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a b s t r a c t

We study an individual based model describing competition in space between two different alleles.
Although themodel is similar in spirit to classicmodels of spatial population genetics such as the stepping
stone model, here however space is continuous and the total density of competing individuals fluctuates
due to demographic stochasticity. Bymeans of analytics andnumerical simulations,we study the behavior
of fixation probabilities, fixation times, and heterozygosity, in a neutral setting and in caseswhere the two
species can compete or cooperate. By concluding with examples in which individuals are transported by
fluid flows, we argue that this model is a natural choice to describe competition in marine environments.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

A mathematical analysis of the fate of mutations in spatially
extended populations has been a classic topic of research in
population genetics for at least seventy years (Fisher, 1937;
Kolmogorov et al., 1937; Wright, 1943; Kimura, 1953; Kimura and
Weiss, 1964). This interest has nevertheless increased recently,
as improved sequencing technology allows direct observations of
structured genetic diversity in space for many different species.

On the theoretical side, a landmark in this research has been
the stepping stone model (SSM) proposed by Kimura (Kimura,
1953; Kimura and Weiss, 1964). This model considers m islands
(or ‘‘demes’’), each having a fixed local population size Nl and
arranged along a line or in a regular lattice in more than one
spatial dimension. The population on each island is made up of
several species (or alleles) described by, e.g., a Wright–Fisher or
Moran process. Spatial migration is modeled by assuming that
neighboring islands exchange individuals at some given rate.

It is often convenient to describe the state of the system in terms
of the macroscopic density of individuals f (x, t) carrying one of
the two alleles. In the continuum limit, the macroscopic equation
governing the time evolution of such density reads

∂t f (x, t) = D∇
2f (x, t) + sf (1 − f ) +


f (1 − f )

N
ξ(x, t) (1)
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whereN = Nl/ad, a is the lattice spacing between twoneighboring
islands,1 d the spatial dimension, and ξ(x, t) is a Gaussian stochas-
tic process, delta correlated in space and time, ⟨ξ(x, t)ξ(x′, t ′)⟩ =

δ(x − x′)δ(t − t ′). Here, f = 1 means an island exclusively popu-
lated with one allele and f = 0 means exclusive occupation by the
alternative genotype. The nonlinearity multiplying the noise re-
quires an interpretation in terms of the Ito calculus (Korolev et al.,
2009).

However, in many realistic cases, the mechanism of species
movement and range expansion is more complicated than a
simple diffusion process. For example, recent observations on crab
colonies along the east coast of north America (Pringle et al.,
2011) demonstrated how invasion of one allele is controlled by the
asymmetrical advection of larvae from north to south by a coastal
current. The interplay between population genetics and individual
movement (and transport) can be even more complex in the open
ocean, where individuals belonging to different planktonic and
bacterial species are stirred and mixed by chaotic flows (Tel et al.,
2005; Neufeld and Hernandez-Garcia, 2009; D’Ovidio et al., 2010;
Perlekar et al., 2010; Benzi et al., 2012). Of particular interest is the
population genetics of photosynthetic organisms that control their
buoyancy to remain near the surface of an aquatic environment.

1 It is convenient to distinguish between Nl (the population inside a single
discrete deme of the SSM) and N (the corresponding total density of individuals).
The former is the quantity used to define themodel, while the latter determines the
amplitude of the noise due to number fluctuations in the continuum formulation of
Eq. (1). Notice that Nl is a non-dimensional quantity, while N is a density, carrying
units of an inverse length to the power d in d dimensions.
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In this case, the advecting flows are effectively compressible,
leading to population densities that overshoot the normal carrying
capacity (Perlekar et al., 2010; Pigolotti et al., 2012).

While the SSM can be generalized to include a constant
asymmetric diffusion (see i.e. Pringle et al., 2011), the extension to
more complex fluid environments is more subtle. One of the main
underlying assumptions of the SSM — a local population size that
does not vary either in time or in space — is quickly violated in
aquatic environments where flows create inhomogeneities in the
total density of individuals. Individual-based competition models
without strict population size conservation have already been
studied, for example allowing for the possibility of empty sites
(Neuhauser, 1991; O’Malley et al., 2006b,a; Allstadt et al., 2009;
Cencini et al., 2012). However, when flows are introduced, it is also
less appropriate to discretize the system in space into demes with
a fixed size. In compressible turbulence, for example, the density
of individuals can be inhomogeneous on a wide variety of spatial
scales (Perlekar et al., 2010), even inside a single deme (which in
the SSM is assumed to be well-mixed).

In this paper, with the goal of describing population genetics
in aquatic environments in mind, we introduce a new model in
which individuals carrying two different alleles A and B live in a
continuous space. Their individual densities are allowed to grow
and fluctuate, including the important possibility of overshooting
the natural carrying capacity. Indeed, note that naively assuming
compressible flows that make f > 1 would lead to an imaginary
noise amplitude in Eq. (1)! Themodelwe study is similar in spirit to
the stochastic logistic equation (Lawet al., 2003;Hernandez-Garcia
and Lopez, 2004; Birch and Young, 2006). However, in this study
we focus on competition and cooperation of two species, rather
than the stochastic growth of a single population. The second
difference is that previous studies focused on patterns formed by
the non-local nature of competition (Hernandez-Garcia and Lopez,
2004; Birch and Young, 2006). In this paper, we mostly focus on
the parameter range in which such patterns are not formed and a
weak noise description in the spirit of Eq. (1) is appropriate.

The phenomenology of such a model, even in the presence of
very simple flows, is very rich due to the interplay between pop-
ulation dynamics and fluid advection (see Pigolotti et al., 2012, for
some of the consequences in one dimension). For this reason, we
devote a large portion of this work to the case in which the flow is
absent and individuals move in space in a diffusive way. This sim-
ple case allows for a systematic comparisonwith the known results
of the SSM. In particular, we show that there exists a parameter
range where the predictions of our model are consistent with Eq.
(1) and its generalization to include competitive exclusion andmu-
tualism (Korolev and Nelson, 2011). In simple cases, such as when
the two species are neutral variants of each other, this correspon-
dence can be shown analytically. Inmore complex cases, the corre-
spondence is explored bymeans of numerical simulations. The last
part our paper discusses two distinct examples for compressible
fluid transport of individuals that grow and compete, illustrating
situations that cannot be treated within the context of the SSM.

In Section 2, we sketch the model of growth, competition and
cooperation studied here, which leads to the two-species model
for allele densities cA(x, t) and cB(x, t) summarized in Eq. (3). We
focus on three interesting cases: (1) strictly neutral competitions,
(2) a reproductive advantage of one species over the other and (3)
mutualistic situations where cooperation plays a role. Section 3
discusses the behavior of our model in the ‘‘zero-dimensional’’
well-mixed case in which the population is not structured in
space, which allows us to determine limits such that standard
Wright–Fisher and Moran results for population genetics can be
recovered from our more general model. We then explore in Sec-
tion 4 the long-time behavior of ourmodel without fluid advection
in one and two spatial dimensions. Examples of the behavior of the
model in the presence of fluid advection are discussed in Section 5.
Concluding remarks are presented in Section 6. A detailed deriva-
tion of our model equation is contained in Appendix A. Appendix B
shows how conventional stepping stone model results can be re-
covered in certain limits. Appendix C describes a limit in which a
mutualistic generalization of the famous Kimura formula for fixa-
tion probabilities (Crow and Kimura, 1970) is possible.

2. Model

Many widely studied models of population genetics in space,
the most notable example being the stepping stone model,
consider individuals carrying different alleles that occupy sites
(also called ‘‘demes’’) on a lattice. It is commonly assumed that each
site is always saturated up to its carrying capacity, so that, at each
deme, the local population size Nl is constant during the dynamics.

We relax these assumptions by considering discrete individuals
Xi carrying different alleles (denoted by the index i) and diffusing in
continuous space (with a diffusion constant D, for simplicity equal
for all individuals). Further, we implement population dynamics
assuming that individuals carrying allele i reproduce at rate µi

and die with rates λ̃ij proportional to the number of individuals
carrying a (possibly) different allele j in a region of spatial size
δ centered on their position. For example, in one dimension
(1d), δ will be an interaction length, while in 2d it will be an
interaction area. In a language borrowed from chemical kinetics,
the ‘‘reactions’’ we consider are:

Xi
µi
−→ 2Xi (reproduction)

Xi + Xj
λ̃ij
−→ Xi (death by competition). (2)

In the case of a single species, this set of reactions is commonly
referred to as the birth-coagulation process (Doering et al., 2003).
In this paper, we will focus on the case of two alleles, i = A, B.
Other reactions could be added to the ones above, for example
the possibility that an individual can die even in absence of
competition, Xi → ∅, or reactions implementing more complex
biological interactions. We will limit ourselves to the biological
dynamics embodied in (2), which contains minimal ingredients
necessary to generate most of the main features present in more
complicated models. Notice that, in contrast to models such as the
Moran process, the density of individuals is not fixed but fluctuates
both locally and globally.

In order to make the presentation more compact, we start by
discussing the spatially explicit version of the model and then dis-
cuss the globally well-mixed version as a limiting case. We con-
sider the number densities nA(x, t) and nB(x, t), that integrated
over a region of space yield the (stochastic) number of individu-
als of species A or B in that region. We will study cases in which
the number densities are typically large, and consequently define
concentrations cA(x, t) = nA(x, t)/N and cB(x, t) = nB(x, t)/N via
a constant parameter N , assumed to be of the same order of mag-
nitude of nA and nB. This means that, by definition, a constant den-
sity c = 1 corresponds to a uniform distribution of N individuals
in a segment of length 1 in one dimension. More generally, in d di-
mensions, a concentration c(x, t) = 1 will correspond to a total
number of particles N = NLd in a system of linear size L. With this
choice, the macroscopic equations describing the dynamics of the
concentrations cA, cB of species A and B read:
∂

∂t
cA = D∇

2cA + cA(µA − λAAcA − λABcB)

+


cA(µA + λAAcA + λABcB)

N
ξ

∂

∂t
cB = D∇

2cB + cB(µB − λBAcA − λBBcB)

+


cB(µB + λBAcA + λBBcB)

N
ξ ′ (3)
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where ξ(x, t) and ξ ′(x, t) are independent Gaussian random
variables, delta-correlated in space and time, ⟨ξ(x, t)ξ(x, t ′)⟩ =

δ(t − t ′)δ(x − x′) that should be interpreted according to the Ito
prescription (Korolev et al., 2009). Themacroscopic binary reaction
rates λij multiplying the quadratic terms in the concentrations are
defined in terms of the microscopic binary rates λ̃ij as λij = Nδλ̃ij,
where δ is the interaction domain defined above. In the following,
wewill focus on cases inwhich theµi’s and the λij’s are of the same
order ofmagnitude, so that typical values of the total concentration
cA+cB are order 1. Under these assumptions, it is useful to note that
the quantity 2N−1

= 2δ/(λ̃ij/λij) plays here the same role of the
genetic diffusion constant in the stepping stone model. In partic-
ular, δ is analogous of the lattice spacing, while the denominator
on the right hand side can be thought as the carrying capacity of
each deme. A detailed derivation of Eqs. (3), together with a dis-
cussion of its limits of validity, is presented in Appendix A. If the
species densities are well-mixed and we neglect stochastic num-
ber fluctuations, the deterministic dynamics embodied in Eqs. (3)
is a familiar model of growth, selection and competition in asex-
ual populations (Smith, 1998). The four different types of dynamics
that emerge depending on the values of theλij’s are reviewed at the
end of this section. Our aim here is to understand the rich behav-
iors possible when both spatial variations and number fluctuations
are allowed.

To limit the parameter space, we will consider the following
three biologically relevant choices for the reaction rates:

1. Neutral theory
This choice is appropriate when the two biological species

(or strains, ormutants andwild type alleles) are neutral variants
of each other. This means that their growth rates and carrying
capacities are the same; further, competitionwith an individual
belonging to the same species is the same as competition with
an individual of the other species. In formulas, for Eq. (3), a
convenient neutral parameter choice is: µA = µB = λAA =

λAB = λBA = λBB = µ.
2. Reproductive advantage

In this setting, we depart from neutrality by allowing for a
different reproduction rate of species A: µA = µ(1 + s) while
all the other rates (including the λij) are equal to µ as in the
neutral case. We will study this case to explore the effect of a
selective advantage of one of the two species on the dynamics
of the model. In particular, s > 0 implies a selective advantage
forA and s < 0 is a disadvantage. Clearly, neutrality is recovered
for s = 0.

3. Mutualistic setting
A simple way to study mutualistic interactions is to assume

that the only departure from neutrality occurs in the intensity
of competition between individuals carrying different alleles. In
formulas, we have µA = µB = µ, λAA = µ, λBB = µ, λAB =

µ(1−ϵA), and λBA = µ(1−ϵB). The correspondingmacroscopic
equations are well defined only for ϵA, ϵB ≤ 1, so that the com-
petition rates λij are non-negative. We will focus mostly on the
case ϵA > 0 and ϵB > 0. In this regime, spatial number fluctu-
ations play an important role (Korolev and Nelson, 2011) and
competition between species is reduced (we will interpret this
reduction as the effect ofmutualistic interactions). Other choice
could also be of interest, for example ϵA = 0 and ϵB < 0 is
another way of allowing a competitive advantage of A over B
(in this case, via enhanced competition rather than via a larger
reproduction rate). We note finally that ϵA < 0, ϵB < 0 cor-
responds to a competitive exclusion model, arising for exam-
ple when the competing variants secret toxins that inhibit the
growth of their competitors.
In the following, wewillmeasure time in units of a generation time
so that µ = 1. A convenient choice of the interaction domain is
of the order of the average spacing among individuals, δ = 1/N ,
so that λij = λ̃ij. This choice also implies Nl = 1. For simplicity,
we will present most of the spatial results for the one-dimensional
version of the model, introducing two-dimensional results only as
appropriate. In the spatially explicit case, the system is a segment
of length Lwith periodic boundary conditions.Wewill present also
two dimensional simulations, where the system is a L × L square,
also with periodic boundary conditions.

An even simpler setting we will study to make contact with
traditional Moran or Fisher–Wright models is the case in which
the population can be assumed to be well-mixed, or ‘‘zero-
dimensional’’. This limiting case can be easily obtained from the
one dimensional case by setting δ = L = 1 and ignoring spatial dif-
fusion, since each individual now interacts with every other indi-
vidual in the population. As a consequence of this choice, one now
has N = λij/λ̃ij. In this case, the spatial position of the individuals
is irrelevant for biological interactions. Clearly, in this special case,
the individual density is equivalent to the total number of individ-
uals N ≡ Nl ≡ N .

Both in the spatial and well-mixed cases, we will compare ana-
lytical predictions obtained from the continuum theory of Eqs. (3)
with simulations of the individual-based dynamics encoded in the
reactions of Eqs. (2). Details on the numerical scheme implemented
for the individual-based model are in Appendix A and in Perlekar
et al. (2011).

In Fig. 1, we anticipate some of the results to illustrate
the qualitative behaviors that can be explored with the three
aforementioned parameter choices in one spatial dimension. In
the left panel, the two alleles are neutral. Despite fluctuation of
the total density, the phenomenology is similar to that of the
1d stepping stone model: as time progresses, the two alleles
are demixed and fixation occurs by coalescence of the domain
boundaries, which can be regarded as annihilating random walks.
In the central panel, species A (in red) initially constitutes only 10%
of the total population; however, it has a reproductive advantage
over species B. Despite the discreteness of individuals and density
fluctuations, there are two noisy Fisher waves by which the initial
minority can take over the entire population. Finally, in the right
panel we simulate a case in which mixing of the two species is
promoted by reducing competition among different alleles. In this
case, we expect the two species to remainmixed indefinitely in the
limit of large system size.

In the remainder of this section, we introduce some of the
concepts we want to investigate in the simple case of a well mixed
system without number fluctuations. Intuition about mutualistic
behavior (and its opposite, competitive exclusion (Frey, 2010)) can
be obtained by neglecting both the spatial degrees of freedom and
the noise terms in Eq. (3). In this simple case, the dynamics reduces
to (Korolev et al., 2012)

d
dt

nA(t) = nA(t)

µA − λ̃AAnA(t) − λ̃ABnB(t)


d
dt

nB(t) = nB(t)

µB − λ̃BAnA(t) − λ̃BBnB(t)


. (4)

Note that the intrinsic carrying capacities (i.e., the steady state
densities of one species when the other is absent) for this model
are NA = µA/λ̃AA and NB = µB/λ̃BB. These quantities (we always
choose parameters such that NA ≈ NB) play the role of the param-
eter N that controls stochastic number fluctuations in the general
case of Eq. (3). As mentioned above for case 3, an especially in-
teresting situation arises when (1) the two species grow at iden-
tical rates when the numbers are dilute, so that µA = µB = µ;
(2) also the self-competition terms are also identical, λ̃AA = λ̃BB;
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Fig. 1. Three illustrative parameters choices in the one dimensional version of the model. In all panels D = 10−4 and N = 100. The left panel corresponds to the neutral
choice in which all rates are set to one and initially the two species are randomly distributed with equal concentrations. In the center panel, all parameters are set to one
except the reproduction rate of allele A (in red) which reproduces at a rate (1 + s) with a large selective advantage s = 0.3; in this case, the initial fraction of A is 0.1. In
the right panel, competition among species is reduced by taking ϵA = ϵB = 0.7 to enhance mutualism; in this case the two species are randomly distributed with equal
concentrations in the initial condition. In this case, mutualism insures that the species (or alleles) remain spatially inhomogeneous up to very long times. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Deterministic dynamics of the mutualistic model in zero dimensions without number fluctuations. In (a), the interactions ϵA > 0 and ϵB > 0 favor cooperation, and
there is a stable fixed point (c∗

A , c
∗

B ) with both densities nonzero. In (b), the organisms secrete toxins that impede each others growth, so ϵA < 0 and ϵB < 0 and the fixed
point (c∗

A , c
∗

B ) is unstable.
and (3) the effect of cooperation or competitive exclusion is con-
tained exclusively in the cross-interactions, λ̃AB ≡ λ̃AA(1− ϵA) and
λBA ≡ λ̃BB(1− ϵB). With this choice, and rescaling the time unit by
a factor µ−1, the equations for the concentrations cA = nA/NA and
cB = nB/nB corresponding to system (4) read
d
dt

cA = cA [1 − cA − cB + ϵAcB]

d
dt

cB = cB [1 − cA − cB + ϵBcA] . (5)

The remaining two parameters ϵA and ϵB control the competi-
tion under ‘‘crowded conditions’’, such that the populations have
grown up to satisfy cA + cB ≈ 1. If the two variants are nearly
identical, it is reasonable to assume |ϵA|, |ϵB| ≪ 1. As illustrated
in Fig. 2, the deterministic system (5) always has fixed points at
(0, 0), (0, 1), and (1, 0). Depending on the parameters, there can
also be a fourth fixed point (Smith, 1998) located at

(c∗

A , c
∗

B ) =
(ϵA, ϵB)

ϵA + ϵB − ϵAϵB
. (6)

When cooperation is favored (ϵA, ϵB > 0, Fig. 2(a)) this fixed point
is stable, and leads to a steady state population fraction f ∗ of A
individuals, 0 < f ∗ < 1, with

f ∗
≡

c∗

A

c∗

A + c∗

B
=

ϵA

ϵA + ϵB
. (7)

When competitive exclusion (Frey, 2010) is favored (ϵA, ϵB < 0,
Fig. 2(b)) this fixed point is unstable to the attracting fixed points
(1, 0) or (0, 1), depending on the initial conditions. Genetic demix-
ing, present in strictly neutral systems only due to stochastic num-
ber fluctuations, is enhanced in this case. Finally, when ϵA and ϵB
have opposite signs, the fixed point (6) lies outside the biologically
relevant domain, and one of the two fixed points (1, 0) or (0, 1) be-
comes globally stable, corresponding to a competitive advantage
for one species or the other when the population is dense.

Suppose we now introduce spatial migration and number fluc-
tuations, to recover the full model defined by Eq. (3). When might
we expect fixation probabilities, the global heterozygosity, corre-
lation functions etc. to reduce to the familiar results for conven-
tional spatial stepping stone-type models with strictly conserved
population sizes in every deme? A particularly simple case,
corresponding to the selectively neutral limit ϵA = ϵB = 0, is il-
lustrated for a well-mixed system in Fig. 3(a) below: the popula-
tion grows up and eventually wanders along the line cA + cB = 1,
until it reaches the absorbing states at (1, 0) or (0, 1). A more gen-
eral situation is ϵA + ϵB = 0, in which case one variant typically
has a simple selective advantage along an invariant subspace given
by the line cA + cB = 1. If the fluctuations transverse to this line
are small (corresponding to a large population size), then the usual
formulas for fixation probabilities hold, as we show later in this
paper. In more general situations, however, it is no longer exactly
true that the population localizes at long times near the straight
line cA + cB = 1. Indeed, we have from Eq. (6) that

c∗

A + c∗

B =
ϵA + ϵB

ϵA + ϵB − ϵAϵB
, (8)
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Fig. 3. Neutral dynamics in the well-mixed case. (a) Example of a trajectory in the (cA, cB) plane with N = 500. The initial condition is nA = nB = 20, i.e. a small fraction
of a typical long time carrying capacity. (b) Decay of the average heterozygosity ⟨H(t)⟩ for different values of N . Curves are obtained from simulations of the particle model;
each curve is an average over 104 realizations and the error bars are smaller than the size of the lines. (Inset) Same curves plotted as a function of t/N . Note the data collapse.
which exceeds 1 along the outwardly bowed incoming trajectories
in Fig. 2(a), and is less than 1 for the outgoing inwardly curved tra-
jectory in Fig. 2(b). However, we do have the approximate equality,
c∗

A + c∗

B ≈ 1, provided |ϵA + ϵB| ≪ |ϵAϵB| in Eq. (8). In this limit,
a combination of numerical and analytic arguments presented in
this paper show that formulas recently derived for mutualistic and
competitive exclusion stepping stonemodels (Korolev and Nelson,
2011) apply to the current model with demographic fluctuations
as well, again provided that the overall population size N is suffi-
ciently large.

What happens if µA and µB are unequal, but ϵA and ϵB remain
small? In this case, the population proportions will certainly
change as an initially small population like that in Fig. 3(a) grows
to approach the line cA+cB ≈ 1. However, once this line is reached,
the subsequent time evolution should again be given by stepping
stone model results.

3. Well-mixed case with number fluctuations

In this section, we present the results in the simple well-mixed
(or ‘‘zero-dimensional’’) version of the model. Thus, we keep the
number fluctuations in Eq. (3), but neglect spatial variations in the
allele concentrations.

3.1. Neutral theory

As previously discussed, it is useful to describe the dynamics
of the neutral version of the model in the cA vs. cB plane, as
depicted in Fig. 3(left). Starting from a dilute initial condition, the
system evolves rapidly towards to the intrinsic overall carrying
capacity given by cA + cB = 1. The dynamics is then localized near
this line (with fluctuations), until one of the two species goes
extinct. This behavior contrasts with the Moran process in which
the dynamics is rigidly confined to the cA + cB = 1 line, since no
fluctuations of the total density are allowed. To determine when
these fluctuations are small, first note from Eq. (3) that in the
neutral case the total concentration cT = cA + cB obeys a closed
equation:

d
dt

cT = µcT (1 − cT ) +


µcT (1 + cT )

N
ξc, (9)

decoupled from the fraction of species A, f = cA/(cA + cB), where
the noise term ξc satisfies ⟨ξc(t)ξc(t ′)⟩ = δ(t − t ′). When N is
large, the stationary solution, beside the solution P(c) = δ(c)
corresponding to global extinction thatwill eventually be reached2

on long times of order exp(N), is approximately a Gaussian with
average ⟨cT ⟩ = 1 and variance ⟨c2T ⟩ − ⟨cT ⟩2 = N−1, which is small
when N is large.

We now describe the dynamics of the relative fraction f of
individuals carrying allele A, f = cA/(cA + cB). The equation for
f (t), derived in Appendix B, reads

d
dt

f =


µf (1 − f )

1 + cT
NcT

ξf (10)

where ξf (t) also satisfies ⟨ξf (t)ξf (t ′)⟩ = δ(t − t ′), and further we
have ⟨ξf (t)ξc(t ′)⟩ = 0. The above equation allows us to analyze the
global heterozygosity, which quantifies the loss of diversity as time
evolves and is defined as the probability H(t) = 2⟨f (1 − f )⟩ that
two randomly chosen individuals in the population carry different
alleles.

As mentioned above, the equation for cT is independent of f
in the neutral case studied here. As a result, one can factorize the
average over cT and f in the equation for H(t):

d
dt

H(t) = −
µ

N


f (1 − f )

1 + cT
cT


= −

µ

N
⟨f (1 − f )⟩


1 + cT
cT


= −

2µ
N

H(t) + O


1
N2


. (11)

Neglecting the correction of order N−2, we recover for our
model with density fluctuations the closed equation for H(t) for
Fisher–Wright and Moran-type models with a fixed population
size derived by Kimura, which states that the total heterozygosity
decays exponentially in well mixed neutral systems (Crow and
Kimura, 1970):

⟨H(t)⟩ = H(0) exp(−2µt/N). (12)

Fig. 3(b) confirms this exponential behavior in simulations of
the model.

2 Notice that, as in the particle model for simplicity death is implemented only
via binary reactions (see Eq. (2)), the state of global extinction is not accessible in the
particle model. Such a discrepancy with the macroscopic equation could be easily
removed by allowing for death even in absence of competition, i.e. the reaction
Xi → ∅.
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Fig. 4. Fixation in the well-mixed case with reproductive advantage. Probability
of fixation for different values of s and N (listed in the figure) for the well-mixed
version of the particle model, compared with the prediction of Eq. (14). The initial
fraction of individuals belonging to species A is f0 = 0.1, with cT = 1 initially. The
inset shows that all curves collapse when plotted as a function of sN . These curves
are again averages over 104 independent realizations.

3.2. Reproductive advantage

In a well-mixed finite population and in absence of mutations,
diversity will be lost and only one of the two alleles will survive
after a long enough time. We now study the probability of allele A
to fixate in a well-mixed population of size N ≫ 1, in the case in
which the allele confers a small reproductive advantage s ≪ 1. In
the same spirit as the previous section, we can derive the equation
for the relative fraction f = cA/(cA + cB) (see Appendix B). Upon
neglecting terms proportional to s/N , the equation in this case
reads:

d
dt

f = µsf (1 − f ) +


µf (1 − f )

1 + cT
NcT

ξ . (13)

As in Eq. (10), this result must be supplemented with the
equation for the total concentration cT = cA + cB. Although in the
non-neutral case the equation for cT is no longer independent of f ,
one can show that the averages over cT and f factorize up to terms
of order s/N or higher that can be safely neglected for s ≪ 1 and
N ≫ 1.

These observations allows us to recover the formula for the
probability of fixation of allele A (Crow and Kimura, 1970).

pfix =
1 − e−sNf0

1 − e−sN
(14)

where f0 is the fraction of individuals carrying allele A once trajec-
tories like that in Fig. 3(a) reach the line cA + cB = 1. This result
is again similar to Fisher–Wright or Moran models with a strictly
fixed total population size. Eq. (14) is tested with simulations in
Fig. 4.

3.3. Mutualism

In the well-mixed limit of the mutualistic model, fixation
always occurs at (cA, cB) = (1, 0) or (0, 1) after a long enough time.
However, when the total number of individuals is large, this time
grows exponentially with N and can easily become inaccessible
to experiments (and simulations). As detailed in Appendix C,
the quasi-stationary solution where the two cooperating species
coexist for ϵA, ϵB > 0 can be seen as a state confined by two
potential barriers, one inhibiting species A to fixate and the other
inhibiting species B to fixate. When N is large, it will be extremely
Fig. 5. Finite-time coexistence in the well-mixed mutualistic model. Average
heterozygosity in the (ϵA, ϵB) plane, with N = 500, in d = 0 dimensions, i.e. for
the well-mixed model. Simulations are run until a time t = 5000. For each pair of
(ϵA, ϵB) values, after a transient, the heterozygosity approaches a quasi-stationary
value. The green line limits the region in which coexistence up to this time is
possible according to the estimate (15). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

probable that fixation will occur by passing the lowest of these
two barriers. In this case, an estimate of the time t∗ needed to
reach fixation can be derived by calculating the height of the lowest
barrier and applying Kramer’s escape rate theory. The result is:

t∗ ∼ exp

N
2
min(ϵ2

A, ϵ
2
B)

ϵA + ϵB


. (15)

Fig. 5 shows a heat map of the total heterozygosity in the (ϵA, ϵB
plane for N = 500 after 5000 generations). The black region is
where fixation occurred. Green lines are the theoretical limits of
the apparent coexistence region obtained from Eq. (15).

After estimating the fixation time in the mutualistic model, we
now ask: what is the fixation probability of one of the two alleles?
In Appendix C, we show that in the appropriate limit the fixation
probability formutualists obeys a formula similar to the result for a
stepping stone model with fixed total population size (Korolev and
Nelson, 2011), namely

u(f0) =

 f0
0 e

1
2Ns(f

∗
−p)2 1

0 e
1
2Ns(f

∗−p)2
, (16)

where f0 is the initial fraction of allele A. In the limit f ∗
→ ∞, s →

0, with a mutualistic effective selective advantage s̃ = f ∗s fixed,
this reduces to the famous Kimura formula discussed above

u(f0) =
1 − e−Ns̃f0

1 − e−Ns̃
. (17)

The formulas above are a good approximation for arbitrary
initial conditions only for the case of equal initial growth rates
µA = µB = µ, so that population fractions are approximately
unchanged prior to reaching the line cA + cB ≈ 1. We explore
the fixation probabilities in three different cases, each having a
different definition of selective advantage:

• ϵA + ϵB = 0. Unless ϵA = ϵB = 0, this corresponds to a selective
advantage under crowded conditions, such that cA + cB ≈ 1.
In the previous section, we discussed how in the deterministic
limit there are two stable fixed points, (c∗

A , c
∗

B ) = (1, 0) and
(c∗

A , c
∗

B ) = (0, 1), while the fixed point with both c∗

A and c∗

A
nonzero is inaccessible. Fig. 6(a) shows the fixation probability
for cA(t = 0) + cB(t = 0) = 1 and two initial frequencies
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Fig. 6. Fixation probabilities u(s̃, f0,N) in the mutualistic model. Full curves show the analytical results from Eq. (C.9) with initial fraction f0 = nA(0)/nA(0) + nB(0).
(a) Competitive exclusion: Simulations with ϵA + ϵB = 0 with −0.08 < ϵA < 0.2,N = 250: Red curve: f0 = 0.1, blue curve f0 = 0.5. Green and purple curves: Eq. (17)
with −0.08 < s̃ < 0.2,N = 250, f0 = 0.1 (green), f0 = 0.5 (purple). The curves are plotted against the scaling variable s̃ ∗ N for different initial frequencies f0 . Here (and
also in (b), (c)) the initial condition is chosen on the line nA(0) + nB(0) = N . (b) Mutualism: Green curve: simulations with ϵA = ϵB = 0.1,N = 100, f ∗

= 0.5. The fixation
probability u is plotted versus the initial fraction f0 . Red curve: Fixation formula (17) with N = 100, s̃ = 0.1, f ∗

= 0.5. (c) Coordination game with an unstable fixed point
f ∗: Green; purple; orange curves: simulations with ϵA = −0.05, ϵB = −0.15(f ∗

= 0.25); ϵA = −0.10, ϵB = −0.10(f ∗
= 0.50); ϵA = −0.15, ϵB = −0.05(f ∗

= 0.75).
Red; blue; cyan curves: Fixation formula (C.9) with N = 100, s̃/f ∗

= −0.2, f ∗
= 0.25; 0.5; 0.75. (d) Mutualism with stochastic initial conditions. Simulations with initial

conditions nA(0), nB(0) are uniformly distributed in the plane of sizeN×N withN = 100. For each random initial condition,which fixes the value of f0 , the fixation probability
is averaged over 500 independent Gillespie simulations resulting in u(f0). Cyan points: ϵA = 0.05, ϵB = 0.15, f ∗

= 0.25; blue points: ϵA = 0.10, ϵB = 0.10, f ∗
= 0.5;

red points: ϵA = 0.15, ϵB = 0.05f ∗
= 0.75. Full curves: fixation formula (C.9) with N = 100, s̃/f ∗

= 0.2: Brown: f ∗
= 0.25; purple: f ∗

= 0.25; green f ∗
= 0.75. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
f0 = 0.5, f0 = 0.1,N = 250, f ∗
= ϵA/(ϵA + ϵB) and effective

selective advantage s̃ = µϵA = −µϵB. The population size
N appears through the combination s̃ ∗ N in Eq. (C.9), so we
plot the probability versus this rescaled parameter. We obtain
excellent agreement between this special case of ourmodel and
the Kimura formula for the Moran model equation (17).

• ϵA + ϵB = s̃/f ∗, ϵA > 0, ϵB > 0. This corresponds to a mu-
tualistic situation in which there is a stable fixed point out in
the plane (c∗

A > 0, c∗

B > 0). Fig. 6(b) shows the fixation prob-
ability u(f0) versus the initial fraction f0 for stochastic Gillespie
simulations with ϵA = ϵB = 0.1 where f ∗

= 0.5 and N = 100.
For comparison, the formula Eq. (C.9) is shown as the full drawn
line again indicating very good agreement.

• ϵA+ϵB = −s̃/f ∗, ϵA < 0, ϵB < 0. This choice corresponds to the
competitive exclusion (Frey, 2010) inwhich there is an unstable
fixed point in the plane (c∗

A > 0, c∗

B > 0) and two stable fixed
points where one of the two species has gone extinct. Fig. 6(c)
shows Gillespie simulations for three cases of ϵA < 0, ϵB < 0
and a comparison with the formula Eq. (C.9) for the different
values of f ∗ (in order to compare this case we take s̃ < 0 in the
formula).

As a further case we consider random initial conditions nA(0),
nB(0)uniformly distributed in the square [1,N]×[1,N], so that the
approach to the line cA + cB ≈ 1 can play a role as well. The initial
fraction is now defined as f0 = nA(0)/[nA(0) + nB(0)]. Fig. 6(d)
show the corresponding Gillespie simulation results for 200
different initial conditions for three different fractions f ∗

= 0.25,
0.5, 0.75. The analytic fixation curves according to Eq. (C.9) are
also shown. Although the agreement is excellent, we again expect
modification when departures from equality of the initial growth
rates µA and µB are allowed.

4. One and two dimensions

Density fluctuations play a more significant role in one and
two spatial dimensions, compared with the well-mixed situations
described in the previous section. For example, depending on
initial conditions and genetic drift, different alleles can fix in
different regions of space; the ultimate fate of the system then
depends on how these different regions interact, which in turn
depends on the choice of the rates. One of the most striking effects
of spatial variation in allele number and relative proportions is the
existence of a regime in which there is a reduction in the average
carrying capacity, i.e. the average concentration Z is smaller than
the value ⟨Z⟩ = 1 calculated from Eq. (3) with our choice of
parameters and by neglecting fluctuations. The presence of such
a regime is illustrated in Fig. 7 in the neutral case as a function
of the D and N . Notice that the latter parameter can be properly
interpreted as an average number of particles per unit length only
when N and D are both large enough. In the opposite regime, as
a consequence of fluctuations, the average number of particles in
a unit segment is significantly less than N . We quantify this effect
by defining an effective average carrying capacity ⟨Z⟩ = ⟨n(t)⟩/N
where n(t) is the actual number of particles present at time t per
unit length and the average ⟨· · · ⟩ is over time.

We find significant deviations from the prediction ⟨Z⟩ = 1
when N

√
D/µ ≪ 1. Heuristically, this criterion can be understood

as follows. In spatially extended systems, the populations are
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Fig. 7. Reduction of the carrying capacity in the neutral model in 1d and 2d. (a) Reduction of the total carrying capacity Z = ⟨cA + cB⟩ in the (D,N)-plane. The system is
one dimensional and we adopted the neutral choice of parameters (see Section 2). The blue line is the theoretical condition N

√
D/µ = 1. (b) Comparison of the carrying

capacity reduction in 1d and 2d, as a function of the non-dimensional parameter N1/d√D/µ where d is the spatial dimension. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
mixed by diffusion. The diffusion scale
√
D/µ may be considered

as an ‘‘effective deme size’’, in the sense that individuals within a
distance less than

√
D/µ are mixed very efficiently over a single

generation, while individuals separated by a larger distance are
spatially decoupled. In one dimension, the condition N

√
D/µ ≫

1 then corresponds to having many individuals in an effective
deme size. In the opposite limit, this number is small and
fluctuations play amuchmore important role. This effect is related
to the ‘‘strong noise limit’’ of the stochastic Fisher equation (see
e.g. Doering et al., 2003; Berti et al., 2007; Hallatschek and Korolev,
2009). We remark that in this regime, the assumptions needed to
derive Eq. (3) from the particle model are violated and significant
deviations between the particle simulations and the macroscopic
theory are expected. For this reason, we will restrict our analysis
here to the ‘‘weak noise’’ case in which N

√
D/µ > 1.

4.1. Neutral theory

To study how fixation occurs in space, we now discuss the
behavior of the spatial heterozygosity H(x, t) defined as the
probability of two individuals at distance x and time t to carry
different alleles. In the neutral stepping stone model with a fixed
population size in each deme, H(x, t) obeys a closed equation:

∂tH(x, t) = D∇
2H −

2µ
N

Hδ(x). (18)

In one dimension, such an equation can be solved explicitly:

H(x, t) = H0

1 −
2
N

 t

0
dt ′

erf


t ′

4N2D


√
8πD(t − t ′)

e−
x2

8D(t−t′)
+

t′

4N2D

 (19)

where H0 is the initial heterozygosity, equal to one half if the
two variants are well mixed and equally populated at time t = 0.
Eqs. (18) and (19) can be derived directly from the stochastic Fisher
equation (1) with s = 0 (see, e.g., Korolev et al., 2009).

We define the heterozygosity in our off-lattice particle simu-
lations with growth and competition from the statistics of inter-
particle distances. In particular, at a given time t , we compute all
distances between pairs of individuals. Upon introducing a bin size
h, the function H(r, t) is then defined as the ratio between the
number of pairs carrying different alleles at a separation between
r and r + h, divided by the total number of pairs of all types in the
same range of separation. For simplicity, we always took the bin
size h equal to the interaction distance δ.

In the limit N
√
D/µ ≫ 1, the spatial heterozygosity obtained

by simulations of the neutral off-lattice model shows a remarkable
agreement with Eq. (19), as shown in Fig. 8. This correspondence
arises because the relative fraction of allele A, f (x, t) = cA/(cA +
cB), obeys a very similar equations as discussed in the mean field
case. In Appendix B, we show that the only effect of density
fluctuation is an additional effective advection term in the equation
for ∂t f , equal to 2D(∇ log cT ) · ∇f . The appearance of such term
was already found in Vlad et al. (2004) in a deterministic version
of the model described here. In our case, one can show that since
cT obeys a decoupled equation in the neutral case, such term will
not affect the equation for the heterozygosity. Indeed, numerical
simulation shows that the average spatial heterozygosity in the
model reproduces that of the stepping stone model even in the
limit of very high diffusivity shown in Fig. 8, panel (b). Panel (c)
that similar agreements arise comparing numerical integration
of Eq. (18) with our off-lattice simulations in two dimensions.
At variance with one dimension, where the local heterozygosity
H(0, t) decays at long times as t−1/2, in two dimension the decay
is much slower, H(0, t) ∼ 1/ ln(t). Such slow logarithmic decay is
confirmed in simulations in panel (d).

4.2. Reproductive advantage

In one spatial dimension, an analogue of Kimura’s formula
(14) (Crow and Kimura, 1970) for the fixation probability has
been derived from the stochastic Fisher equation by Doering et al.
(2003):

pfix = 1 − exp

−sN


dx f (x, t = 0)


(20)

where f (x, t = 0) is the initial spatial distribution of the fraction
of species A. Remarkably, the one dimensional fixation probability
is independent of the spatial diffusion constant. We tested this
prediction in Fig. 9(a), left panel, for our model when species A
enjoys a reproductive advantage s. There are again no appreciable
differences between the simulations of our more general growth
model and the theoretical prediction for the stepping stonemodel,
over a wide range of diffusion constants. This agreement is
expected, given the approximate mapping onto a stepping stone
model embodied in Eq. (B.3) of Appendix B. While the result
(20) by Doering et al. (2003) was derived in one dimension,
we conjectured that the same formula holds in two dimensions.
Indeed, a straightforward generalization of Eq. (20) predicts well
the fixation probability in twodimensions, as shown in simulations
in Fig. 9, right panel.

4.3. Mutualism

We now set µA = µB = µ, but allow variable inter-
specific competition coefficients. Korolev and Nelson (2011) re-
cently demonstrated how for a mutualistic stepping stone model
with fixed deme size in one dimension, there is a region in the
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Fig. 8. Heterozygosity in the 1d and 2d neutral case. Behavior of heterozygosity correlation function for the neutral off-lattice model of growth and competition. (a) 1D
simulations at low diffusivity, D = 10−5 and (b) high diffusivity, D = 0.1. In the top case, the system size is L = 1 while in the bottom case the system size is L = 100. In
both cases we find excellent agreement with the prediction of formula (19). (c) Neutral heterozygosity in 2d, compared with a numerical integration of Eq. (18). (d) Behavior
of the local heterozygosity H(x = 0, t) as a function of time in 2D, showing the logarithmic decay H(x = 0, t) ∼ 1/ ln(t).
Fig. 9. Probabilities of fixation in the presence of a reproductive advantage. The two panels show (a) one spatial dimension and (b) two dimensions, as a function of the
selective advantage s, for different values of the diffusion constant D. Our 1d results are compared with the results with the prediction of Doering et al. (2003). In 1d,
parameters are N = 500 and the initial fraction of species A is f0 = 0.01, randomly distributed on the unit interval. The 2d simulations were conducted on a square domain
of unit area and the parameters N = 16 384 and the initial fraction of species A is f0 = 0.01 were kept fixed. The solid line is our conjectured generalization of Eq. (20) to
two dimensions.
(ϵA, ϵB) parameter space in which (in limit of an infinite system
size, L → ∞) fixation never occurs, as sketched in Fig. 10, panel
(a). This behavior differs dramatically from the well-mixed zero
dimensional case, for which fixation is inevitable, with a fixation
time t∗(ϵA, ϵB,N) given approximately by Eq. (15).

We fix parameters as µ = 1,D = 0.02 and N = 30. To explore
the behavior of our model, we performed simulations along the
paths shown as dashed lines in panel (a) of Fig. 10. Panel (b) shows
the time evolution of the local heterozygosityH(0, t) along the line
ϵA = ϵB. For small values of ϵA = ϵB > 0, the heterozygosity
decays in a similar fashion


roughly as 1/

√
t

as in the neutral

case ϵA = ϵB = 0. For higher values, the local heterozygosity
eventually levels off at a nonzero value, implying that fixation will
never occur.

The presence of amutualistic regimewhere the system remains
mixed forever is even more evident in Fig. 10, panel (c), where we
plot along the cuts at constant ϵA + ϵB the long-time average of the
fraction of the first allele ⟨f ⟩ as a function of the difference ϵA − ϵB.
Along the cuts that do not cross themutualistic region, ⟨f ⟩ is either
0 or 1 as one of the two alleles always fixes. A special case arises
for ϵA = ϵB, where each of the two alleles has a chance of being
fixated equal to its relative abundance in the initial condition, so
that ⟨f ⟩ = f0. Conversely, ⟨f ⟩ has a non-trivial behavior along the
line ϵA + ϵB = 0.4. Upon varying the parameter ρ = ϵA − ϵB, we
find a whole range of values in which fixation does not occur. As
discussed in Korolev and Nelson (2011), the two lines of critical
points shown in (a) are in the directed percolation universality
class. The behavior of the density close to this critical point is
described by a universal exponent, cA ∼ (ϵA − ϵc)

β , where the
expected exponent is β ≈ 0.2765 and ϵc is the value of ϵA at the
critical point (see e.g. Odor, 2004). Fig. 10, panel (d) confirms the
power law behavior close to one of the critical points on the cut
ϵA + ϵB = 0.4. Finally, in panels (e) and (f) we show simulations
on the two dimensional mutualistic model. Mutualism in 2d is
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Fig. 10. Mutualism in 1d and 2d. (a) Phase diagram of themutualistic model in 1d. Themutualistic region, where global fixation never occurs in an infinite system, is colored
in red. Dashed lines denote the cuts relevant to data in the other panels. (b) Behavior of the local heterozygosityH(0, t) along the cut ϵA = ϵB . A nonzero long time asymptote
implies that fixation never occurs. (c) Average concentration of allele A, ⟨cA⟩, along three cuts such that ϵA + ϵB = const. When ϵA + ϵB is sufficiently large and positive, ⟨f ⟩
varies smoothly between 0 and 1 when traversing the red region in (a). For both ϵA + ϵB = 0 and ϵA + ϵB negative, there is an abrupt jump in ⟨f ⟩ from 0 to 1 when ϵA = ϵB . In
this sense, the dashed diagonal line below the cusp in (a) is like a first order phase transition. In all figures, parameters are: µ = 1,D = 0.02,N = 30 and L = 2000 so that
on average there are 6 · 104 individuals in the system. (d) Logarithmic plot of the density of A close to the critical point. A power law with the expected directed percolation
exponent, f (x) ∝ xβ , β ≈ 0.2765 is shown for comparison. (e) Behavior of the local heterozygosity H(0, t) in 2d along the line ϵA = ϵB . A phenomenology similar to the 1d
case of panel (b) is observed. (f) Transition along the diagonal cut ϵA + ϵB = 0.4 in 2d, again showing a similar behavior to the 1d case shown in panel (c). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
computationally challenging and, to the best of our knowledge,
has not been studied systematically in the literature. Although we
did not obtain the full phase diagram, our simulations suggest a
scenario similar to the 1d case. In particular, the heterozygosity
H(x = 0, t) along the cut ϵA = ϵB displays a transition from a
regime in which it seems to decay logarithmically (as in the 2d
neutral version of the model) to a regime in which fixation does
not occur. Furthermore, the cut at ϵA + ϵB = 0.4 shown in panel (f)
reveals a directed-percolation-like transition, qualitatively similar
to that in panel (c).
5. Population genetics in two-dimensional compressible tur-
bulence

A systematic exploration of the effect of hydrodynamic flows
on the off-lattice models of population genetics introduced here
would take us far beyond the scope of this already lengthy pa-
per. However, to illustrate the interesting effects that arise, we
now extend our analysis to the two cases where the competition
between populations takes place under the influence of compress-
ible fluid advection in two-dimensions. Aswewill show, compress-
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Fig. 11. (Left) A representative snapshot of the time-dependent compressible surface flow (CSF) field used for advecting species in our two-dimensional simulations. (Right)
Vector field visualization of the steady flow (SF) used for advecting species in our simulations of a simple time-independent steady flow with κ = 0.0027.
Fig. 12. Competition between two neutral species (shown in red and green) in a turbulent compressible flow with κ = 1 and F = 1. At time t = 0 (left) approximately
10000 organisms are randomly distributed over the entire domain at the steady state carrying capacity in the absence of flow. Both species are then collapsed by advection
onto filamentous structures leading to (time-dependent) sinks and saddle points, dynamics which compactifies the population into regions where competition takes place.
This collapse is highlighted in the middle plot which is chosen at a later time t = 1 (middle). At much later times t = 25 (right) fixation occurs and only one of the species
survive. The populations size has stabilized at 6 organisms, a reduction from the initial carrying capacity by a factor 103 . Although the reduction in the population size is
most extreme for κ = 1, significant reductions occur for even small values of κ (Perlekar et al., 2012). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
ible fluid flows can dramatically change the carrying capacities and
fixation times. For all the simulations in this section we choose a
square simulation domain of size [0, L] × [0, L], the spatial diffu-
sivityD = 10−4. For simplicity, the two competing populations are
neutral with µA = µB = λAA = λAB = λBA = λBB = 1.

The two flows that we choose are:

1. Compressible surface flow (CSF):
This chaotic, time-dependent flow is generated from a

two-dimensional slice of a three-dimensional, homogeneous,
isotropic flow (see Perlekar et al., 2010, 2012). A snapshot of
the advecting velocity field is shown on the left side of Fig. 11.
Using the projection method described in Perlekar et al. (2012)
we choose the compressibility of the flow κ = 1 where, κ ≡

⟨(∇ · u)2⟩/⟨(∇u)2⟩,u ≡ (ux, uy) is the velocity field, and ⟨(·)⟩
indicate the spatio-temporal averaging. Setting κ to its maxi-
mum value of unity maximizes the reduction in carrying ca-
pacity caused by locally compressing the populations to high
density, so that the middle terms on the right side of Eq. (3)
are negative (Pigolotti et al., 2012; Perlekar et al., 2012). The
strength of the flow is varied by scaling the velocity field by a
forcing amplitude F . For all the simulations with this flow we
choose L = 2π .

2. Steady flow (SF):
This time-independent velocity field is chosen to be ux(x, y)

= F [α sin(2πx/L) + (1 − α) sin(2πy/L)], uy(x, y) = F [α sin
(2πy/L) − (1 − α) sin(2πx/L)] (see Fig. 11 right panel). The
strength of the flow is controlled by again changing F and the
compressibility κ = α2/[α2

+ (1 − α2)] is modified by chang-
ingα and hence κ ∈ [0, 1]. For all the simulationswith this flow
we choose L = 1. The two species are advected by the flow to-
wards the sink which is located at the center (−L/2, L/2) of the
simulation domain.

Similar analysis for one-dimensional flows was conducted in
Pigolotti et al. (2012). The compressible flow on the left of Fig. 11
models photosynthetic organisms that control their buoyancy to
remain near the surface of a turbulent ocean. The flow on the right
is designed to determine the consequences for population genetics
of fluid sink at the center, with fluid injection at the four corners.
Note the nonzero vorticity in this case.

The competition between species for the two flow conditions
described above is shown in Figs. 12 and 13. Initially the popula-
tions are well-mixed at the steady state carrying capacity as they
would be with ordinary diffusion, birth, and competitive death in
absence of advection. Advectionmoves the population towards the
localized sinks of the flow and enhances the competitive death em-
bodied in the λij couplings. Indeed, the middle frames of Figs. 12
and 13 show explicitly the compression that leads to enhanced
inter-species and intra-species competition. Eventually at later
times, only one species survives (right hand frames of Figs. 12 and
13). Although the extreme (103-fold!) reduction in population size
shown in Fig. 13 results from the use of a maximally compressible
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Fig. 13. Competition between two neutral species (shown in red and green) in the steady flow with κ = 0.0027. At time t = 0 (left), the species are randomly distributed
over the entire domain again at the equilibrium carrying capacity possible in absence of flow. Species are rotated and collapsed by the advecting flow towards the origin
where competition takes place. This progression is highlighted in the middle plot which is chosen at a later time t = 17 (middle). At much later times t = 41 (right) fixation
occurs and only one of the species survive. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. (Left) Carrying capacity for the turbulent compressible flow for varying forcing strength with κ = 1. Z drops with increasing forcing strength. (Right) Carrying
capacity for the steady flow at varying compressibility levels. For very small compressibility, carrying capacity is close to the one in absence of flow and then drops. For the
extreme case of κ = 1, carrying capacity is reduced by a factor of 103 , similar to the reduction found when κ = 1 for the compressible surface flow. In both cases, the inset
reveals the drop in the fixation times for varying forcing at κ = 1.
(κ = 1) turbulent flow, reductions of 80% arise for k = 0.17 (Per-
lekar et al., 2010) and even for much smaller values of κ (Perlekar
et al., 2012).

To quantify how advecting compressible flows affect carrying
capacity and the fixation times,we systematically vary the strength
of the flow F . Fig. 14(left) shows that on increasing F , the carrying
capacity drops, due to enhanced confinement and hence compe-
tition between the species. On the other hand, using the steady
flow we show that at fixed forcing strength, carrying capacity is
also reduced on increasing the compressibility (see Fig. 14(right)).
The insets to these figures show the corresponding reduction in the
fixation times.

6. Conclusions

The understanding of growth, competition, cooperation and
diffusion in space in individual based models has been the subject
of intense study, in contexts as diverse as population genetics
(Barton et al., 2002), ecology (Law et al., 2003; Birch and Young,
2006) and physics (Hernandez-Garcia and Lopez, 2004; Berti et al.,
2007; Korolev et al., 2009). A main focus has been to explore the
regime inwhich discreteness effects are such that individual based
simulations differ significatively from the behavior of macroscopic
continuum equations, such as the Fisher equation or its stochastic
variant.

In this paper, we have explored competition and cooperation
between two different alleles when the total population size is not
constrained. We have deliberately focused on the weak noise limit
by choosing carrying capacities and diffusion constants such that
there is a good agreement between the outcome of the macro-
scopic Langevin equations and the individual based simulations.
We have shown that, in certain limits, one can draw an explicit
correspondencewith stepping stone-likemodels inwhich the total
density of individuals is kept fixed at every deme, by studying
the relative fraction of one of the two species. In the neutral
case, the fluctuating total density appears in the equation for the
relative fraction, but its fluctuations average out in the equation for
mean quantities such as the heterozygosity. The correspondence
between stepping stone models and our generalized off-lattice
model with additional fluctuations in the overall density was
confirmedby individual based simulations. In non-neutral settings,
the total density does not obey a closed equation and such exact
correspondence cannot be drawn. However, we have shown how,
when the departure from neutrality is not severe (small s or small
ϵA and ϵB), the corrections due to density fluctuations can be
safely neglected and the predictions of constant-density models
are still reproduced with accuracy. The issue we address here
is a more subtle dynamical version of justifying the neglect of
number fluctuations in the grand canonical ensemble as compared
to the canonical ensemble in equilibrium statistical mechanics.We
conclude that the model we present here is a natural candidate
to study situations in which the total density of individuals can
vary greatly from the background carrying capacity due to external
forces, such as turbulence or compressible fluid flows (Pigolotti
et al., 2012).
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Appendix A. Derivation of the macroscopic equations

In this section we present an explicit derivation of the coupled
stochastic macroscopic equations for cA(x, t) and cB(x, t), Eq. (3),
from the microscopic rate reactions (2). The formalism we will
follow is that of the chemical master equation, as presented for
example by Gardiner (2004), which in turn may be considered as a
spatial generalization of the Kramers–Moyal expansion (Gardiner,
2004; Risken, 1989).

As discussed in the Section 2, we consider interacting individ-
uals in a volume equal to Ld in d dimensions. In particular, com-
petition occurs when individuals are within a small volume δ (for
details on the implementation of the individual-based dynamics
see Perlekar et al. (2011)). We can then discretize the system in
cells of size δ and start the derivation from the master equation
governing the time evolution of the probability of the numbers of
particles {nA

j , n
B
j } of type A and B in each cell, labeled by the index

j. We first define as WA(±1, nA
j , n

B
j ) and WB(±1, nA

j , n
B
j ) the rates

at which the populations of type A (or B) increase/decrease by one
individual in a specific box, given that the numbers are currently
nA
j and nB

j . The expressions for these rates are then:

WA(+1, nA
j , n

B
j ) = µAnA

j

WA(−1, nA
j , n

B
j ) = λ̃AAnA

j (n
A
j − 1) + λ̃ABnA

j n
B
j

WB(+1, nA
j , n

B
j ) = µAnB

j

WB(−1, nA
j , n

B
j ) = λ̃BAnA

j n
B
j + λ̃BBnB

j (n
B
j − 1). (A.1)

The master equation governing the evolution of the full prob-
ability distribution P({nA

j , n
B
j }, t) for all possible box occupation

numbers {nA
j , n

B
j } then reads:

d
dt

P({nA
j , n

B
j }, t)

=


j

[WA(+1, nA
j − 1, nB

j )P(nA
1, . . . , n

A
j − 1, . . . , nB

1, . . .)

−WA(+1, nA
j , n

B
j )P({nA

j , n
B
j })]

+


j

[WA(−1, nA
j + 1, nB

j )P(nA
1, . . . , n

A
j + 1, . . . , nB

1, . . .)

−WA(−1, nA
j , n

B
j )P({nA

j , n
B
j })]

+


j

[WB(+1, nA
j , n

B
j − 1)P(nA

1, . . . , n
B
1, . . . , n

B
j − 1, . . .)

−WB(+1, nA
j , n

B
j )P({nA

j , n
B
j })]

+


j

[WB(−1, nA
j , n

B
j + 1)P(nA

1, . . . , n
B
1, . . . , n

B
j + 1, . . .)

−WB(−1, nA
j , n

B
j )P({nA

j , n
B
j })] + diffusion terms, (A.2)

where the diffusion terms allow for the stochastic exchange of
particles between neighboring boxes. Although we did not write
them explicitly, they reduce to discrete approximations to the
Laplace operator. Indeed, we replace them with Laplacians in the
continuous space limit at the end of the calculation.
The next step in the derivation is to perform a Kramers–Moyal
expansion (Risken, 1989) in each of the boxes, which leads to

∂tP({nA
j , n

B
j })

=


j

∞
k=1

(−1)k

k!
{∂k

nAj
[αA

k (n
A
j , n

B
j )P({nA

j , n
B
j })]

+ ∂k
nBj

[αB
k (n

A
j , n

B
j )P({nA

j , n
B
j })]}, (A.3)

with

α
A,B
k (nA

j , n
B
j ) =


d∆nA,B

j (∆nA,B
j )kWA,B(∆nA,B

j , nA
j , n

B
j ), (A.4)

and where the integral over ∆n accounts for the possible jump
processes (+1 and −1 in our case). Finally, truncating the
Kramers–Moyal expansion up to second order in the derivatives
leads to a Fokker–Planck equation for P{nA

j , n
B
j }. It is convenient

to write directly the equivalent but somewhat simpler system
of Langevin equations corresponding to this Fokker–Planck
description, namely:

dnA
j

dt
= nA

j (µA − λ̃AAnA
j − λ̃ABnB

j )

+ diffusion +


nA
j (µA + λ̃AAnA

j + λ̃ABnB
j )ξ

A
j

dnB
j

dt
= nB

j (µB − λ̃BAnA
j − λ̃BBnB

j )

+ diffusion +


nB
j (µB + λ̃BAnA

j + λ̃BBnB
j )ξ

B
j . (A.5)

In the above system of equations, the ξ ’s are delta-correlated
unit variance Gaussian processes, ⟨ξ k

j (t)ξ
m
l (t ′)⟩ = δjlδkmδ(t −

t ′). The multiplicative noise in the equation must be interpreted
according to the Ito prescription (Gardiner, 2004; Korolev et al.,
2009). In principle, the diffusion terms in (A.2) would contribute
to the noise term. However, one can show that this contribution
can be neglected if the size of the cells is sufficiently large
(see Gardiner, 2004).

From Eqs. (A.5) one can finally derive Eqs. (3) by:

1. Taking (formally) the limit δ → 0. In such a way the number
densities of individuals are continuous functions of the coordi-
nate x, nA(x, t) and nB(x, t).

2. Defining rescaled, macroscopic rates of binary reactions,

λij = Nδλ̃ij. (A.6)

3. Defining the macroscopic concentrations of individuals cA,B
(x, t) = nA,B(x, t)/N .

The convenience of introducing the macroscopic binary reac-
tion rates λij in step (2) is that the microscopic interaction ra-
dius δ does not appear in the macroscopic system of Eqs. (3). At
the same time, we introduced a parameter N = λij/(δλ̃ij) that, as
clear from step (3) in the above procedure, sets the typical number
density of particles corresponding to a macroscopic concentration
c(x, t) = 1. Such a parameter does not appear in the determinis-
tic drift terms of the equation but only in the noise terms, whose
amplitude vanishes for N → ∞. It is worthwhile remarking that,
while we followed here the Kramers–Moyal expansion procedure,
in the Van Kampen formalism the parameter N−1 is the relevant
expansion parameter which is assumed to be small (Risken, 1989;
Gardiner, 2004).

We remark that through the paper we presented only results
of the particle models, corresponding to given parameter choices
in the macroscopic equations (3). Eq. (A.6) can be seen as defining
the mapping between the parameters used in the particle simula-
tions (the interaction domain δ and the microscopic binary rates
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λ̃ij’s) and those appearing in the macroscopic description (N and
the set of λij’s). The same relation can be used for the reverse task,
i.e. finding microscopic parameters δ and λ̃ij’s corresponding to
given N and λij’s. Clearly this mapping is not uniquely determined,
but has one degree of freedom. As sketched in Section 2, we fixed
this degree of freedom in twodifferentways in thewell-mixed ver-
sion of themodel and in the d > 0, spatially explicit simulations. In
particular, in d = 0 we chose δ = 1, so that themicroscopic binary
reaction rates areN times smaller than themacroscopic ones, λ̃ij =

λij/N . In this case, it is crucial to set the system size L = 1 so that
all particles interact with all other particles. Instead, in d > 0 we
chose the interaction domain δ = 1/N , so that themicroscopic and
macroscopic reaction rates are identical, λ̃ij = λij. Further details
on the simulation schemes can be found in Perlekar et al. (2011).

We conclude this appendix by noting that the continuous space
limit is a formal one, and cannot be performed in a rigorous way.
One of several subtleties is that neglect of the diffusive contribution
to the noise variance requires a finite value of δ, so that the
limit of vanishingly small interaction range cannot be taken in a
strict sense. Thus, Eq. (A.2) should be regarded as a continuum
shorthand notation: In practice, we always simulate equations
such as Eq. (A.5) on a lattice of finite size, and require a smoothly
varying total density of particles. When this assumption is invalid,
the macroscopic description can break down, as briefly discussed
in the beginning of Section 4 for the problem of the reduction in
the total number of particles for d = 1 and d = 2.

Appendix B. Equations for the relative fraction of one species

The correspondence between the growthmodel presented here
and the stepping stone model with Fisher–Wright or Moran dy-
namics, or the equivalent stochastic Fisher–Kolmogorov–Petrovsky
–Piscounov equation (Fisher, 1937; Kolmogorov et al., 1937) can be
illuminated by constructing the dynamical equation for the rela-
tive fraction of species A, f = cA/cT with cT = cA + cB. A dynamical
equation for f can be derived with help of the Ito calculus: upon
writing the system of Eq. (3) as:

d
dt

cA(x, t) = αA(cA, cB) + σA(cA, cB)ξ(x, t)

d
dt

cB(x, t) = αB(cA, cB) + σB(cA, cB)ξ ′(x, t) (B.1)

where the diffusive Laplacian terms are included into αA, αB. The
equation for the A-fraction f then reads

d
dt

f = αA∂Af + αB∂Bf +


σ 2
A (∂Af )2 + σ 2

B (∂Bf )2ξ

+
σ 2
A

2
∂AAf +

σ 2
B

2
∂BBf , (B.2)

where we used the abbreviated notation ∂A ≡ ∂cA , ∂AA ≡ ∂2
cA and

so on. Inserting the complete set of Eqs. (3) into (B.2) leads to a
lengthy expression for the dynamics of f . However, with the choice
of parameters we made to discuss a reproductive advantage (this
reduces to the neutral case for s = 0), Eq. (B.2) simplifies to

∂

∂t
f = D∇

2f + 2D∇(log cT ) · ∇f + µsf (1 − f ) +
µsf
cTN

(f − 1)

+


µf (1 − f )

1 + cT
NcT

+
µsf
NcT

(1 − f )2ξ . (B.3)

Upon neglecting small contributions of order s/N ≪ 1 in the
last two terms and neglecting fluctuations in the total density
(i.e. imposing cT = 1), we recover exactly the Eq. (1) governing
the macroscopic dynamics of the stepping stone model.
Repeating the calculation in the case of mutualism yields:
∂

∂t
f = D∇

2f + 2D∇(log cT ) · ∇f + µf (1 − f )[ϵA − (ϵA + ϵB)f ]

+
µf (f − 1)

N
[ϵA(f − 1) + ϵBf ]

+

µf (1 − f )


1+cT
cT


− ϵA(1 − f )2 − ϵBf 2


N

ξ . (B.4)

Upon neglecting, similar to the case of reproductive advantage,
terms order ϵA,B/N , and again neglecting fluctuations away from
the line cT (x, t) = cA(x, t) + cB(x, t) = 1, we recover the contin-
uum limit of the mutualistic stepping stone model treated by
Korolev and Nelson (2011), namely

∂

∂t
f = D∇

2f + s0f (1 − f )(f ∗
− f ) +


2µf (1 − f )

N
ξ(x, t), (B.5)

where s0 = µ(ϵA + ϵB) and f ∗
= ϵA/(ϵA + ϵB).

Appendix C. Fixation times for the mutualistic model in the
well-mixed case

To estimate the average fixation time for the mutualistic model
in the well-mixed limit, we start from Eq. (B.4). Upon neglecting
terms order ϵA/N, ϵB/N and also neglecting density fluctuations by
imposing cT = cA + cB = 1, we obtain:

d
dt

f ≈ µf (1 − f )[ϵA − (ϵA + ϵB)f ] +


2µf (1 − f )

N
ξ . (C.1)

The dynamics of such equation will reach one of the two ab-
sorbing states at f = 0 or f = 1 for long enough times. However,
these times can be very long when N is large: a time-independent
metastable probability distribution exists before the absorbing
states are reached, which can be written using potential methods
(Gardiner, 2004) as

P (f ) ∝ e−V (f ) (C.2)

where the potential V is given by

V (f ) = −Nf

ϵA −

(ϵA + ϵB)

2
f


+ ln[f (1 − f )] (C.3)

where the first term is analogous to a potential energy and the
second resembles an entropy. In the large N limit, the poten-
tial has a minimum at f c ≈ ϵA/(ϵA + ϵB) and two maxima, one
at f −

≈ 1/(NϵA) and one at f +
≈ 1 − 1/(NϵB). By evaluating the

potential at these points one can estimate the lifetime of the
metastable state from the height of the two potential barriers. To
the leading order in N , the smallest barrier is given by:

∆V =
N
2
min(ϵ2

A, ϵ
2
B)

ϵA + ϵB
. (C.4)

Finally, we assume that fixation always occurs via the smallest bar-
rier.With this assumption, the time needed to escape the potential
minimum to one of the absorbing state can be simply estimated
from Kramer’s escape rate theory as t∗ ∼ exp(∆V ), which leads to
Eq. (15).

We nowdiscuss the fixation probability in zero dimensions. The
Kolmogorov backward equation corresponding to the stochastic
differential equation (C.1), when interpreted using the Ito calculus,
reads:
∂u(p, t)

∂t
=

1
N
p(1 − p)

∂2

∂p2
u(p, t)

+ s̃p(1 − p)(f ∗
− p)

∂

∂p
u(p, t), (C.5)
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where u(p, t) is the probability that species A has fixed at time
t > 0 given that it was present with frequency p at time t = 0. We
have set f ∗

= ϵA/(ϵA + ϵB), and defined themutualistic advantage
s̃ = µ(ϵA + ϵB).

Note that Eq. (C.5) includes the original Kimura problem of
two non-interacting species as a special case, in the limit f ∗

→

∞, s̃ → 0with the selective advantage given by the fixed product,
s ≡ f ∗s̃ ≡ µϵA. We now define the long time fixation probability
for the initial condition p = f0 as

lim
t→∞

u(f0, t) ≡ u(f0). (C.6)

Upon assuming a steady state arises at long times, we have from
Eq. (C.5)

d
dp

u′(p) = Ns(f ∗
− p)u′(p) (C.7)

which leads to

u′(p) = C e
1
2Ns(f

∗
−p)2 . (C.8)

With boundary conditions u(0) = 0, u(1) = 1, we integrate once
more to obtain the fixation probability (Korolev and Nelson, 2011)

u(f0) =

 f0
0 e

1
2Ns(f

∗
−p)2dp 1

0 e
1
2Ns(f

∗−p)2dp
, (C.9)

a closed form expression in terms of the parameters f0, f ∗,N and s.
It is straightforward to show that in the limit f ∗

→ 0, s → 0
with s̃ ≡ f ∗s fixed (two non-interacting species with a selective
advantage s̃) we recover Kimura’s famous formula for the fixation
probability, Eq. (17).

References

Allstadt, A., Caraco, T., Korniss, G., 2009. Spatial competition under a reproduc-
tion–mortality constraint, P. J. Theoret. Biol. 258, 537–549.

Barton, N.H., Depaulis, F., Etheridge, A.M., 2002. Neutral evolution in spatially
continuous populations. Theor. Popul. Biol. 61, 31–48.

Benzi, R., Jensen, M.H., Nelson, D.R., Perlekar, P., Pigolotti, S., Toschi, F., 2012.
Population dynamics in compressible flows. Eur. Phys. J.: Spec. Topics 204 (1),
57–73.

Berti, S., Lopez, C., Vergni, D., Vulpiani, A., 2007. Discreteness effects in a reacting
system of particles with nite interaction radius. Phys. Rev. E 76, 031139.

Birch, D.A., Young, W.A., 2006. A master equation for a spatial population model
with pair interactions. Theor. Popul. Biol. 70 (1), 2642.

Cencini, M., Pigolotti, S., Muñoz, M.A., 2012. What ecological factors shape species-
area curves in neutral models? Plos One 7 (6), e38232.

Crow, J., Kimura, M., 1970. Introduction to Population Genetics Theory. Harper &
Row Publishers.
Doering, C., Mueller, C., Smereka, P., 2003. Interacting particles, the stochastic
Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A 325,
243–259.

D’Ovidio, F., Monte, S.D., Alvain, S., Dandonneau, Y., Levy, M., 2010. Fluid dynamical
niches of phytoplankton types. Proc. Natl. Acad. Sci. 107, 18366–18370.

Fisher, R., 1937. The wave of advance of advantageous genes. Ann. Eugenics 7, 353.
Frey, E., 2010. Evolutionary game theory: theoretical concepts and applications to

microbial communities. Physica A 389, 4265.
Gardiner, C., 2004. Handbook of Stochastic Methods. Springer.
Hallatschek, O., Korolev, K., 2009. Fisher waves in the strong noise limit. Phys. Rev.

Lett. 103, 108103.
Hernandez-Garcia, E., Lopez, C., 2004. Clustering, advection and patterns in amodel

of population dynamics with neighborhood-dependent rates. Phys. Rev. E 70
(1), 016216.

Kimura, M., 1953. ‘‘Stepping stone’’ model of population. Ann. Rept. Nat. Inst.
Genetics 3, 62–63.

Kimura, M., Weiss, G.H., 1964. The stepping stone model of population structure
and the decrease of genetic correlation with distance. Genetics 49, 561–576.

Kolmogorov, A., Petrovsky, N., Piscounov, N., 1937. Study of the diffusion equation
with growth of the quantity of matter and its application to a biology problem.
Moscow Univ. Math. Bull. 1, 1.

Korolev, K., Avlund, M., Hallatschek, O., Nelson, D., 2009. Genetic demixing and
evolutionary forces in the one-dimensional stepping stone model. Rev. Modern
Phys. 82, 1691–1718.

Korolev, K., Muller, M., Murray, A.W., Hallatscheck, O., Nelson, D.R., 2012. Selective
sweeps in growing microbial colonies. Phys. Biol. 9, 026008.

Korolev, K., Nelson, D., 2011. Competition and cooperation in one-dimensional
stepping-stone models. Phys. Rev. Lett. 107, 088103.

Law, R., Murrell, D.J., Dieckmann, U., 2003. Population growth in space and time:
the spatial logistic equation. Ecology 84 (1), 252–262.

Neufeld, Z., Hernandez-Garcia, E., 2009. Chemical and Biological Processes in Fluid
Flows. A Dynamical Systems Approach. Imperial College Press.

Neuhauser, C., 1991. Ergodic theorems for the multitype contact process. Probab.
Theory Related Fields 91, 467–506.

Odor, G., 2004. Universality classes in nonequilibrium lattice systems. Rev. Modern
Phys 76, 663–724.

O’Malley, L., Basham, J., Yasi, J.A., Korniss, G., Allstadt, A., Caraco, T., 2006a. Invasive
advance of an advantageousmutation: nucleation theory. Theor. Popul. Biol. 70,
467–478.

O’Malley, L., Kozma, B., Korniss, G., Racz, Z., Caraco, T., 2006b. Fisherwaves and front
roughening in a two-species invasion model with preemptive competition.
Phys. Rev. E 74, 041116.

Perlekar, P., Benzi, R., Nelson, D., Toschi, F., 2010. Population dynamics at high
Reynolds number. Phys. Rev. Lett. 105, 144501.

Perlekar, P., Benzi, R., Nelson, D.R., Toschi, F., 2012. Population dynamics in
compressible flows. arxiv:1203.6319.

Perlekar, P., Benzi, R., Pigolotti, S., Toschi, F., 2011. Particle algorithms for population
dynamics in flows. J. Phys. Conf. Ser. 333, 012013.

Pigolotti, S., Benzi, R., Jensen, M., Nelson, D., 2012. Population genetics in
compressible flows. Phys. Rev. Lett. 108, 128102.

Pringle, J.M., Blakeslee, A.M.H., Byers, J.E., Roman, J., 2011. Asymmetric dispersal
allows an upstream region to control population structure throughout a species
range. Proc. Natl. Acad. Sci. 108, 15288–15293.

Risken, H., 1989. The Fokker–Planck Equation: Methods of Solution and Applica-
tions. Springer, Berlin.

Smith, J.M., 1998. Evolutionary Genetics. Oxford University Press.
Tel, T., de Moura, A., Grebogi, C., Karolyi, G., 2005. Chemical and biological activity

in open flows: a dynamical system approach. Phys. Rep. 413 (2–3), 91–196.
Vlad, M., Cavalli-Sforza, L.L., Ross, J., 2004. Enhanced (hydrodynamic) transport

induced by population growth in reaction–diffusion systems with application
to population genetics. Proc. Natl. Acad. Sci. USA 101 (28), 10249–10253.

Wright, S., 1943. Isolation by distance. Genetics 28 (2), 114–138.

http://arxiv.org/1203.6319

	Growth, competition and cooperation in spatial population genetics
	Introduction
	Model
	Well-mixed case with number fluctuations
	Neutral theory
	Reproductive advantage
	Mutualism

	One and two dimensions
	Neutral theory
	Reproductive advantage
	Mutualism

	Population genetics in two-dimensional compressible turbulence
	Conclusions
	Acknowledgments
	Derivation of the macroscopic equations
	Equations for the relative fraction of one species
	Fixation times for the mutualistic model in the well-mixed case
	References


