< x = 1 and
therefore p, as a nondecreasing function of x,

pn = fx). (©)

Numerically, we find that the function f(x) obeys a power
law with an exponent 3 for values of x << 1. From f(x)
we calculate the distribution of p(p,) by the transforma-
tion formula,

p(py) ~ f 5Lpy — f()]dx

L u-pys 7
RErS RS 7

Applying this distribution, the integral of moments (5) is
rewritten as

235505-2

L ]
fo phds = fo pipr(py)dpy
C
_ kfo p1pU BB g,

[ otptondey. @

where k is some normalization constant. The left integral
in the final expression diverges whenever
g=g0=—=. ©)
B
The phase transition in the multifractal spectrum of the
growth measure takes place for a specific value ¢ = ¢q..
We shall now argue that the value of B, and therefore
q., is independent of the value of 5. In other words, the
phase transition in the multifractal spectrum of the growth
measure takes place at a universal g.. Figure 2a (below)
shows our numerical results for the variation of ¢, with 7.
In [4] it was shown that the angle defining the branch
splitting deep inside the fjords of DLA was given by a char-
acteristic angle y.(1) = y.(n = 1). This characteristic
angle was also identified as the reason for the phase transi-
tion in the multifractal spectrum of the harmonic measure
of DLA. The electric field along the branches in a wedge
with opening angle y scales as

p1(x) = [E(x)] ~ x™/771, (10)

and thus, in the DBM model, the growth probability inside
this wedge is given by

p(x) o |E()|7 ~ X777 =D, (1)

Therefore, when introducing the exponent 1, we see
that the scaling in x of the growth probability (11) inside
a wedge of opening angle y effectively becomes similar
to the scaling of the electric field inside a wedge with a
smaller opening angle.

As seen in Fig. 1, the topological wedge structure at the
bottom of the fjords of DLA is not affected by a change in
the value of 7, only the opening angle is changed. Gen-
erally, the angle is changed such that y.(n > 1) > y.(1)
and y.(n < 1) < y.(1). We now conjecture that the char-
acteristic angle formed inside the fjords of a growing clus-
ter exactly compensates for the change in the scaling of the
growth probability when we vary n. In other words, the
scaling of the growth probability inside the fjords is unaf-
fected on the expense of a change in angle. Therefore we
can derive an expression for the characteristic angle as a
function of 1 by equating the exponents in (10) and (11):

<7T —1)— T (12)
G AR O N
or
T
Ye(n) = 71— (13)
O I
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FIG. 1. Part of a cluster grown with n = 3. The wedge struc-
ture at the bottom of the fjords is clearly seen, and the opening
angle observed along the aggregate is close to the angle pre-
dicted in (13) and shown in the figure.

Figure 2b shows together with numerical predictions (see
below) how the critical angle varies with . The value
of y.(1) in (13), and used in the figure, is determined
numerically from 15 DLA clusters of size n = 20000,
Ye(l) =27° = 3°,

The distribution of p, inside a wedge with opening
angle y follows from (11), with @ = /7,

1

~— __ pl2=n@=-D)Inla-1]
p(p‘t]) [X(pn)]n(a_l)_l pn ’ (14)

and, if we compare the exponent with that of (7) and insert
the critical angle from (12), one obtains

T
2B = —— — 1. (15)
P 5
Therefore, under the above assumptions, the value of 8 in
expression (9) is independent of 7.

(@)

FIG. 2.

One way to numerically calculate the critical angles
shown in Fig. 2b is first to locate the regions where the dis-
tribution in (7) scales and afterwards perform a direct mea-
surement in these regions. Such measurements are most
likely rather inaccurate and therefore we turn to Eq. (10).
During the growth, we apply the exponent of 7 as usual,
but once a cluster is grown we consider the harmonic mea-
sure p; only. Similarly, as above, we find that inside a
wedge
plpy) ~ pit e, (16)
The exponent is compared to the one we obtain numeri-
cally from (7), and from this we find the critical angle as
a function of 8. Note that, when we consider the har-
monic measure and not the growth measure, 8 is a non-
trivial function of 7 and the critical angle is given by

T

1 +2B(n)"

Another interesting observation is that the dimension
seems to depend linearly on the critical angle as shown in
Fig. 3. Note that the linear fit predicts a dimension equal
to one before the angle reaches 180°, and therefore the
growth is only fractal for n below a finite value 7,.

The intersection point corresponds to an angle y. =
74°, and using (13) we find that

n. =40 = 0.3, (18)

in agreement with the results obtained in [7,9]. In [10] the
value of the critical angle was found to be 72° by requiring
that the growth occurs along the direction of the field. To
put these results into perspective, we rewrite the relation
between the dimension and the critical angle in terms of
the angles > and y; at which the growth becomes two-
and one-dimensional, respectively,

Ye(n) = (17)

YL — Y
D(y)=1+"—"" ym=y.=y. (19
Y1 — 72
8
(b)
8_
22
8_
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(a) The critical value of the moment for the phase transition point as function of 7 in the multifractal spectrum of the

growth measure. All the values of g, are close to —0.18. (b) The critical angle as function of 1. The line represents the critical
angle obtained from the analytical expression (13). Each dot in the above figures corresponds to numerical averages of 4—15 clusters

of size n = 18 000.
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FIG. 3. The estimated dimension plotted versus the critical
angle vy, see (13). The range of the critical angle corresponds
to values of 7 between 0.75 and 4.0. The linear fit of the points
intersects the line D = 1 at an angle y, = 74°.

The values of the dimension are thus determined entirely
by local properties (i.e., the critical wedge angle). Other
studies have also focused on local properties such as
theory of branched growth in [11]. The dimension can
also by (13) be written in terms of 7, and in this case
the dependence will no longer be linear but be on a form
similar to that observed in [9]. Because of the finite size
of the bumps used in the growth, we do not observe, in
the limit n — 0%, that the critical angle of the fjords
vanishes. The bumps will fill up the fjords, and the growth
becomes two-dimensional for a nonvanishing value of 7
and y, = 5°. The fill up problem is also the reason why
we have not been able to present data points for values of
1 below 0.75.
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In conclusion, we have studied the critical properties of
the growth of clusters in the dielectric breakdown model.
In particular, we have focused on the branching process
and have found that the branching, on the average, occurs
at a fixed angle which depends on the value of the charac-
teristic parameter n of the DBM model. The size of the
angle in turn determines the phase transition point of the
growth measure. We have derived an analytic expression
for the variation of the branching angle with 7 and found
excellent agreement with numerical data. Further, we have
found a linear dependence of the dimension of the cluster
with the value of critical angle. This linear dependence
results in a prediction of the branching angle at the point
where the growth becomes one-dimensional. It is found to
be y. = 74 corresponding to 1, = 4 in agreement with
a result obtained in [7,9,10].
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