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Clonal selection prevents tragedy of the commons when neighbors compete
in a rock-paper-scissors game
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The rock-paper-scissors game is a model example of the ongoing cyclic turnover typical of many ecosystems,
ranging from the terrestrial and aquatic to the microbial. Here we explore the evolution of a rock-paper-scissors
system where three species compete for space. The species are allowed to mutate and change the speed by which
they invade one another. In the case when all species have similar mutation rates, we observe a perpetual arms
race where no single species prevails. When only two species mutate, their aggressions increase indefinitely until
the ecosystem collapses and only the nonmutating species survives. Finally we show that when only one species
mutates, group selection removes individual predators with the fastest growth rates, causing the growth rate of
the species to stabilize. We explain this group selection quantitatively.
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I. INTRODUCTION

When multiple individuals depend on a shared and limited
resource, it is in the long-term interest of everyone that
the resource is rationed to avoid depletion. However, in the
short term it is in the interest of each individual to consume
resources fast so as to gain a competitive advantage over
their more prudent neighbors. Acting rationally to promote
their own self-interest, each individual therefore increases
consumption until the resource is depleted [1,2]. This dilemma,
known as the tragedy of the commons, illustrates the need
for restrictions on the use of limited resources to ensure
sustainable development. The potential consequences of not
regulating common property are particularly evident when
it comes to issues such as overfishing and global warming.
Surprisingly, even among primitive life forms, such as bacteria
and plants, prudent consumption of shared resources has been
observed in large groups of competing individuals [3–6]. These
individuals have no means of enforcing common restrictions,
so the emergence of restraint must have an evolutionary
origin.

We here study a community of three species with a
cyclic interaction where species 1 overgrows species 2, which
overgrows species 3, which, in turn, overgrows species 1
[see Fig. 1(a)]. Such intransitive systems, similar to the
game rock-paper-scissors, have been identified in numerous
ecosystems, ranging from terrestrial and aquatic to microbial
ecosystems [7–13].

An interesting property of cyclic interaction is that growing
fast will not help a species to gain biomass—it will help its
predator! By growing too fast, the species will weaken the
population of its prey thereby improving conditions for its
predator [see Figs. 1(b) and 1(c)] [14,15]. Thus, for the species
as a whole it is advantageous to grow slowly, whereas each
individual of the species will get a competitive advantage from
growing fast. It has been observed, both in simulations and in
experiments, that such a species will suffer the tragedy of the
commons if they interact globally, but that biodiversity may be
maintained if the interactions are local [16–22]. The evolution
of restraint must, therefore, depend on the spatial structure of
the system. However, a quantitative mechanism for this has
yet to be identified.

II. MODEL

In our model, each site of an L × L square lattice is
occupied by a member from one of the species, 1, 2, or 3.
Initially, all individuals grow at the same rate. At each time
step the following actions take place.

(i) A random node i and one of its four neighbors j are
selected. If i can overgrow j it does so with a probability vi .
Hereby, j becomes a member of i’s species with the same
growth rate vj = vi .
(ii) When i overgrows j , it might mutate by a small

probability pmutate. Hereby, j will either become faster growing
than i, vj = (1 + γ )vi , or slower growing, vj = vi/(1 + γ ),
where γ is a constant.
Unless otherwise stated, we have used L = 200, γ = 0.02,
and pmutate = 5 × 10−5. This choice of parameters ensured
that the range of growth rates within a species would only vary
2%–4% at any given time.

III. RESULTS

Assume that the species grow at rates (v1,v2,v3) and that
the probabilities of finding each at any one lattice site are
(p1,p2,p3). In the mean-field approximation we achieve a
steady state when v1p1p2 = v2p2p3 = v3p3p1, leading to
Refs. [14,23]

(p1,p2,p3) = 1

v1 + v2 + v3
(v2,v3,v1) ⇒ (1)

p1

v2
= p2

v3
= p3

v1
. (2)

This steady state is stable for the spatially structured system.
In the mean-field model, where all sites are neighbors, the
abundances of the three species will oscillate with larger and
larger amplitudes until biodiversity is lost. It is, therefore, only
possible to study the effect of mutations when the system is
spatially structured.

If all three species are allowed to mutate, their growth
rates will accelerate exponentially [see Fig. 2(a)]. The growth
rates for the three species stay approximately equal, so from
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FIG. 1. (Color online) (a) We consider a system of three species
with cyclic interactions. Species 1 overgrows species 2, which
overgrows species 3, which overgrows species 1. Individuals grow
at different rates. The mean growth rate for species 1, 2, and 3
are denoted v1, v2, and v3. (b) When species 1 grows faster than
2 and 3, species 3 will be more abundant than species 1 and 2. Here
v2 = v3 = v1/5. (c) When all species grow at the same mean rate,
they will be equally abundant. Members of the same species will
self-organize to form clusters on the lattice.

Eq. (2) the species will remain equally abundant, as observed
in Fig. 2(b).

When both species 1 and 2 are allowed to mutate,
both their growth rates appear to accelerate linearly. Thus,
from Eq. (2), species 1 and 3 will continue to grow while
species 2 decreases hyperbolically in size until it goes exctint

[see Figs. 2(c) and 2(d)]. After this, species 1 will quickly
be overgrown by species 3, so only the nonmutating species
is left. Due to the hyperbolic decrease in the abundance of
species 2, the time before biodiversity is lost grows drastically
with the size of the system.

When only species 1 is allowed to mutate, it will evolve
to a certain mean growth rate v1 = (2.4 ± 0.1)v2. At the same
time, species 3 will grow in size to p3 = (2.6 ± 0.1)p1, while
the relative sizes of species 1 and 2 will remain about equal
[see Figs. 2(e) and 2(f)]. The reason why v1/v2 differs from
p3/p1 is that the mean-field approximation (2) is not perfect.
For larger system sizes the same mean growth rates are
observed, but with a smaller variance.

Interestingly, biodiversity is maintained in our system when
either one or three species are allowed to mutate, but not if two
species are.

From (2) we get that the difference in growth rate between
the fastest and the slowest species must stay bounded in
order for the system to be stable. If not, the predator of the
slowest species will decrease in size until it goes extinct.
We therefore investigate the relative acceleration 1

v1

dv1
dt

of
the fastest species in the system. This is done by measuring
how often a faster-growing mutant survives and, therefore,

0 10
0

0.1

0.5

0
0

0.5

1

Time

S
p
ee

d

0 2×10

0.25

0.5

0.75

Sp
ec

ie
s S

iz
e

0

0.3

0.35

0.4

0

0.1

0.15

0.2

0

0.2

0.4

0.6

7 710 Time

Sp
ec

ie
s S

iz
e

Sp
ec

ie
s S

iz
e

Time
4×107

2×10
Time

4×107

S
p
ee

d

Time

S
p
ee

d

8×106
4×106

Time
8×104×10

(a) (b)

(c) (d)

(e) (f)

0 10
0

0.1

0.5

0
0

0.5

1

Time

S
p
ee

d

0

0.25

0.5

0.75

Sp
ec

ie
s S

iz
e

0

0.3

0.35

0.4

0

0.1

0.15

0.2

0

0.2

0.4

0.6

7 710 Time

Sp
ec

ie
s S

iz
e

Sp
ec

ie
s S

iz
e

Time
7

Time
7

S
p
ee

d

Time

S
p
ee

d

Time
66

(a) (b)

(c) (d)

(e) (f)

FIG. 2. (Color online) (a), (b)
When all species mutate at the
same rate, their growth rates will
increase exponentially. They will,
therefore, stay equally abundant. (c),
(d) When only species 1 and 2
are allowed to mutate, their growth
rates will steadily accelerate relative
to species 3. Thus species 2 will
become scarcer on the lattice, until it
dies out quickly followed by species
1. Simulations are carried out on a
1000 × 1000 lattice to better show
the hyperbolic decline of species
2. (e), (f) When only species 1 is
allowed to mutate, it accelerates to
a growth rate fluctuating around 2.4
times faster than species 2 and 3.
Consequently, species 3 grows to
become 2.6 times more abundant
than species 1 and 2.
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FIG. 3. (Color online) (a) Acceleration in growth rate is pro-
portional to the γ squared. Thus the evolution of species in cyclic
competition communities will be dominated by big leaps in growth
rate. (b) When all species are allowed to mutate, all species having
equal growth rate is a stable fixed point of the dynamics. If species
1 is growing faster than 2 and 3, faster mutants of species 1 will
die out more frequently, thereby decreasing the growth rate. (c) The
relative acceleration in growth rate 1

v1

dv1
dt

as a function of the relative
velocities v1/v2 and v1/v3. When all species grow at the same rate,
their growth rates will all accelerate. If a species is growing at a
much higher rate than the two others, slower mutants will have better
survival chances than faster mutants, thereby decreasing the growth
rate. Arrows indicate the flow of the system, when only one species
is allowed to mutate. The thick line marks the theoretically optimal
speed of species 1, given by Eq. (5). It is seen to agree well with
observations for v2 ≈ v3.

contributes to the total growth rate of the species. Naturally,
this acceleration is proportional to the probability of mutation
pmutate, when this is small. More surprisingly, the acceleration
is proportional to the square of γ [see Fig. 3(a)]. This is
due to the fact that both the survival chances of a mutant and
the corresponding increase in growth rate are proportional to
γ . The implications are that, for an ecological system where
mutations of a broad range of magnitudes are expected to
occur, the evolution of species will be dominated by big leaps.
Small evolutionary improvements in fitness will most likely
come to nothing.

In Fig. 3(c), the relative acceleration of the fastest species
is plotted as a function of the relative growth rates v1/v2 and
v1/v3. These have been found by monitoring how often fast
mutants will succeed in outcompeting the species of growth
rate v1, compared to slow mutants. Each point is an average
over the introduction of a minimum of 80 000 mutants. It
is seen that when the relative growth rates are large, the
fastest species will decelerate. This is due to the better survival
chances of the slow mutants decreasing the growth rate of the

species and promoting biodiversity. Multiplying all growth
rates by a constant factor corresponds to changing the time
scales, so the functional form of the figure is independent of
the absolute magnitudes of the growth rates.

When all three species are allowed to mutate, their growth
rates will remain equal to each other. If a species becomes
faster than the others, its acceleration will decrease, allowing
the others to catch up [see Figs. 3(b) and 3(c)]. This constant
increase in relative growth rate explains the exponential
acceleration in Fig. 2(a).

The case of two species mutating at the same rate corre-
sponds in Fig. 3(c) to one species moving along the horizontal
line v1/v2 = 1 and the other moving along the vertical line
v1/v3 = 1. Along both lines, the acceleration is positive, so
the system will mutate to extinction as seen in Fig. 2(c). If one
of the mutating species becomes faster than the other, it will
decrease its acceleration, thus allowing the other to catch up.

Letting only one species mutate corresponds to moving
along the line v1/v2 = v1/v3 in Fig. 3(c) until the acceleration
becomes zero at a value just below 2.5, as indicated by the
arrows. This explains Fig. 2(e).

IV. MECHANISM FOR DECELERATION

As demonstrated, the deceleration resulting from large
relative growth rates is crucial for maintaining biodiversity.
Using a simple, one-dimensional argument, we now derive a
relation for the relative growth rates at steady state.

Locally, a faster mutant will always have a competitive
advantage over a slower mutant. However, mutants of different
growth rates will have a tendency to separate spatially on the
lattice [11]. The faster mutants are then at risk of exhausting
their neighborhood of prey, leaving it in an isolated cluster
surrounded by predators [see Figs. 4(a)–4(c)]. To avoid this,
the fastest species should allow time for its prey to grow
through its predator, connecting it to a new cluster of prey
[see Figs. 4(d)–4(f)]. At the optimal growth rate, a species will
grow through a typical cluster of prey just when this becomes
connected to a new cluster of prey.

Since the abundances of the three species are given by
Eq. (1), one can expect the typical cluster sizes to scale like

(λ1,λ2,λ3) ∝ (
√

v2,
√

v3,
√

v1). (3)

Imagine typical clusters of species 1, 2, 3, and 2 arranged
on a one-dimensional line [see Fig. 4(g)]. As time passes, the
two clusters of species 2 will overgrow species 3 at rate v2. If
species 1 is to overgrow the neighboring cluster of species 2
at the exact time when this becomes connected to the second
cluster, we must have

1

v1

(√
v3 +

√
v1

2

)
= 1

v2

√
v1

2
⇔ (4)

v1

v2
= 1 + 2

(
v1

v3

)−1/2

. (5)

When v2 = v3, this has the solution v1/v2 = v1/v3 = 2.3,
which is in excellent agreement with the value of 2.4 ± 0.1
found in Fig. 2(e). In Fig. 3(c) the contour line of zero
acceleration is seen to agree well with (5) when v2 ≈ v3.
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FIG. 4. (Color online) (a)–(c) Typical situation when species 1 is
five times faster than species 2 and 3. Species 1 invades a cluster of
species 2 and quickly overgrows it all, leaving it surrounded by its
predator, species 3. (d)–(f) Typical situation when species 1 is 2.4
times faster than species 2 and 3. Before species 1 has overgrown
all of species 2, this has grown through species 3 to connect to a
new cluster of 2. (g) Clusters of species 1, 2, 3, and 2 arranged on a
line. In the space-time diagram species 1 grows with slope 1/v1 and
species 2 grows with slope 1/v2. A typical cluster length of species 2
is λ2 ∝ √

v3 and for species 3 it is λ3 ∝ √
v1. The optimal speed for

species 1 follows by demanding that a typical cluster of species 2 is
overgrown just when it connects to a new cluster of species 2.

The discrepancies for v2 � v3 and v2 � v3 arise because the
cluster structures of species 2 and 3 disappear in these limits,
which negates (3) allowing species 1 to survive.

V. DISCUSSION

Our results explain quantitatively how communities of
primitive organisms, such as bacteria and plants, in cyclic
competition can evolve to a state with moderate consumption
of a limited resource. Even though individuals would get a
competitive advantage by growing fast, groups of fast growing
individuals locally deplete their prey. Since individuals grow-
ing at different rates have a tendency to separate spatially,
this group selection will favor moderate growth rates. Thus
the growth rate will be limited by the condition that clusters
of prey should connect to other clusters of prey before being
completely overgrown.

The spatial structure of the system is crucial for the group
selection. In a well-mixed system the species will start a race
to extinction. In a locally structured system, such as a Petri
dish or the ocean bed, biodiversity can be maintained if one
or all of the species are allowed to mutate. If two species are
allowed to mutate, they will increase their growth rate until
the system becomes unstable. This interesting result has not
previously been reported.

If all species are allowed to mutate, but at different
rates, the species with highest mutation rate will typically
become eliminated after a long transient dynamics where all
species increase their growth rates enormously. In practice this
drastic increase in growth rates will be limited by metabolic
constraints. Therefore, also systems with multiple evolving
species should be stabilized before collapse. In conclusion,
our results emphasize the importance of modesty in growth, as
well as modesty in the ability to evolve toward larger growth
rates. In particular, in the case of cyclic competition our results
quantitatively explain how groups of primitive organisms may
self-organize to a state of sustainable development, preventing
the tragedy of the commons.
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