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Morphological instabilities of stressed and reactive geological

interfaces
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Abstract. Interfaces between contacting rocks of the Earth’s crust are shown to be un-
stable, corrugating, and develop roughness at various scales when submitted to non-hydrostatic
stress. This instability may occur in various geological settings as long as a coherent de-
formation of the interface is allowed and the bodies that the interface separates have dif-
ferent material properties (i.e. viscosity, density, or elastic moduli). Relevant examples
include fault planes, dissolution interfaces, or grain boundaries. Performing a two-dimensional
linear stability analysis, we consider two cases: one solid in contact with a viscous layer
and two solids separated by a thin viscous layer. In both cases either shear and/or nor-
mal loads are imposed on the interface and thermodynamical conditions for the initi-
ation of roughening are established. Applied on several geological systems such as grain
contacts and fault planes, we propose that our analysis can explain how complex pat-
terns may emerge at rock-rock interfaces. Finally, we provide an analysis of the evolu-
tion of the static friction coefficient along sheared interfaces. The evolution is shown to
depend solely on Poisson’s ratio of the solid and the ratio of the shear and compressional
stresses along the interface.

1. Introduction

In the rocks of the Earth’s crust, interfaces between
stressed solids with different material properties are ubiq-
uitous at all scales, e.g. grain-grain contacts, interfaces be-
tween sedimentary layers, dissolution interfaces (i.e. pres-
sure solution seams and stylolites) and fault mirrors are
well-known examples. It is also known, now for more than
30 years in the geophysics community, that solid–solid or
solid–liquid interfaces can become morphologically unsta-
ble when submitted to deviatoric stresses. Such instabil-
ity has been described theoretically for coherent grain-grain
contacts [Fletcher , 1973], for liquid–crystals interfaces [Mis-
bah et al., 2004], or for stylolites [Schmittbuhl et al., 2004;
Koehn et al., 2007], see also Fig. 1. The non-equilibrium
thermodynamics of mass transport by intracrystalline dif-
fusion under non-hydrostatic stress has been considered in
a number of works [Shimizu, 1997; Ghoussoub and Leroy ,
2001]. Moreover, roughness instability of stressed solids has
also been observed in laboratory experiments on salt crys-
tals [den Brok and Morel , 2001; Dysthe et al., 2003; de Meer
et al., 2005; Bisschop and Dysthe, 2006; Van Noort et al ,
2007] or in helium crystals [Torii and Balibar , 1992].

In the physics community, the morphological stability of
material interfaces is also widely studied. It has been pro-
posed that the interface between a solid and its melt is un-
stable when the solid is non–hydrostatically loaded [Asaro
and Tiller , 1972; Grinfeld , 1986, 1992; Misbah et al., 2004].
The surface of a solid in contact with its solution corrugates
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and develops parallel grooves when the solid is stressed. The
instability is controlled by a competition between mechan-
ical forces, that favor a roughening of the interface, and a
stabilizing force due to surface tension. In cases of rela-
tively low surface tension, the grooves may in a non-linear
regime concentrate large stresses and lead to crack nucle-
ation [Yang and Srolovitz , 1993; Kassner and Misbah, 1994].
Obviously, the interface grooves and micro-crack formation
can strongly modify the mechanical properties of the solid.
More recently, it has been shown that for solid-solid inter-
faces a similar instability is triggered by a finite jump in the
free energy density across the interface, and that the insta-
bility leads to the formation of finger-like structures aligned
with the principal direction of compressive stresses [Anghe-
luta et al., 2008]. The instability turns out to be very sen-
sitive to small variations in density and elastic parameters
(in particular Poisson’s ratio) across the interface of the two
solids [Angheluta et al., 2009]. A rich morphology or rough-
ness, universal to most fracture surfaces, is also observed
on fault planes. The characteristic scale-free roughness of
faults is often ascribed to mechanical abrasion and fault
branching following from the cycles of abrupt slip and arrest
[Power et al., 1987, 1988; Ben Zion and Sammis, 2003; Re-
nard et al., 2006; Sagy et al., 2007]. Moreover, along some
faults a slow aseismic creep is observed (for a review on slow
earthquakes, see [Schwartz and Rokosky , 2006]; for a review
on post-seismic slip, see [Pritchard and Simons, 2006]), indi-
cating that the motion of the fault somehow overcomes the
roughness of asperities on the fault surface. One possible ex-
planation for this non-trivial rheology could be the presence
of a stress-controlled dissolution-precipitation alteration of
the contact surface. In general, reactive fluids are present
at the fault plane and act as a medium that accommodates
the dissolution of asperities in regions of high stress and
possible precipitation in regions of low stress [Gratier et al.,
2003]. The dissolution-precipitation processes may modify
the morphology and may invoke an effective creep deforma-
tion where the external loading is dissipated through small
scale alteration. Finally, such processes, when occurring at
the grain scale, may have an effect on the attenuation of
seismic waves [Ricard et al., 2009].

We shall here consider geological systems where mass dif-
fuses along a sharp interface by dissolution-precipitation or
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other transport mechanisms. The rate of mass transfer is
determined from the chemical potential of a single soluble
component. We consider two-dimensional (2D) model sys-
tems (see Fig. 2) composed of either a linear elastic solid in
contact with a viscous liquid or two solid bodies separated
by a thin viscous interface. Stresses applied to both types of
systems far away from the interface give rise to morphologi-
cal alterations at the surface(s) of the solid phase(s). In the
solid-liquid system, one elastic solid occupies the lower re-
gion y < h(x, t), where h(x, t) represents the interface profile
as shown in Fig. 2, and is in contact with an incompressible
fluid extending over the upper region. Both model cases are
analyzed below using various boundary conditions. When
two solids are in contact through a thin fluid film we impose
a normal load which balances the hydrostatic fluid pressure
at the interface. For a static fluid, the limit of zero thick-
ness for the fluid layer is well defined and, in that limit, the
effect of fluid is through the force balance conditions at the
interface. In the case of a liquid-solid interface, we study
the nonequilibrium response due to a uniform shear stress
τ0 and compressional load σ0. In the absence of applied
forces, the solid is assumed to be in chemical and mechan-
ical equilibrium with a fluid phase at hydrostatic pressure
P0.

We perform a stability analysis in 2D by first calculating
the chemical potential along a flat interface in a mechani-
cally loaded system. Then we deform the interface (keeping
the system loaded) by a small size perturbation and calcu-
late by an expansion in the height the corresponding change
in chemical potential. Finally, based on the chemical po-
tential we derive amplitude equations that determine if an

Figure 1. Geological rough interfaces. a-b) Fault sur-
face in cherts showing small scale striations (Corona
Heights Fault, San Francisco, California). Coin (a) or
pen (b) are shown for scales. c) Stylolite interface in marl
from the Kimmeridgian limestones in the Paris Basin. d)
3D view of a stylolite in limestone (coin for scale), North-
ern Israel. e) Grain-grains rough interface in a limestone
from Mons, Belgium.

instability is thermodynamically favored. Such an analysis
provides a thermodynamic criteria for the development of
roughness or for the flattening of the interface.

2. Chemical potential of a stressed interface

When a stressed solid is in contact with a saturated so-
lution, the change in chemical potential at the interface
equals the work required to move a soluble component from
a stressed configuration to a hydrostatic configuration [Pa-
terson, 1973; Sekerka and Cahn, 2004]

µ[x, h(x, t)] = F(x, h(x, t))V0−σnn[x, h(x, t)](V−V0)+κγV0,
(1)

where γ is the surface tension, h(x, t) is the interface height
or the vertical coordinate on Fig. 2. The curvature is taken
to be positive for a concave interface κ = −h′′(1+ h′2)−3/2,
where h′ = ∂xh(x, t). V − V0 is the change in molar vol-
ume across the interface. For simplicity, we assume that at
equilibrium the component in the solid phase has the same
molar volume V0 as in the fluid phase. Thus, in the stressed
configuration the molar volume changes due to elastic volu-
metric expansion or contraction, i.e. V = V0(1+ ǫkk), where
ǫkk is the trace of the elastic strains (summation over re-
peating indices is implied). F is the Helmholtz free energy
per unit volume, and σnn is the normal component of the
stress vector. For a free surface σnn = 0, while if the surface
is in contact with a fluid (gas, aqueous liquid, melt) then
σnn = −p with p being the hydrostatic pressure in the fluid.

The surface gradients in the chemical potential produce
a drift of surface atoms with a flux given by [Mullins, 1957]

J = −
Ds

kTV0

∂µ

∂s
, (2)

Figure 2. Model set-up for geological interfaces. Two
materials, with different properties, either both elastic
with different parameters (elastic, density), or one elas-
tic solid and one viscous layer. This latter set-up could
correspond to a fault zone, with a visco-elastic core and
an elastic damaged zone. A compressional or shear force
is applied at the margins in the vertical direction. We
will consider several cases: either the interface has a neg-
ligible thickness (corresponding to e.g. a fracture, disso-
lution seam, grain boundary), or the interface has a finite
thickness and contains a viscous material (e.g. stylolites
or a fault zone).
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where Ds is the surface diffusion coefficient and kT is the
Boltzmann’s constant times temperature and s is the inter-
facial arc length. Note here that, depending on the system,
Ds could represent diffusion along the solid surface (Coble
creep) or along a thin water film located at the interface
(dissolution precipitation creep); in both cases the existence
of an instability does not depend on the transport mecha-
nism [Misbah et al., 2004], but the kinetics of the process
does. The divergence of the mass flux gives the change in
the number of atoms per unit area per unit time and can be
directly related to the normal velocity of the interface via

Vn = −V0a
2 ∂J

∂s
= M

∂2µ

∂s2
, (3)

where a is the surface density of atoms and M = DsaV0/kT
is a positive mobility coefficient.

For small morphological perturbations, i.e. h(x, t) ≪ 1,
the time derivative of h(x, t) is given by the normal velocity,
and the spacial derivative along the interface arc is approx-
imated by the x-derivative. There, we have that

∂h(x, t)

∂t
= M

∂2µ(h(x, t))

∂x2
. (4)

The above equation describes the morphological evolution
of the interface due to mass transport by diffusion. A
linear stability analysis was carried out for free surfaces
in [Srolovitz , 1989], as well as for surfaces in contact with
a hydrostatic fluid [Gal et al., 1998; Cantat et al., 1998],
where the solid was stressed on the lateral boundaries nor-
mal to the interface. The nonlinear morphological evolu-
tion leads to cusp-like singularities in finite time [Yang and
Srolovitz , 1993; Xiang and E , 2002]. These previous ana-
lyzes considered systems where normal forces are present at
the interface, but did not consider the effect of shear forces.

3. Interface between a solid and a viscous
layer under non-hydrostatic shear stress

3.1. Definition of the equilibrium configuration

Under the assumption that the system is instantaneously
relaxing to its equilibrium configuration, we consider the
steady state of the momentum equations both for the elas-
tic solid and the viscous fluid. In the solid phase the stress
of an elasto-static two-dimensional configuration is conve-
niently solved in terms of the Airy stress function, U(x, y)
[Muskhelishvili , 1953], which satisfies the bi-Laplace equa-
tion ∆2U = 0. We have here introduced the Laplace op-
erator ∆ = ∂2

∂x2 + ∂2

∂y2 . Once the stress function has been
found, the stress tensor components readily follow from the
relations

σxx =
∂2U

∂y2
, σyy =

∂2U

∂x2
, σxy = −

∂U

∂x∂y
. (5)

The viscous flow is described in terms of Stokes’ equation.
That is, away from the interface, the combined equations
for the viscous layer and solid take the form

∆2U(x, y) = 0 (6)

µ∆w −∇p(x, y) = 0 (7)

∇ ·w = 0, (8)

where p(x, y) is the pressure in the viscous layer, andw(x, y)
is the velocity vector field of the viscous layer with compo-
nentsw = (u, v). The second equation relates the velocity in
the viscous layer to the pressure gradient. The last equation
represents the continuity of the velocity field in the viscous

layer. Note that the equations are not directly coupled, how-
ever, in the following, we shall introduce a coupling of the
equations via the boundary conditions. That is the phases
interact only at their boundaries.

At the fluid-solid interface, we require force balance and
a no-slip condition formalized in the following relations

σnn = −p+ 2µ∂nwn (9)

σnt = µ (∂nwt + ∂twn) (10)

wn = 0 (11)

wt = 0 (12)

where (nx, ny) ≈ (−∂xh, 1) is the local unit vector point-
ing into the viscous phase, and (tx, ty) ≈ (1, ∂xh) is the
tangent vector, in the limit where the interface amplitude
is small enough. The surface tension effect on the normal
stress vector has a contribution which is smaller than the
surface energy, and thus, for the sake of simplicity, we have
neglected it.

In addition, we need to specify the far-field boundary
conditions. We study the linear response away from the
hydrostatic configuration in the presence of an applied com-
pressional load σ0 and shear stress τ0 as sketched in Fig. 2.
In a more general formalism than the Asaro-Tiller-Grinfled
instability [Asaro and Tiller , 1972; Grinfeld , 1986], we allow
the fluid to flow at a constant shear rate τ0.

3.2. Flat interface

For a flat interface, i.e. h(x, t) = 0, the viscous flow is
decoupled from the elastic deformations and the solution is
the same as for a flow past a planar wall, namely

u(0)(x, y) =
τ0
µ
y (13)

v(0)(x, y) = 0 (14)

p(0)(x, y) = P0, (15)

where the upper index refers to the order of the morpholog-
ical perturbation expansion. From the force balance at the
interface and the far-field applied load, we can determine
the stress components as given by

σ(0)
yy (x, y) = −P0 (16)

σ(0)
xy (x, y) = τ0 (17)

σ(0)
xx (x, y) = −P0 + σ0. (18)

and the Airy’s stress function is given as

U (0)(x, y) = −P0
x2

2
+ (σ0 − P0)

y2

2
− τ0xy. (19)

The constant stress field implies a constant chemical poten-
tial along the interface. In the absence of gradients, no mass
diffusion will occur. However, when the interface has a non-
zero curvature, the stress vector and the elastic energy vary
along the interface and induce mass transport.

3.3. Perturbed interface

For an undulating interface, the field variables are in gen-
eral altered from their counterparts around a flat interface.
We consider a small amplitude perturbation on the form
h(x, t) = ǫh(1)(x, t), where ǫ ≪ 1 is the expansion parameter
and h(1)(x, t) is the first order correction to a flat interface.
A field variable F (x, y), which is a solution to the perturbed
interface, can be expanded to the leading order in terms of
the solution to a flat interface as follows

F (x, y) = F (0)(x, y) + ǫF (1)(x, y) +O(ǫ2), (20)
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where F (x, y) denotes any of the field variables, U(x, y),
p(x, y), u(x, y), v(x, y). F (0)(x, y) is the solution to a planar
interface and F (1)(x, y) is a first order correction due to a
shape perturbation. Evaluated at a point on the interface
y = ǫh(1)(x, t), the expansion becomes

F (x, ǫh(1)) = F (0)(x, 0) + ǫh(1)∂yF
(0)(x, y)|y=0

+ ǫF (1)(x, 0) +O(ǫ2) (21)

For example, the stress at the interface is evaluated by ex-
panding around its constant value at a planar interface

σij(x, ǫh
(1)) = σ

(0)
ij (x, 0) + ǫσ

(1)
ij (x, 0) +O(ǫ2). (22)

Inserting these perturbations into the interfacial conditions
from Eqs. (9)-(12) and retaining the first order terms, we
obtain the following relations

σ(1)
yy (x, 0) = −p(1)(x, 0) + 2µ∂yv

(1)(x, 0) (23)

σ(1)
xy (x, 0) = µ

[

∂xv
(1)(x, 0) + ∂yu

(1)(x, 0)
]

(24)

v(1)(x, 0) = 0 (25)

u(1)(x, 0) = −h(1) τ0
µ
. (26)

The linear perturbation fields are determined from Eqs. (6)-
(8) combined with the above state interfacial conditions.
The far-field boundary conditions are satisfied by the ze-
roth order terms, thus we require that the perturbations
decay to zero at infinity. Assuming periodic boundary
conditions along the x-axis, we can decompose the inter-
face amplitude and the field perturbations into a superpo-
sition of Fourier modes as h(1)(x, t) =

∫

dkh
(1)
k (t)eikx and

F (1)(x, y) =
∫

dkF
(1)
k (y)eikx. Solving the governing set of

equations combined with the interfacial boundary conditions
in the Fourier space, we obtain the following solutions

U
(1)
k (y) = h

(1)
k [(−σ0 + 2iτ0)y] e

ky (27)

p
(1)
k (y) = 2ih

(1)
k τ0ke

−ky (28)

u
(1)
k (y) =

h
(1)
k τ0(ky − 1)

µ
e−ky (29)

v
(1)
k (y) =

ih
(1)
k τ0

µ
kye−ky. (30)

The fields are computed in the real space by integrating up
all the Fourier modes,

F (x, y) = F (0)(x, y) + ǫ

∫

dkF
(1)
k (y)eikx. (31)

However, in the linear regime, the modes are decoupled, and
therefore it is possible to study their stability independently.

3.4. Stability analysis

We can now return to the evolution of a morphological
perturbation by mass diffusion along a chemical potential
gradient as in Eq. (4), where

µ(1)(x, 0) =
(

F(1) − σ(1)
nnǫ

(0)
kk − σ(0)

nnǫ
(1)
nn − γ∂2

xh
(1)

)

V0. (32)

From the definition of the Airy’s stress function given in
Eq. (27) we determine the perturbation stresses required
to evaluate the chemical potential at the interface by using
Eq. (5). Hereby, we perform the calculations in the plane
strain approximation. A similar analysis can be performed
in the plane stress limit.

We consider an isothermal mass diffusion process such
that the Helmholtz free energy is determined by the elastic

energy of deformation, which is defined as

F(x, y) =
1

4G

[

(1− ν)(σ2
xx + σ2

yy)− 2νσxxσyy + 2σ2
xy

]

,

(33)
where G is the shear modulus and ν is the Poisson’s ratio.
The elastic strain energy is a superposition of the reference
energy associated with a planar interface and the energy due
to a morphological perturbation

F(x, ǫh) = F(0)(x, 0) + ǫF(1)(x, 0), (34)

where

F(0) =
(1− ν)σ2

0 + 2τ 2
0 − 2(1− 2ν)(σ0 − P0)P0

4G
,

F(1) =
1

2G
{[(1− ν)σ0 + 2νP0]σ

(1)
xx

−[νσ0 + (1− 2ν)P0]σ
(1)
yy + 2τ0σ

(1)
xy }. (35)

The normal stress vector in the solid phase is expanded as

σnn(x, 0) = −P0 + ǫ
[

σ(1)
yy (x, 0)− 2τ0∂xh

(1)
]

. (36)

Also, the volumetric change expressed by the trace of the
strain field is related to stresses as follows,

ǫkk =
1− 2ν

2G
(σxx + σyy)

=
1− 2ν

2G

[

(σ0 − 2P0) + ǫ
(

σ(1)
xx + σ(1)

yy

)]

. (37)

Now, inserting these expressions into Eq. (32) and decom-
posing the linear perturbation of the chemical potential into
a superposition of Fourier modes as µ(x, 0) =

∫

dkµ
(1)
k eikx,

where k is an arbitrary wavenumber, we obtain that the
Fourier coefficient µ

(1)
k is given by

µ
(1)
k = α+ iβ, (38)

where

α = −
(1− ν)σ2

0 − 2τ 2
0

G
kh

(1)
k + k2h

(1)
k γ

β =
−2(1− 2ν)τ0P0 + 4(1− ν)τ0σ0

G
kh

(1)
k .

For an exponential growth h
(1)
k = exp(ωt), the linearized in-

terfacial dynamics from Eq. (4) reduces to a dispersion re-
lation ω = ω(k). The morphological stability is determined
from the sign of the real part of the growth rate, which is
given by

ℜ(ω) = MV0

[

(1− ν)σ2
0 − 2τ 2

0

G
k3 − k4γ

]

. (39)

There exists a cross-over in stability at a finite wavenumber
kc given by

kc =
(1− ν)σ2

0 − 2τ 2
0

Gγ
, (40)

when the applied stresses satisfy the inequality

(1− ν)σ2
0 > 2τ 2

0 (41)

The interface is therefore predicted to be linearly unstable
at wavenumbers k > kc. The shear stress adds an imaginary
component, which may be related to waves, and a stabiliz-
ing term to the real part of the growth rate. In the absence
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of shear stress, the classical Asaro-Tiller-Grinfeld instability
above a critical wavenumber kc = (1−ν)σ2

0/Gγ is obtained.
We have so far assumed no-slip conditions at the inter-

face. The important question is then, if the morphological
instability is present at shear loads close to the onset of
slip. According to Coulomb’s friction law, the critical shear
stress of slip σnt is linearly proportional to the normal load
σnt = µsσnn where µs is the static friction coefficient. For
σ0 = P0 the elastic solid is effectively compressed by the fluid
hydrostatic pressure in the normal direction to the interface.
Hereby, the instability arises from the competition between
the magnitude of the shear stress and the effective normal
load, i.e. the interface is linearly unstable if the system is
dominated by the pressure/normal load P0 and stable if the
shear stress τ0 dominates. At the onset of slip, the stability
criterion given in Eq. (41) with P0 as an effective normal
load is equivalent to

µs <

√

1− ν

2
. (42)

From this inequality, we see that the stability depends cru-
cially on the value of Poisson’s ratio. For rocks, Poisson’s
ratio is in the range [0.2−0.4], indicating that the transition
to roughening instability should occur for µs < [0.5 − 0.6].
Note that when the system is unstable, the interface rough-
ness grows rough in time and thereby the static friction co-

efficient increases, whereas when µs >
√

1−ν
2

the interface

becomes less rough and the static friction coefficient should
decrease.

4. Two solid materials separated by a thin
viscous layer

We now consider a system composed of a thin viscous
layer at hydrostatic pressure P0 sandwiched between two
identical linearly elastic solids. In the absence of externally
applied stresses, the solids are in equilibrium with each other
and with the fluid film and the systems in hydrostatically
stressed. We bring the system out of equilibrium by applying
a compressional load σ0 along the interface, and, in particu-
lar, for σ0 = P0, the solids effectively sustain a normal load
from the fluid pressure. For a finite thickness one can study
the case where the fluid film is flowing at a constant shear
rate. However, the limit of zero thickness is singular, in the
sense that the strain rate becomes infinite. For simplicity,
we therefore assume that the fluid is at rest, i.e. τ0 = 0,
and consider the limit where the fluid thickness is infinitely
small compared to the size of the solid bodies (see Fig. 2).
In this case, the fluid film acts through the boundary con-
dition at the solid-solid interface, by setting the tangential
stress vector to zero and the normal stress vector equal to
the hydrostatic pressure, namely

σnn,j = −P0 (43)

σnt,j = 0, (44)

where j = 1, 2 is the phase index. One could also include
the surface tension effects into the interface boundary con-
ditions without much difficulty. Under these conditions, a
similar perturbation technique is carried out as in the previ-
ous section. The bi-Laplace equation is solved for each solid
phase j = 1, 2 and the Airy’s stress functions Uj(x, y) are
determined from the interfacial boundary conditions. The
zeroth order solution associated with a flat interface is given
by

U
(1)
j = −P0

x2

2
, (45)

and the linear order terms due to a small morphological per-
turbation h(x, t) = ǫh(1)(x, t) are obtained as

U
(1)
1 (x, y) = −P0ye

kyh(1)(x, t) (46)

U
(1)
2 (x, y) = P0ye

−kyh(1)(x, t). (47)

The stress components are then evaluated by inserting the
Airy’s stress functions into Eq. (5). We find that the lin-
ear perturbation in the chemical potential calculated in the
plane strain approximation, is given by

µ(x, 0) =
1− ν

4G
P 2
0 − ǫ

1− ν

G
P 2
0

∫

dkkh
(1)
k eikx. (48)

Inserting this expression into the interfacial evolution
Eq. (4) and assuming an exponential growth h

(1)
k = exp(ωt),

we obtain that the growth rate is

ω = MV0
(1− ν)P 2

0

G
k3. (49)

The above dispersion relation implies that the interface is
unstable due to mass diffusion under a normal load. That
being said, the only difference, to the viscous-solid system
presented in the previous section, is that when the viscous
layer is at rest, the stabilizing shear stress is no longer
present. It should therefore be emphasized that the bound-
ary conditions are quintessential for the stability of the in-
terface. Note that a similar setup with finite size elastic bulk
parts has been studied recently in [Bonnetier et al., 2009].
Here, a minimum energy criteria and variational calculus
for shape perturbations were employed and revealed along
the lines of the above calculation that the interface is lin-
early unstable when the fluid is at rest and for wavenumber
smaller than the surface tension cutoff.

5. Discussion

5.1. Grain–grain contacts

If the viscous layer separating the two solid materials is
removed such that we have perfect stress transmission at
the interface and the system can undergo dry recrystalliza-
tion, i.e. we have a transport of mass across and normal
to the interface, then the morphological stability of the in-
terface depends on the complete set of material parameters
of both solid phases. The corresponding stability diagram
in this case becomes slightly more complex. In a previ-
ous work [Angheluta et al., 2009], we have considered the
dynamics of dry recrystallization between stressed solids.
Similar to the derivations carried out for the solid-viscous
layer system, the rate of mass transport across the interface
is proportional to the gradients (jump) in the local chemical
potential. In general, it turns out that contrasts in referen-
tial densities of the two solids often lead to the formation of
finger-like structures aligned with the principal direction of
the far-field stress. In cases where the referential densities
are identical the stability depends on the ”compressibility”
of the material. Like for the viscous-solid system, Poisson’s
ratio plays a crucial role in the stability.

5.2. Slow displacements on faults

Most large earthquakes are followed by post-seismic de-
formation, which can last for several years. Such deforma-
tion is usually thought to be localized directly on the rup-
ture plane, and often described as afterslip whose amplitude
could be equivalent to co-seismic slip (see [Pritchard and Si-
mons, 2006] for a review). Such slow slip is also related to
the increase of the elastic wave velocity in the fault zone
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after an earthquake [Brenguier et al., 2008]. The slow re-
laxation of the fault is interpreted as the creation of new
solid-solid contacts, related to an increase of the cohesion of
the fault material. In the present study, we propose that the
small roughness evolution of a fault plane by a dissolution
precipitation instability could be a possible mechanism to
explain observations of fault healing processes. Indeed, in
fault zone, the state of stress is such that the ratio between
the shear stress σnt and the normal stress σnn, which defines
the friction coefficient µs = σnt

σnn

, varies in a range [0.1−0.2]
for weak faults to [0.6 − 0.8] for stronger seismic faults. In
the present study, we have demonstrated that the transition
from stability to instability depends on Poisson’s ratio such

that if µs ≤
√

(1−ν)
2

the interface is unstable. For typical

crustal rocks ν varies in the range [0.2−0.4], indicating that
the transition occurs for µs ≤ [0.5− 0.6], i.e. for static fric-
tion coefficients smaller than those deduced for most strong
faults.

In Fig. 1, we presented a stability diagram that relates
the static friction coefficient with the morphological stability
of the interface. It was seen that the interface, if the stress
is close to the level of slip, in general would evolve by sur-

face diffusion in such a way that µs →
√

1−ν
2

. However, the

static friction coefficient µs may never evolve towards such
a value, either because the time needed for surface diffusion
is much larger than the characteristic time of stress build
up and relaxation or because the system is always loaded
far below the critical stress needed for slip.

The striations shown on the fault plane of Fig. 1 are
due to several processes such as mechanical abrasion, gouge
fragmentation, creation and destruction of fault topography
during seismic slip and healing during the interseismic pe-
riod. The anisotropy of the surface comes from the fact that
mechanical abrasion in the direction of slip creates grooves
at all scales (in fact high resolution analyses of fault surface
roughness demonstrate the presence of scaling relationships
[Renard et al., 2006; Sagy et al., 2007]. Other studies have
shown that the presence of large scale bumps, perpendic-
ular to the direction of slip, are interpreted as a viscous
instability during seismic slip [Sagy and Brodsky , 2009]. In
the present study, we focus on contact formation and re-
strengthening of the interface. Clearly such effect overlies
other deformation processes and would be difficult to isolate
using high resolution topography measurements. However,
the roughening restrengthening effect should be an impor-
tant ingredient of the long-term evolution of active fault
zone mechanical properties.

6. Conclusion

Using an analytical approach we have shown that geolog-
ical interfaces can be unstable under morphological pertur-
bations when submitted to particular states of stress and
when mass transfer is allowed across or along the interfaces.
Previous studies have mostly considered the stability of in-
terfaces of solid materials under compression, here we have
analyzed systems where both a shear and compressive load
is applied. Our analysis reveals an intricate relationship be-
tween the stability of a sheared interface and Poisson’s ratio
of the bulk material. In summary, we have shown that when
a solid is in contact with a viscous layer at rest, the inter-
face is always unstable for wavelengths larger than the crit-
ical length set by the surface tension. However, when the
viscous layer flows or finite shear stresses are transmitted
across the interface we observe that the interface becomes
stable. It therefore follows that the stability of an inter-
face is controlled by the ratio between the normal and shear
load. We applied our analysis to the stability of faults and
established a relationship between the static friction coef-
ficient and Poisson’s ratio. In general the faults interface

corrugates in such a way that µs →
√

1−ν
2

. Further investi-

gations, e.g. from field observations, to check this behavior
are encouraged.
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Figure 1. Stability diagram for a stressed interface.
The interface is morphologically stable whenever τ0 >
√

1−ν
2

P0 and unstable otherwise. The stability regions

are separated by a neutral curve represented in the black
solid line. The admissibility of certain regions is deter-
mined by the static friction coefficient µs, which sets a
boundary between the maximum shear stress the system
can sustain for a given normal load. In general, it is
expected that the instability (stability) gives rise to an
decrease (increase) in the friction coefficient. It is seen

that if µs <
√

1−ν
2

, the interface is morphologically un-

stable.


