
Article
Coupled oscillator cooper
ativity as a control
mechanism in chronobiology
Graphical abstract
Highlights
d A synthetic oscillatory circuit responding to periodic a-factor

and ethanol is designed

d Two oscillatory signals stabilize the entrainment

d Phase modulation between oscillatory signals controls the

amplitude

d Oscillation amplitude directly affects downstream gene

expression levels
Heltberg et al., 2023, Cell Systems 14, 382–391
May 17, 2023 ª 2023 Elsevier Inc.
https://doi.org/10.1016/j.cels.2023.04.001
Authors

Mathias S. Heltberg, Yuanxu Jiang,

Yingying Fan, ..., Qi Ouyang,

Mogens H. Jensen, Ping Wei

Correspondence
mhjensen@nbi.dk (M.H.J.),
ping.wei@siat.ac.cn (P.W.)

In brief

Heltberg et al. reveal the cooperative

regulatory mechanism between the

intrinsic and two extrinsic oscillators with

synthetic biology approach, which

enables stabilized entrainment and

decoupled amplitudemodulation through

variation in phase difference. This

generalizes the theory of coupled

oscillators and provides insights for

dynamic control in living cells.
ll

mailto:mhjensen@nbi.�dk
mailto:ping.wei@siat.ac.�cn
https://doi.org/10.1016/j.cels.2023.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2023.04.001&domain=pdf


ll
Article

Coupled oscillator cooperativity
as a control mechanism in chronobiology
Mathias S. Heltberg,1,2,5 Yuanxu Jiang,1,3,5 Yingying Fan,1,3,5 Zhibo Zhang,3 Malthe S. Nordentoft,2 Wei Lin,3 Long Qian,3

Qi Ouyang,3 Mogens H. Jensen,2,* and Ping Wei1,3,4,6,*
1Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology,

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
3Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
4Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
5These authors contributed equally
6Lead contact
*Correspondence: mhjensen@nbi.dk (M.H.J.), ping.wei@siat.ac.cn (P.W.)

https://doi.org/10.1016/j.cels.2023.04.001
SUMMARY
Control of dynamical processes is vital for maintaining correct cell regulation and cell-fate decisions.
Numerous regulatory networks show oscillatory behavior; however, our knowledge of how one oscillator be-
haves when stimulated by two or more external oscillatory signals is still missing. We explore this problem by
constructing a synthetic oscillatory system in yeast and stimulate it with two external oscillatory signals. Lett-
ing model verification and prediction operate in a tight interplay with experimental observations, we find that
stimulation with two external signals expands the plateau of entrainment and reduces the fluctuations of os-
cillations. Furthermore, by adjusting the phase differences of external signals, one can control the amplitude
of oscillations, which is understood through the signal delay of the unperturbed oscillatory network. With this
we reveal a direct amplitude dependency of downstream gene transcription. Taken together, these results
suggest a new path to control oscillatory systems by coupled oscillator cooperativity.
INTRODUCTION

Biological oscillations ubiquitously control fundamental biolog-

ical processes, such as the circadian clock,1–4 development,5,6

neuronal signal processing,7,8 and transcription factor (TF) re-

sponses.9–14 In particular, the oscillations in TFs such as p53

and nuclear factor kB (NF-kB) seem to be an integral part of

cellular regulation, but the function and stabilization of these sig-

nals are still far from understood15,16 even though recent work

has suggested mechanistic effects of p53 oscillations.17

When one oscillator is affected by a second, the resulting dy-

namics of the first is understood through the theory of Arnold

tongues.18 These tongues predict how small oscillations will

lead to entrainment, where two oscillators synchronize, whereas

larger oscillations will lead to complex dynamics such as period

doublings, multistability, and chaotic behavior.19 This can in turn

affect a cascade of downstream proteins, and therefore it is

fundamental for the cellular networks to be able to control the bi-

furcations into complex dynamics.20 Biological oscillators

appear frequently on the cellular scale, and the coexistence of

multiple oscillators has been revealed in different biological sys-

tems.21–26 Therefore, our main questions in this work are the

following. How will the combination of oscillatory signals affect

the controllability of an oscillatory system? In particular, will
382 Cell Systems 14, 382–391, May 17, 2023 ª 2023 Elsevier Inc.
this stabilize synchronization and robustness or conversely

lead to complex dynamics? Furthermore, how can the dynamic

aspects of TF concentration affect downstream gene stimulation

and thereby the state of the cell?

To shed light on this problem, we constructed a synthetic

oscillator in yeast cells (S. cerevisiae) and connected it with

two natural signaling pathways that sense the a-mating phero-

mone (a-factor) and ethanol, respectively. We also derived a

simplemathematical model to predict the behavior of the system

under two oscillatory signals. Fundamentally, our aim was to un-

derstand whether the addition of two external signals would lead

to more complex dynamics or stabilize the oscillations and thus

lead to a higher degree of order. From the point of view of the Ar-

nold tongues, both outcomes would be plausible, and therefore

it is important to understand the resulting effect. Here, our study

reveals that a combination of two external signals leads to a

larger entrainment regime and stabilizes the oscillations by

reducing the standard deviations in the periods. Furthermore,

with two external signals, the phase difference between these af-

fects the amplitude of the TF, while keeping the frequency con-

stant.We demonstrated throughmathematical modeling that the

amplitude reachesmaximal when the difference in phases corre-

sponds to the phase lag between proteins in the oscillatory but

non-perturbed system. To further validate these findings, we
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Figure 1. RelA dynamics and periodic stimulation

(A) Schematic figure of coupled oscillators in biological systems. The output of a single coupling (upper panel) is described by the Arnold tongues. Coupling with

multiple oscillators (lower) remains unexplored.

(B) Schematic design of the synthetic oscillatory circuit in yeast. The a-factor and ethanol act as two oscillatory inputs.

(C) Example of single-cell nuclear RelA level under continuous 10 mM a-factor.

(D) Distribution of oscillatory period.

(E) Nuclear RelA level of the cell population under oscillatory a-factor input (left) and oscillatory ethanol input with basal a-factor (right).
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investigated three canonical mathematical models and find

these results to be consistent. Finally, by applying the above re-

sults to stimulate the amplitude of oscillations andmeasuring the

concentration of downstream proteins, we validated that

enhanced amplitudes in TF dynamics also promote the down-

stream protein production. In total, these results suggest that

living organisms can use multiple oscillatory inputs to optimize

the dynamical signals and thereby obtain fine-tuned regulation.

RESULTS

Experimental setup allows stimulation of two external
oscillatory signals
When one oscillatory system is affected by an external oscilla-

tory signal, entrainment regions known as Arnold tongues will

emerge. These define regimes, where one can perturb the

external oscillatory signal, which directly causes the oscillatory

system to follow, resulting in a higher degree of control and order

of the oscillations. However, for large values of external stimula-

tion, the coupling of an external oscillatory signal can lead to

complex dynamics and chaos. Since an increasing number of

oscillators have been revealed in cells, it is a fundamental and
unresolved question: what will happen when a second oscillator

is added to the network? This is schematized in Figure 1A.

To investigate this, we constructed a synthetic oscillatory cir-

cuit utilizing the human NF-kB system, which consists of the TF

RelA and its inhibitor IkB. RelA is generally sequestered by IkB at

resting state and is released to the nucleus upon the addition of

a-factor, which induces the degradation of IkB. The transcription

of IkB is promoted by nuclear RelA and repressed by nuclear

Mig1; the latter is a natural stress-responsive transcription

repressor in yeast and can be activated by ethanol. In short,

both a-factor and ethanol in our system promoted the nuclear

import of RelA but on either post-translational or transcriptional

levels. With amicrofluidic system, the a-factor and ethanol could

be added in precisely defined oscillatory patterns (Figure S1).

Therefore, our system represented a simple case of three inter-

acting oscillators, with two independent oscillatory inputs

affecting different parts of the internal synthetic oscillatory

signaling system (Figure 1B; STAR Methods).

After constantly adding the fixed level of a-factor, the activa-

tion of RelA (nuclear import) exhibited oscillatory dynamics,

and we quantified the free oscillation period to be 24 min

(Figures 1C and 1D). Next, we stimulated the system periodically
Cell Systems 14, 382–391, May 17, 2023 383
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by introducing a square wave, thus changing either the level of

a-factor or ethanol alone for a period of 30 min. In doing so we

observed clear entrainment to both external stimulations (Fig-

ure 1E). Thus, the synthetic system could be effectively coupled

to two different external oscillatory signals, promoting our further

exploration to test the responses from combined inputs. We first

compared the experimental results to mathematical predictions,

by deriving a simplified model based on a previously published

model27 and aligning it with current observation of oscillatory

period and amplitude (Figure S2). In this process, we reduced

the number of variables and free parameters, by applying the

assumption that the total amount of RelA is constant and by

assuming that the rate of mRNA to export the nucleus before

translation was fast compared to the other rates. The parameters

were chosen similarly to the previous model by Zhang et al. and

further reduced by for instance assuming a Hill coefficient of 2

(representing the biophysical mechanism of RelA as a dimer)

instead of the previous value of 3. Overall, this model reduces

the number of parameters and simplifies the mathematical

description.

Thereby, we had successfully constructed a biological system

with one oscillator (RelA) that could be stimulated by two

external oscillatory signal inputs (a-factor and ethanol). Next,

we investigated how these two combined could affect the dy-

namics of RelA.

Stabilization of oscillations from two external oscillatory
signals
Investigating non-monotonic pattern of controllability, we first

tested how the two combined oscillatory signals would affect

the synchronization regions of the Arnold tongues in silico. We

constructed the Arnold tongue map for the addition of a-factor

only (Figure 2A, left) and by inspecting the synchronization re-

gions for fixed amplitude, known as ‘‘devil’s staircase,’’ we found

an enlargement of the entrainment plateau for the combined

input of a-factor and ethanol (Figure 2A, middle, blue curve).

Note that the Arnold tongue diagram (Figure 2A, left) serves as

a way to understand the structure of entrainment and is only

visualized for the numerical studies of a-factor, since this repre-

sents the original external addition and ethanol is a secondary

addition. To verify this theoretical finding, we tuned the input

oscillation period from 10min to 50min and quantified the output

oscillations (Figure S3). The results confirmed the larger plateau

under the combined input conditions in comparison to single

input conditions (Figure 2A, right). We expected that the resulting

plateau would be dominated by one of the plateaus of the single

external signal and possibly have the width of the mean of the

two individual stimulations. However, we noted that this result

was not a linear combination of the two inputs individually but

rather a general broadening of the Arnold tongues in a coopera-

tive effect even though the two inputs were completely

independent.

Next, we investigated how oscillations are stabilized in the

regime of entrainment evaluating the oscillatory robustness.

For simulations we applied the Gillespie algorithm28 and calcu-

lated the power spectrum of the simulated traces. We observed

that the fraction of identified entrained cells increased dramati-

cally for the addition of two inputs (Figure 2B). Here, we had cho-

sen the signals so they individually entrained the oscillator
384 Cell Systems 14, 382–391, May 17, 2023
approximately to the same extent, and thereby we could esti-

mate the effect of two external oscillatory signals. We stress

that this does not mean that external a-factor and ethanol will

entrain with equal coupling strength, but it does reveal that the

oscillators in combination affect the system better than they do

individually. This was confirmed in the experimental traces by

calculating the entrainment index of cells in the three conditions

(Figure 2C). Note that in these results we have kept the phase dif-

ference between the two external oscillators fixed at 3p/2. To

follow up on this, we estimated the standard deviation of all iden-

tified periods as a measure of the oscillatory signal strength and

found this reduced for double stimuli (Figure 2D, left), which was

confirmed in the model (Figure 2D, right). Finally, we calculated

the autocorrelation of the oscillatory signal, by aligning all cells

and calculating the average value as a function of the time

added. For non-entrained cells this drops quickly to 0, whereas

oscillations will persist for entrained signals with largest ampli-

tude for the strongest entrained samples. The experimental

and mathematical findings agreed well (Figure 2E), confirming

that the combined addition of oscillatory inputs increased the

entrainment strength of the system.

The transition into chaotic dynamics for large external ampli-

tudes is fundamental for Arnold tongues.19 Since we have found

a broadening entrainment plateaus, an obvious question is

whether the double oscillatory inputs would trigger a transition

into chaotic dynamics? To explore this, we amplified the signal

of the single external input (a-factor) and found regions of chaotic

dynamics, defined by a positive Lyapunov exponent, where

traces separated infinitesimally from each other diverge in

time29 (Figure 2F). We then tested this with the double input

and found a regular, oscillatory dynamics indicated by a stable

limit cycle (Figure 2G). To be convinced by this observation,

we varied the amplitude of a-factor, keeping the ethanol fixed

at different levels, and found that the transition into chaotic dy-

namics could be delayed by the addition of a second oscillatory

input (Figure 2H). Based on these observations, we concluded

that two independent, external signals possessed the ability to

increase the controllability of the internal oscillation by increasing

the entrainment properties, stabilizing the periods and delaying

the onset of chaos.

Phase-dependent amplitudes allow fine-tuned
regulation
We next aimed to test how two external inputs could be used to

tune the internal system. Since two inputs may combine in

different orders, it would be natural to ask whether the different

combinatorial patterns of inputs can tune the oscillatory dy-

namics. We combined the two oscillatory inputs with fixed pe-

riods and variable phases, which is described by a phase differ-

ence, r, ranging from 0 to 2p (Figure 3A). Here we observed that

the experimental traces showed different output dynamics

among these conditions (Figure 3B). This is visualized by calcu-

lating the average in each frame, revealing a larger amplitude for

the phase difference at 3p/2 compared to p/2, which is further

confirmed by performing a time-embedding algorithm on the

time series (Figure 3C).

We extracted and quantified the oscillation amplitude for all

well-behaved cells and revealed an interesting non-monotonic

pattern, which leads tomaximal amplitude at r= 3p/2 (Figure 3D,
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Figure 2. Oscillatory robustness with double stimuli

(A) Simulation of Arnold tongues, applying external oscillation in a-factor (left). Rotation number as function of external frequency, with single and double stimuli

(middle). Experimental results for all conditions (right), bars represent SEM of single cells.. The phase difference between a-factor and ethanol is 3p/2 in all double

input conditions.

(B) Ratio of synchronized cells for external period at 30 min (Simulation).

(C) Entrain index (EI) calculated for single and double stimuli (Experiments). Bars represent the standard deviation of three technical replicates.

(D) Standard deviation on periods in experiments (left, bars represent the SD of three technical replicates) and in simulations (right) as a function of external

amplitude (right).

(E) Average autocorrelation as function of time delay in experiments (left) and simulations (middle) shown as function of external amplitude (right).

(F) Simulated time trace (above) and the related phase space (below) for stimulation with only a-factor.

(G) Same as (F) but for stimulation with a-factor and ethanol.

(H) Average distance between two curves initially separated by 0.01% as a function of the external amplitude.
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gray curve). This was consistently reproduced by the mathemat-

ical model, and therefore we concluded that varying the phase

difference of the input oscillations could be a way to achieve

the fine-tune of oscillatory signaling dynamics (Figure 3D, cyan

curve). The result can intuitively be understood as follows:

when ethanol is added after a-factor, it represses the feedback
induction of IkB, causing insufficient re-sequestration of RelA

and correspondingly insufficient nuclear import of RelA during

the next period. Conversely, if ethanol is added ahead of a-fac-

tor, the two signals may work in coordination to decrease the

level of IkB, since the timescale of transcriptional regulation is

typically longer than post-translational regulation, in turn causing
Cell Systems 14, 382–391, May 17, 2023 385
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Figure 3. Tunability of RelA dynamics through phase variation

(A) Schematic figure of experimental design.

(B) Visualization of intensity for experimental cells with 8 phase differences. a-factor ahead of ethanol is designated as positive.

(C) Average time trajectory for cells with phase differences p/2 and 3p/2 (above). Phase space of the same data, visualized by applying time embedding (below).

We used 3 datapoints in the embedding process, which correspond to a time 3*(time between two data points).

(D) Variation of the oscillation amplitude as a function of phase difference for experiment (gray) and model (cyan). Bars represent the SEM.

(E) FFT spectrum for all traces with phase difference 2p.

(F) Average period for all traces calculated by FFT (circles) and peak finding (crosses).
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an increase in oscillation amplitude. In the mathematical model,

we could measure the phase difference between the RelA and

mRNA for IkB when the system is not perturbed by external

oscillatory signals. We hypothesized that the optimal phase dif-

ference between the external oscillatory signals should match

the normal phase difference in the entities they affected, and

here we found a good agreement (Magenta line Figure 3D).

This leads to a major insight in the systems of two external oscil-

latory signals. Since a limit cycle has at least two dimensions,

there will be a natural phase difference between the variables,

and in order to gain the optimal amplitude response, these

should match each other. This is further investigated in the

following section. Inspired by this, we also tried to let all param-

eters be affected by a minor oscillation, and here we found that a

random distribution of phase differences clearly enhances the

oscillation amplitude compared to the situation where all are in

the same phase (Figure S4).

To ensure that our observation was not due to a variation in

the period, we calculated the fast Fourier transform (FFT)

spectrum for all traces (Figure 3E) and obtained the frequency

with highest power spectrum. Furthermore, we also calculated

the periods based on each peak, and by grouping these, we

found a strong correspondence for all input phase differences

that showed entrainment and equal periods (Figure 3F). Thus,

one can alter the amplitude without affecting the frequency by

tuning the phase difference between two input oscillators,
386 Cell Systems 14, 382–391, May 17, 2023
something that is typically difficult for oscillatory signals in

biology.

Generalization to other models suggests universal
behavior

At this stage our work has revealed that two external oscillatory

signals could improve the entrainment and that varying their

phases would affect the amplitude of the internal oscillator. It

was thus crucial to test whether these observations could be

applied to a broader spectrum of oscillations, and therefore we

turned to mathematical modeling.

We decided to test these results on three different models

(note that all parameters can be found in Table S2).

Van der Pol oscillator30

p53 oscillator31

NF-kB oscillator11

We started out with the Van der Pol model, which is based on a

physical setup from electrical engineering (Figure 4A) but is

described mathematically similar to a harmonic oscillator, with

the addition of two nonlinear terms. For this model we used ad-

ditive stimulation, so that each of the two variables (x and y) had

an addition of an oscillation. Since x is ‘‘produced’’ by y, and y is

for small values of m ‘‘degraded’’ by x, we subtracted the oscilla-

tion in x, in order to mimic the addition of oscillators of the
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Figure 4. Coupled oscillator cooperativity revealed in generalized biological and nonbiological systems

(A) Schematic version of the electrically inspired Van der Pol network and the resulting equations.

(B) Devil’s staircase when varying u. Here 4 is 3p/2 as in the experimental setting.

(C) Amplitude of variable y when shifting the phase difference. Here u is constant at 1.

(D) Standard deviations in the periods of y, measured for the unperturbed system, the addition of g1 and g2 individually and combined. Hereu is constant at 1 and

4 is 3p/2.

(E) Schematic version of the p53 network and the resulting equations.

(F) Same as (B) but for the p53 network.

(G) Same as (C) but for the p53 network with u constant at 0.5.

(H) Same as (D) but for the p53 network with u constant at 0.5 and 4 is 3p/2.

(I) Schematic version of the simple NF-kB network and the resulting equations.

(J) Same as (B) but for the NF-kB network.

(K) Same as (C) but for the NF-kB network with u constant at 0.6.

(L) Same as (D) but for the NF-kB network with u constant at 0.6 and 4 is 3p/2.
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experimental setup. Here we found that the width of the devil’s

staircase did increase for the addition of two external oscillatory

signals in contrast to each of these individually (Figure 4B). Next,

we varied the phase difference, and again we found that the

amplitude did show a phase dependence and that the optimum

was predicted by the phase difference in the non-perturbed sys-

tem (Figure 4C). Finally, we added stochasticity to the system,

and since x and y are continuous variables that will become

negative in this system, we applied Langevin noise. This also

tested the robustness to different variants of added stochastic-

ity. Here we found that the addition of both oscillators individually

stabilized the system, but in combination they could reduce the

variance of the periods even further (Figure 4D).

We then turned to a more biologically inspired system, namely

the p53 network. This is an archetypical negative feedback loop
(Figure 4E), and we therefore expected that we would observe

some of the main features for two external oscillatory signals.

The oscillations were introduced as a parameter perturbation,

and we hypothesized that one external oscillatory signal should

indeed depend on whether it stimulated or inhibited the variable

to which it was added. In particular, this should result in a phase

response shifted exactly byp, and we incorporated this effect by

having a negative sine term on the positive part of the differential

equation forM (since this is a response of p53) and a positive sine

function on the negative part of the differential equation. These

were termed g�/+respectively. First, we found that the entrain-

ment plateaus of the devil’s staircase indeed increased, both

the 1/1 and the 2/1 plateau (Figure 4F). Next, we investigated

the effect on the amplitude of p53, and here we found similar

behavior, and in particular we confirmed our hypothesis that
Cell Systems 14, 382–391, May 17, 2023 387
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Figure 5. Downstreamstimulation following

perturbed RelA dynamics

(A) Schematic figure showing upstreamstimulation

and the effect on downstream genes.

(B) Intensity for gene expression for strong

(MFI > 2), mild (1 < MFI < 2), and no activation

(MFI < 1). MFI, mean fluorescence intensity. Phase

difference isp/2 (left) and 3p/2 (right), with a-factor

ahead of ethanol designated as positive.

(C) Concentration of downstream proteins from

stimulation with p/2 (cyan) and 3p/2 (magenta).

Data shown for simulations (dotted lines) and ex-

periments (full lines). Shaded regions represent

SEM.

(D) Distribution of oscillatory RelA behavior with p/

2 (gray) and 3p/2 (magenta) for the mean level (left)

and amplitudes (right). A Wilcoxon rank-sum test

was used to quantify the significance and a p

value < 0.001 ‘‘***’’ was designated as statistically

significant.

ll
Article
the effect of external oscillatory signals could be predicted by

their role in the negative feedback loop (Figure 4G). Finally, we

tested the variance of the periods, by simulating the stochastic

version of the system using Gillespie algorithm and did again

confirm that two external oscillatory signals could stabilize the

oscillations (Figure 4H). Finally, we repeated this for network of

NF-kB inspired by the simple mathematical model (Figure 4I).

Here we again confirmed all the above observations (Fig-

ure 4J–4L).

Taken together, this mathematical investigation suggests gen-

eral features for an oscillatory system that is perturbed by two

external oscillatory signals. Next, we wanted to investigate

whether the resulting dynamics of a TF could also stimulate the

downstream protein production.

Oscillation amplitudes determine downstream protein
production
Since oscillations in TFs have been accepted to be an integral

part of cell regulation,10,12 we investigated how the coupled

oscillatory stimulation of the TF could affect the downstream

protein production. Previous work has identified several roles

for oscillations in regulating gene transcription,32,33 but since

amplitude and frequency of TF oscillations are typically corre-

lated, the actual role of amplitudes has not been completely

understood.

Since our results showed amplitude variations for fixed fre-

quency, we investigated this by introducing an mCherry fluores-

cence reporter into the system (Figure 5A). We identified that

signals with phase difference r = 3p/2 induced a higher protein

level compared to conditions with r = p/2 (Figure 5B). We

measured the protein level as function of time and observed
388 Cell Systems 14, 382–391, May 17, 2023
more expression in the case of r = 3p/2,

agreeing well withmodel predictions (Fig-

ure 5C). Here we used the downstream

expression model previously used by

Heltberg et al.20,34 We computed the

mean level of RelA and found no signifi-

cant difference between the two condi-
tions (Figure 5D). This confirmed that the enhancement of protein

production was purely caused by the variation in amplitude. Pre-

vious setups have not been able to change the amplitude while

keeping the mean level and frequency constant, but with this

setup of two external oscillatory signals, we can confirm this hy-

pothesis. We also systematically explored which parameters

could result in enhancement of the downstream protein produc-

tionwhen stimulated in combinationwith a-factor (Figure S4) and

found that the output expression level experienced a crossover

effect when enhancing the external oscillations.

In total, our results demonstrate that oscillatory inputs

together can provide enhanced controllability on chronobiolog-

ical systems. This controllability is reflected in both the stability

level of single-cell oscillations and synchronization and the

tunability of oscillatory dynamics (Figure 6). These observations

can be generalized to guide the understanding of biological sys-

tems and may explain how cells can navigate in the presence of

multiple oscillatory signals that could be included by circadian

rhythms, cell cycle, or even downstream effects of TF oscilla-

tions on the timescale of hours. This work provides a plausible

explanation on how such signals can increase the regularity of

periodic signals.

DISCUSSION

In this work we have revealed how two external oscillatory sig-

nals can be used as a way to stabilize the oscillations of an inter-

nal oscillator. Furthermore, we have revealed that the phase dif-

ference between the two external oscillatory signals can be a

very important parameter, since it allows us to shift the amplitude

of the internal oscillator and therefore could be a control



Figure 6. Working model outlining how three oscilla-

tions interplay and perform new dynamic behaviors

Upper: The amplitude-only modulation of the internal oscil-

lator enabled by tuning the relative phase of two oscillatory

signals.

Lower: The stability of the entrainment was enhanced by

additional external oscillations.
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mechanism in chronobiology. We finally applied this change of

amplitude, to test how downstream proteins were affected by

this, and found that an increasing amplitude can enhance the

stimulation of downstream genes as predicted by themathemat-

ical model.

We introduced a mathematical model that simplifies previous

models of the RelA in the synthetic circuit. We applied the previ-

ously applied degradation terms of the protein complex involving

a Michaelis-Menten term.27,35 Here it is important to note that

this formulation delivers exact results when substrate concentra-

tions are much larger than the concentrations of enzymes that

catalyze the reactions.We believe that this is the relevant param-

eter range for the synthetic biological system we are investi-

gating, but using these terms in differential equations outside

of its domain of validity can affect the resulting dynamics and

thereby reduce the reliability of the model.36 Therefore, it would

be of interest in future work to further test the model in different

biological settings in order to enhance the fundamental under-

standing of its limits.

The idea that multiple oscillators can interact is old and was

originally pioneered by the work of Kuramoto,37 and aspects of

multiple interacting oscillators has typically been performed us-

ing versions of the Kuramoto model.38–40 In this work, we started

out from the theory of Arnold tongues so that one internal oscil-

lator depends on the external oscillatory signal but not the other

way around, and thereby they do not mutually influence each

other as happens in Kuramoto models. Furthermore, since the

Kuramoto model only describes the dynamics of a phase, it

does not model the amplitudes and potentially complex dy-

namics from the amplitudes that in a biological setting can be

crucial.
We have in this work studied the effect of phase

difference variation from two external oscillatory

signals on the amplitude of an internal oscillator.

We observed that for all models it resulted in an

optimum, and while for the experimentally studied

system we found that the change in amplitude

was on average zero, our simple models, intro-

duced as a generalization of the results, sug-

gested that the change in amplitude could often

have a greater mean level, thereby enhancing

the amplitude for almost all values of external

phases. Based on this, we believe there is an

interesting aspect in studying how the entrainment

plateau of the Arnold tongues might scale with the

phase difference between the two external sig-

nals. To study this, it is important to emphasize

that, for one external oscillatory signal, the locked

phase to the internal oscillator varies across the

Arnold tongue with exactly p.41 This means that
a change in the frequency of the external oscillatory signal af-

fects the relative phase to the internal oscillator in the locked

state, and this might affect the value of the optimal phase dif-

ference. Also, it is an open question how the two external oscil-

latory signals can enhance the entrainment plateau in the re-

gimes where none of the two signals individually can lead to

any entrainment. We believe that this is a very important ques-

tion to investigate in depth.

The enhanced entrainment allows more robust synchroniza-

tion and can be important in different biological settings. Our

work reveals that a simple addition of an external oscillator can

improve the synchronization and stabilize the system. Previously

it has been reported that the robustness of circadian entrainment

to daylight variability can be optimized by affecting the linear

response properties of an oscillator to vanishingly small light

input.42,43 Recent work has also revealed how clock-modulating

pharmaceutical drugs can affect and stabilize the circadian

rhythm,44 for instance by inhibition of casein kinase 145 or

affecting the level of photosensitivity.46 Furthermore, it has also

previously been studied that the effect of a positive feedback

loop in the protein network might stabilize the entrainment re-

gion24 as well as stochastic noise can enhance the entrainment

level for a population of cells.47 Thereby, it seems possible that

life applies a fascinating toolbox of approaches to enhance the

entrainment in different external settings.

Finally, with the method presented here it is possible to inde-

pendently address the influence caused by oscillation amplitude

on gene expression, thus providing accurate knowledge to the

field of dynamic control. We term the phenomenon of controlla-

bility by many oscillatory signals as coupled oscillator coopera-

tivity, since their independent contributions lead to a systemwith
Cell Systems 14, 382–391, May 17, 2023 389
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a higher degree of controllability than each of their individual

contributions. We believe that these results can guide and influ-

ence our understanding of oscillatory networks not only in the

field of gene regulation but in physics, biology, and chemistry

in general.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

DH5a Competent Cell Transgene CD201

Biological samples

Tris Amresco 0826

EDTA Amresco N470

Salmon Sperm DNA Invitrogen 15632011

Poly (ethylene glycol) Sigma-Aldrich P4338

a-factor GenScript RP01002

Doxycycline hyclate Sigma-Aldrich D9891

Concanavalin A Sigma-Aldrich C2010

Pronase Roche 11459643001

AarI restriction enzyme Thermo Fisher Scientific ER1581

Q5 High-Fidelity 23 Master Mix NEB M0492L

T4 DNA Ligase NEB M0202L

23 Taq PCR MasterMix TIANGEN KT201

Lethal Based Fast Cloning Kit TIANGEN VT205

TIANprep Midi Plasmid Kit TIANGEN DP106

Universal DNA Purification Kit TIANGEN DP214

Lithium acetate Sigma-Aldrich 517992

Deposited data

Raw and analyzed data Zenodo https://doi.org/10.5281/zenodo.7694120

Experimental models: Organisms/strains

scLW009: Yeast strain for double input

sensing. Genotype: CB008; pADH1-rtTA;

pTet07-3xFlag-RelA-GFP; pUra3-NES-

Cdc4; pNFkBcyc1_2(PspOMI

Mig1)-13flag-IkBa-ppDeg

This study N/A

scLW013: Yeast strain for FACS analysis

of the dual response promoter. Genotype:

CB008; pADH1-rtTA; pTet07-3xFlag-

RelA-GFP; pUra3-NES-Cdc4;

pNFkBcyc1_2(PspOMI Mig1)_mCherry;

pUra3-13Flag-IkBa-ppDeg

This study N/A

scJYX001: Yeast strain for downstream

protein production assay. Genotype:

CB008; pADH1-rtTA; pTet07-3xFlag-

RelA-GFP; pUra3-NES-Cdc4;

pNFkBcyc1_2(PspOMI Mig1)-13flag-IkBa-

ppDeg; pNFkB070-13Flag-mCherry

This study N/A

Recombinant DNA

pZBZ070 pNFkB070-13Flag-mCherry Zhang et al.27 N/A

pZBZ219 pNFkBcyc1_2(PspOMI

Mig1)-13flag-IkBa-ppDeg

Zhang et al.27 N/A

pLW012 pNFkBcyc1_2(PspOMI

Mig1)_mCherry

This study N/A

Software and algorithms

NIS-Elements Nikon N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

ImageJ NIH https://imagej.nih.gov/ij/

FlowJo FlowJo https://www.flowjo.com/

CellASIC ONIX2 FG Millipore Sigma N/A

MATLAB R2020a MathWorks https://www.mathworks.com/

Original Codes Zenodo 10.5281/zenodo.7694120

Other

CellASIC Y04D microfluidic plates EMD Millipore Y04C-02-5PK

CellASIC ONIX microfluidic platform EMD Millipore EV262
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ping Wei

(ping.wei@siat.ac.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data have been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in the key re-

sources table.

Original code has been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in the key

resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All yeast strains used in this study and the figures where each strain is used are listed in key resources table. Unless otherwise spec-

ified, the parent yeast strain for all our synthetic strains was CB008 (W303 MATa Dfar1 Dhis3 Dtrp1 Dleu2 Dura3). The deletion of

FAR1 gene allowed the cells to response to a-factor stimulationwithout arresting their cell cycle. The growth conditions are described

as below.

METHOD DETAILS

Plasmid and strain construction
The protocols for plasmids and strain construction were based on the work of Zhang et al.27 Briefly, all plasmids used in this study

were constructed by using standard protocols and were replicated in DH5a Escherichia coli. All constructs were confirmed by colony

PCR and sequencing. The double-input responding promoter was constructed by fusing 2 repeats of a stress response element and

4 repeats of the kB binding site in series, upstream to an engineered yeast CYC1 promoter. Yeast transformations were donewith the

standard LiAc method. The engineered genetic components were integrated in a single copy into the genome through a set of

integrating yeast vectors (pNH603, pNH604, pNH605, pNH606, pNH607). All yeast genomic integrations were confirmed by yeast

colony PCR.

Flow cytometry experiments
Analysis of the induced expression level of the hybrid promoter was performed by measuring fluorescent protein (mCherry) intensity

with a Becton Dickinson LSRII flow cytometer (high throughput sampler equipped). For all FACS experiments, single colony was

picked from YPD agar plates and triplicate cultures were grown in transparent synthetic complete dropout media at 30�C overnight

in a shaking incubator. The overnight cultures were diluted to an OD600 of 0.05 and grown to log phase (OD600 = 0.3–0.6). 100mL

aliquots was taken for flow cytometer measurements and 10,000 cells were counted for each reading. To survey the expression of

mCherry as a result of different input types, 10mM a-factor alone, 2.5% ethanol alone or a-factor combined with ethanol were added

into the wells and the florescence levels were measured after 2h. 5mg/mL doxycycline (Sigma-Aldrich) was added into each separate

sample throughout the culture for induction of NF-kB-GFP proteins.
Cell Systems 14, 382–391.e1–e5, May 17, 2023 e2
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Microfluidics and fluorescent microscopy
The microfluidic cell cultures were performed in Y04C yeast perfusion plates with an ONIX flow control system (Millipore). Single col-

ony was picked from YPD agar plates and cultures were grown in transparent synthetic complete dropout media at 30�C overnight in

a shaking incubator. The overnight cultures were diluted to an OD600 of 0.05 and grown to log phase (OD600 = 0.3–0.6). Before

loading cells, the flow chamber was pre-coated with synthetic complete dropout media. Once loaded, cells were flowed over by syn-

thetic complete dropout media for 30 min before applying 10mM a-factor (GenScript) stimulation which was dissolved in the media.

The periodic stimulation experiments of time variant inputs were achieved by precise control of media flow into the imaging chamber.

The stimulations were all in square-wave forms. Therefore, all conditions of combined periodic a-factor and ethanol can be consid-

ered as a repeat of 4 basic stages (a-factor present, ethanol present, both present, both absent) with different time depending on the

phase and period values. All programs were designed to expose activated wells within the microfluidic plate to 2 psi. Image acqui-

sition was performed with a TE2000-E automated inverted microscope (Nikon) with perfect focus system and the Andor Neo 5.5

sCMOS camera (ANDOR Technology Ltd). Images were acquired with a 1003 Plan Apo oil immersion lens (NA 1.40) with a time in-

terval of 3 min to trace NF-kB dynamics, and a time interval of 10 min to trace the downstream protein expression. Cells in the micro-

fluidic plate were maintained at 30�C.

Mathematical models
As for the modeling of RelA dynamics, our mathematical approach was inspired by the model published by Zhang et al.27 This model

includes 12 variables and our aim was to construct a mathematical model that did capture the core dynamics of RelA. We therefore

focused on the deactivation of RelA due to the interactions with IkB and based on this we formed a negative feedback loopwith only 4

variables, assuming a constant total level of RelA. Mathematically these are described as:

dRC

dt
= kdC � kaRCI+ keNkvRN � kiNRC +Vm

C

C+Km

(1)
dC

dt
= kaRCI � kdC � Vm

C

C+Km

(2)
dI

dt
= kdC � kaRCI � Vm

I

I+Km

+ ktrltmI (3)
dmI

dt
= kv

 
Vh

ðkvRNÞh
khh + ðkvRNÞh

� ketmI

!
(4)
RN = Rtot � Rc � C (5)

Here RC, C, I and mI denote for the concentration of cytoplasmic RelA, RelA-IkB complex, free IkB protein and mRNA of IkB,

respectively. Meanings of the parameters can be found in Table S1. In this we incorporate the effect of the a-factor in the constant

Km so this takes the form: Km / Km 1
1+ d1a

effect of Vh /Vh 1
1+ d3E

. These equations can schematically be visualized as the genetic

network shown in Fig. S2A. Based on the parameters used in the work of Zhang et al., we tested that this model did not show oscil-

lations in the absence of a-factor, but upon stimulation of this started to oscillate as is found in the experimental observations. This we

did recapture, where we find that the oscillations quickly settle into the stable limit cycle, seen both in the time trace (Fig. S2B, above)

and in the phase space spanned byRelA and IkB (Fig. S2B, below). Thenwe tested if thismodel resulted in oscillationswith a period of

approximately 24 min, and this was found by performing the FFT analysis, where the largest power was found for a period of 24.1min

(Fig. S2C). Finally, we simulated themodel with stochastic noise levels, by implementing theGillespie algorithm. Thiswe did first for an

oscillatory level of a-factor (Fig. S2D, left) and later for a constant level of a-factor and oscillatory level of ethanol (Fig. S2D, right).

These results captured the observed dynamics of RelA in this system, and therefore we conclude that we had successfully derived

a new model for the dynamics of RelA, that is greatly simplified compared to the previous model published by Zhang et al.

In order to model the downstream effects of the dynamics in RelA, we incorporated a previously published by Heltberg et al.34

dm

dt
= k1

Rn
N

Rn
N + kn2

� k3m (6)
dP

dt
= k4m � k5P (7)
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In this model, m is themRNA for a particular protein, denoted by P. The production is stimulated by the concentration in the nucleus

of RelA through a hill term. From this, the protein production is linearly dependent on the amount of mRNA. With this model, we can

describe different types of genes, depending on their affinity (k2) and cooperativity (n) to RelA.

Simulation of droplet growth and damage repair with the Gillespie algorithm
In the Gillespie algorithm we consider a volume V, with a spatially uniform mixture of N chemical species that can react through M

different reactions, R1. RM. The number of each of the species is denoted X1. XN. At t = 0, we thus consider the initial number of

molecules and calculates all reactions. The first goal is now to calculate the PDF, for the time until the next reaction occurs.

We consider the probability that the next reaction is of type ε, and it occurs in the time interval [t + t, t + t + dt]. We therefore

consider:

Pðt; εÞdt = PnotðtÞ $ Rεdt
Therefore, we want to describe Pnot(t) in terms of the rates. Since at each timestep ε, the probability for no reaction to appear is:

PnotðdtÞ = 1 �
XM
i = 1

Ridt

We can thus define t h n$dt and then:

PnotðtÞ = PnotðdtÞn =

 
1 �

XM
iz1

Ridt

!n

ze�Rtott

We can thus calculate the time until the next event as

Tevent =
� lnðRÞP

mi

whereR is a randomnumber, uniformly distributed between 0 and 1. Then, in order to findwhich of the possible events take place, we

assign a number to each reaction rate and choose the reaction, m, that satisfies:

Pm� 1

i = 1

mi

PN
i = 1

mi

%R<

Pm
i = 1

mi

PN
i = 1

mi

After each event we update all the rates, and then repeat the steps.

In the system of ordinary differential equations, we therefore coarse-grain the system and turn each term into a rate that can

either add or remove a single molecule from the total number of molecules. With this algorithm one can therefore simulate the

system, based on single proteins dynamics, in the presence of intrinsic noise. We note that since our equations have been derived

in the quasi-steady state approximation, the direct application of the Gillespie algorithm can lead to inaccurate estimation of the

noise level, in general to an underestimation of stochasticity compared to the full system.48,49 However, this potential imprecision

does not affect the main results, since the stochasticity is mainly responsible for generating a standard deviation in the periodicity

and we are interested in studying the relative effect of the addition of two external oscillatory signals. If we claimed that the noise

we generate in the system correspond directly to the fluctuations observed in the experiments, these imprecisions could have

caused significant limitations to the results, but since we study a relative effect, using the same algorithm, we argue that these

effects will not significantly alter the results of this work. Finally, we also note that the results for stochastic noise in the Van

der Pol oscillator in Figure 4, is generated using Langevin simulations, which is exact for this system. The fact that we obtain

similar results is also reassuring that the approximations using Gillespie algorithm for an approximated system, does not change

the main conclusion of the stochastic results.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image processing
We monitored the NF-kB dynamic behaviors of our synthetic signaling circuit by live single-cell fluorescent microscopy. Based on

bright field images, cell segmentation and tracing were done automatically by customized MATLAB software cellseg. The back-

grounds of all fluorescence images were first subtracted by ImageJ (1.49v, Java1.6.024, 64 bit). The single-cell dynamics data

were then extracted from these processed time-lapsed fluorescence images also by cellseg. Within the boundary of one yeast

cell, we quantified the average intensity of the brightest 10 3 10 NF-kB pixels as nuclear NF-kB concentration, and the average in-

tensity of all pixels as total NF-kB concentration. We used the nuclear to total ratio of NF-kB concentration as nuclear NF-kB index

which was denoted as Nuc.NF-kB. The time series of single-cell Nuc.NF-kB was acquired automatically by customized MATLAB

programs. Each single-cell trajectory was smoothed by a Savitzky-Golay filter of degree 2 before further analysis.
Cell Systems 14, 382–391.e1–e5, May 17, 2023 e4
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Analysis of single-cell NF-kB dynamics
For the single-cell nuclear import dynamics data, we did a two-step analysis to extract parameters to describe the response. First, we

took moving average of the data with a step length of 5 to smooth out impulse response. Oscillatory properties including period T,

peak amplitude A, peak phase c were quantified by a custom-made MATLAB program for peak detection in single-cell Nuc.NF-kB

trajectories. Briefly, all the local maximum and local minimum in the trajectories were first picked out.We then calculate the difference

between every adjacent maximum-minimum pairs (A), as well as the time interval between two adjacent minima (T). Thus, each peak

can be characterized by the aforementioned parameters, and corresponds to a certain point in the 2D parameter space. Since the

primary data contains considerable level of noises, which were caused by both technical and biological reasons, we first took the no-

input condition (only doxycycline present) as a negative control, and plotted the peaks on the parameter space with their A and T

values. A boundary was drawn to gate these points, and for the rest of experiments, all peaks inside this gate were considered as

experimental noise and omitted. Only the remaining peaks were considered as valid and used for further analysis. The peak phase

is defined by the time difference between the peaking time point and the most recent time point when media with a-factor began to

flow into the chamber, this value was further divided by the input period and mapped to the range of 0–2p. The EI was defined as

follows:

EI = 1 �
� Pn

i = 1

Pi ln Pi

lnN

We calculated this index by first divide all the peak phases into 9 bins (N), and Pi denotes for the frequency of phases in each bin. A

uniform distribution would result in EI = 0, while EI = 1 can only be achieved when all phases are equal.

To calculate the oscillatory period of the RelA dynamics we applied two methods: FFT and a standard peak finding algorithm. For

the FFT, we applied the algorithm adopted into MATLAB, and found the largest value as a representation of the oscillation frequency.

To remove underlying effects, we denoised the data, by subtracting a third order polynomial, fitted to the raw data.

Statistical analysis
Statistical parameters were reported in the figures and figure legends. All statistical analysis was performed in MATLAB R2020a

(MathWorks).
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