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Rotation-limited growth of three-dimensional body-centered-cubic crystals
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According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will
continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details
of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic
polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of
the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state
where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains.
We show that the grain rotation per volume change of a grain follows a power law with an exponent of −1.25.
The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.
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I. INTRODUCTION

In polycrystalline materials, the microstructure, given by
the grain sizes, shapes, and coordination, is an important
control parameter for macroscopic material properties such as
the yield stress, conductivity, and brittleness. Polycrystalline
materials typically form from the nucleation and growth of
grains with different lattice orientations in a quenched or
annealed melt. If the annealing temperature is sufficiently
high, the grain boundaries will be mobile and rearrange in
a way that leads to an overall coarsening of the polycrystalline
matrix with time.

In classical models of grain growth in two dimensions,
such as the von Neumann–Mullins model, grain boundary
migration is driven by surface energy and the average grain
area grows linearly with time [1] 〈A〉 ∼ t . In three dimensions,
however, a correspondingly simple universal growth law can-
not be established [2,3] because of the increased geometrical
complexity. For models whose dynamics is driven by the
minimization of a free energy constrained with a continuity
equation, general arguments relying on energy dissipation
[4] set the upper bound for the coarsening dynamics in D

dimensions to 〈LD〉 ∼ tD/2, which coincides with the von
Neumann–Mullins law in two dimensions. Experimentally it
has been observed that the grain size growth can be described
by a power law with an exponent that depends on a variety
of experimental factors such as the annealing temperature [5].
It has further been found that the grain growth is sublinear,
i.e., the growth in area is described by a power-law exponent
less than unity [6]. Another possible mechanism, which results
in grain coarsening, is the coalescence of neighboring grains.
The rotation of crystals might lead first to the lattice alignment
of neighboring grains and second to the elimination of the
grain boundaries between them. Highly convoluted grains
can be formed in this way. Grain rotation has been observed
in experiments [7] and has recently also been observed in
molecular-dynamics simulations [8].

In many materials, the coarsening dynamics further differs
from normal grain growth, in the sense that the grain size
distribution varies in time. These abnormal grain growth
systems are characterized by a minority of abnormal grains
growing faster than the mean size leading to an inhomogeneous
size distribution [9]. In contrast to classical grain growth laws,

grain growth is also known to stagnate in time [10]. In two-
dimensional systems, it has been suggested that the stagnation
might be a combination of high kinetic barriers, preventing
mass migration across grain boundaries, and a locking of
individual grains preventing grain rotation and subsequent
lattice alignment [11]. In this article we present a numerical
study of the influence of grain rotation on the coarsening
dynamics in three-dimensional polycrystalline systems with
a body-centered-cubic (bcc) symmetry.

II. MODEL AND ANALYSIS

To study the coarsening dynamics, we use the phase field
crystal (PFC) model. The PFC model describes the evolution
of a continuous order parameter field, which is spatially
periodic with atomistic resolution. The model is based on
the minimization of a phenomenological Swift-Hohenberg
free-energy functional given by

F =
∫

dr
(

1

2
ψ(1 + ∇2)2ψ + a2

2
ψ2 + ψ4

4

)
, (1)

with the order parameter ψ representing the crystal density
field [12]. The parameter a2 and the mean density ψ̄ are related
to the melting temperature according to the phase diagram in
Fig. 1. The points in Fig. 1 show the parameters used in the
simulations presented in this article. While we change both
the mean density and the parameter a2 in our simulations
presented here, we shall for convenience only refer to the
a2 value in the figures and in the text. The corresponding
values for the mean density can then be found from the phase
diagram. Alternatively, the functional form of Eq. (1) can be
derived from classical density functional theory [13]. In three
dimensions a free energy on this form results in a rich phase
diagram with multiple equilibrium phases. Here we shall focus
only on the bcc phase. The evolution equation of the density
field ψ is assumed to obey an overdamped diffusion equation

dψ

dt
= ∇2 δF[ψ]

δψ
, (2)

thereby establishing a link between the microscopic length
scales and diffusive time scales. The PFC model has been
used to study a wide range of phenomena including phase
transitions [13] and plastic deformation [14] and has been

1539-3755/2015/92(1)/012409(5) 012409-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.012409


JENS M. TARP AND JOACHIM MATHIESEN PHYSICAL REVIEW E 92, 012409 (2015)

ψ
-0.35 -0.3 -0.25 -0.2 -0.15

a
2

-0.25

-0.2

-0.15

-0.1

FIG. 1. (Color online) The PFC phase diagram with points in-
dicating the parameters used in the simulations. The region in the
middle has a bcc lattice as its equilibrium state, while the equilibrium
states of the regions to the left and right are given by a uniform
liquid state and a rod state, respectively. The gray areas indicate the
coexistence regions.

shown to successfully predict grain boundary energy as a
function of misorientation [12]. We solve the dynamical
equation using an exponential time integration scheme [15] in
a three-dimensional box of size L × L × L with L = 512dx

or 1024dx. Time and space are discretized with dx = π
3 and

dt = 1/2. We initialize our system from an undercooled melt
by introducing small crystal seeds of uniform size at random
points and with random lattice orientations. For L = 512dx

the system was seeded with 120–150 seeds, while for the
larger L = 1024dx the system was initialized with 1200 seeds.
After the initial crystallization phase, where the seeds grow to
cover the whole melt, a polycrystalline structure is formed that
coarsens over time. During the coarsening stage, we track the
volume and lattice orientation of all grains.

For the segmentation of the grains, the peaks of the density
field are located by a thresholding procedure from which
the coordinates of the center of mass of each peak can be
calculated. Grain boundary detection is performed using a
Voronoi tessellation and a centrosymmetry parameter [16].
The angle and axis of rotation for each grain is found by taking
the mean over the orientation of all the unit cells in the interior
of the grain. The misorientation angle of two grains A and B is
calculated by constructing the rotation matrix G for the grains
and form the product �GAB = GAG−1

B . The misorientation
angle θ is then given by θ = arccos[ Tr(�GAB )−1

2 ].
To get a measure of the typical grain size in our systems,

we calculate a coarsening parameter by fitting a Lorentzian
squared to the structure factor of the system [17] 〈|F [ψ]|2〉,
where F [ψ] is the Fourier transform and the angular brackets
denote averaging over all orientations in k space. In the
averaged spectrum, the width w(t) around the typical lattice
scale provides a measure of the ordering wave number for
the system, which is inversely proportional to the mean linear
grain size. A small width implies fewer larger grains, while a
large width implies a larger number of smaller grains. Defining
ξ (t) = w(t)−3, we have 〈V (t)〉 ∝ ξ (t).
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FIG. 2. (Color online) Mean size of grains on double logarithmic
axes. The inset shows the same data on semilogarithmic axes.

III. RESULTS

In general, the polycrystalline structure coarsens at a rate
that depends on the quenching depth, the a2 parameter in
Eq. (1). In Fig. 2 we show the change in the ordering length
�ξ = ξ (t) − ξi as a function of time for different quenching
depths, where ξi is the initial ordering scale measured right
after the system has fully crystallized. For deep quenching
parameters, the system dynamics is described by a short period
of grain growth followed by stagnation. As the quenching
depth is decreased, the time it takes to reach the stagnation
stage is increased and eventually (for a2 � −0.15 and ψ̄ �
−0.22 in the phase diagram, Fig. 1) the stagnation stage
is replaced by a stage of rapid grain growth where the
ordering scale has an exponential growth. In this regime, the
abnormal grain is large enough to coalesce with several smaller
grains simultaneously. By tracking the orientation of individual
grains, we observe that the stagnation is accompanied by a
general decrease in the change of the lattice orientation. The
change in orientation eventually drops to zero when the system
stagnates (see Fig. 3). In contrast, the rapid coarsening regime
shows little to no decay in the rotation of the individual grains.

Independent of the system size, the average grain size, here
represented by �ξ , can in the early state be approximated by a
power law in time 〈�ξ 〉 ∼ tn with an exponent n that depends
on the quenching parameters a2 and ψ̄ . From simulations
we find values of the exponent in the interval n ∼ 0.5–1. In
order to estimate the variation of the coarsening exponent
and the transition point to exponential coarsening we have
performed repeated simulations for the same quenching depths
and different initial conditions. We find a standard deviation in
the power-law exponents of the order of 0.1, while the location
of the transition point has a standard deviation of 0.35 decade.

In general, the coarsening dynamics exhibits abnormal
grain growth where a few grains grow significantly faster than
the rest of the crystal matrix, as can be seen in Fig. 4. The
figure shows a late stage snapshot of a L = 1024dx system.
The faster growth of a few grains compared to the rest of
the matrix leads to a grain volume distribution that is not
self-similar. For self-similar growth the standard deviation on
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FIG. 3. (Color online) Average rotational velocity for individual
grains calculated using a time window of 1000 time units. The straight
line corresponds to a power law with an exponent n = −1. The
stagnating regime shows a rapid decrease in grain rotation in contrast
to the fast coarsening regime where grain rotation continues.

the grain volumes increases proportionally to the mean grain
volume. In Fig. 5 the ratio of the standard deviation of the grain
volumes and the mean grain volume is plotted, which shows
that δ〈V 〉/〈V 〉 is not a constant indicating abnormal growth.

The transition to fast grain growth is initiated by the
mobilization of small grains, which align in lattice orientation
with the larger so-called abnormal grains and finally coalesce
into an even larger grain. This is supported by the observation
that the amount of rotation per change in volume V increases
as the small grains get even smaller. In order to quantify this
effect we calculated the orientational velocity �θ using the

FIG. 4. (Color online) Snapshot of an L = 1024dx simulation
performed with a2 = −0.15 and with periodic boundary conditions.
Note the heterogeneous grain distribution that can be observed at the
transition to abnormal grain growth.
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FIG. 5. (Color online) Ratio of the standard deviation in grain
size and the mean size as a function of mean size.

misorientation angle and the volume change �V of individual
grains for �t = 1000 time units. Using the mean volume of
the grain between two time points, we created scatter plots of
|�θ/�V | versus V . The best fits across multiple quenching
depths and initial conditions suggest a scaling behavior∣∣∣∣ �θ

�V

∣∣∣∣ ∼ V −β, (3)

where the scaling exponent is estimated to β = 1.25 ± 0.06.
The fitted exponent as a function of a2 is shown in Fig. 6. The
uncertainty is taken to be the standard deviation found from
the weighted least-squares fit.

IV. DISCUSSION

In our simulations, we observe two distinct types of
coarsening dynamics. For deep quenches the grain growth
is typically accompanied by a decreasing rotation of the
individual grains. When the grain rotation stops, the system
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FIG. 6. (Color online) Power-law coefficients obtained from best
fits to scatter plots of |�θ/�V | vs V for different values of a2. The
uncertainty is the standard deviation calculated using a bootstrap
method.
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has reached a stagnation state. Grain growth stagnation has
been reported in two-dimensional PFC studies [11,18] as well
as in three-dimensional molecular-dynamics simulations [19].
For shallow quenches, we find that the early stage coarsening
is described by a power-law growth of the form V ∝ �ξ ∼ tn

with n ∼ 0.5–1, in reasonably good agreement with experi-
mental studies [6], which finds n ∼ 0.4–1.2, as well as with
multiple two-dimensional PFC studies [11,18,20], which find
exponents in the range n ∼ 0.2–0.8. In contrast to classical
grain growth models, the atomistic nature of the density field
allows for bulk dissipation due to elastic relaxation of the
lattice. Additionally it was found in [20] that a time-varying
grain rotation introduces another mechanism for bulk dissipa-
tion suppressing large-scale rotation as well as slowing down
grain coarsening. In the present study we find a large degree of
rotation of grains on all scales as well as fairly rapid coarsening
dynamics, implying that the anomalous dissipation mechanism
is not too severe for the grain sizes investigated here.

Further, the grain growth is found to be abnormal, resulting
in a crystal matrix consisting of a few large convoluted grains.
Abnormal grain growth has been seen in other numerical
experiments [21] as well as in experiments [22]. To analyze the
late stage coarsening dynamics, we consider a simple model
where the grain growth is mediated purely by grain coales-
cence. The grain coalescence follows from the continuous
rotation of predominantly small grains, which tend to align
their lattice with larger neighboring grains. Following [23],
we introduce a characteristic time tl it takes for two grains to
coalesce. The dynamics of the number of grains can then be
described by

1

N

dN

dt
= − 1

tl
. (4)

Since coalescence between two grains happen when their
lattices are rotated to be aligned, we assume tl to be
proportional to the inverse of the mean grain rotation 1

〈�θ〉 .
Using the conservation equation between the total number of
grains and mean volume N (t)〈V 〉 = Vsys and differentiating
with respect to time and using the coalescence assumption, we
establish the relation

1

〈V 〉
d〈V 〉
dt

= − 1

N (t)

dN(t)

dt
= Kθ 〈�θ〉, (5)

where Kθ is a dimensionless constant describing the time
scale over which rotation of a grain will result in coales-
cence between neighboring grains. Assuming 〈�θ〉 = Ctγ ,

we find the two solutions

〈V (t)〉 = V0

(
t
t0

)CKθ

, γ = −1 (6)

〈V (t)〉 = V0 exp

(
CKθ

γ+1 (tγ+1 − t
γ+1
0 )

)
, γ �= −1. (7)

From these solutions we see that if the degree of rotation in the
system does not fall off quickly enough grain coalescence will
lead to exponential coarsening in time. In Fig. 3 we observe
that for the late stages of the grain growth, the decay of 〈�θ〉 is
in general much slower than t−1 and consequently we expect
from Eq. (7) an exponential grain growth. To test the model we
measure C using Fig. 3 in the late regime. In this regime we
get that γ ∼ 0 for the systems that fully coarsen. The product
KθC is measured by fitting the region in which the systems
coarsen exponentially using the semilogarithmic plot in the
inset of Fig 2. In both cases we find that C and CKθ scale
linearly with a2. For Kθ ∼ 40 both curves collapse, which is
consistent with the assumption that grain growth is mediated
by grain rotation.

We can further estimate the coupling between grain growth
and rotation given in Eq. (3) by assuming that the dynamics
of grain rotation obeys conservation of dislocations, which
then implies that [24] r(t)θ (t) = const or, equivalently, θ (t) ∼
V −1/3, from which it follows that β = 4/3, in reasonably good
agreement with our numerical results. The fact that simulations
agree with this simple estimate might be an indication that
dislocations are indeed conserved up to the point where grains
coalesce.

V. CONCLUSION

From simulations of grain growth in polycrystalline ma-
terials, we have identified two distinct dynamical regimes.
One regime is for deep quenching parameters where grain
rotation is quickly suppressed and therefore leads to an
overall stagnation of growth. The other regime is observed
for more shallow quenches where grains continue to rotate
and therefore will be able to align their lattices. The alignment
eventually leads to the coalescence of neighboring grains and
simultaneously allows for a few abnormally large grains to
form. The grain rotation and coalescence cause an exponential
increase in grain growth with time.
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