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J.  Phys. C: Solid St.  Phys., 13 (1980) L881-5. Printed in Great Britain 

LETTER TO THE EDITOR 

Theory of helical magnetic structures and phase 
transitions in MnSi and FeGe 

Per Bak and M Hsgh Jensen 
Physics Laboratory I, H C Orsted Institute, Universitetsparken 5, DK-2100 
Copenhagen, Denmark 

Received 17 July 1980 

Abstract. The long-period helical magnetic structures in MnSi and FeGe are shown to be 
consequences of a ferromagnetic Dzyaloshinskii instability. Renormalisation group theory 
predicts the transition to be first order, in agreement with experiments on MnSi. 

A few years ago Dzyaloshinskil (1964) proposed a mechanism for describing long- 
period structures, in which the superstructure is caused by an instability of a ferromag- 
netic structure with respect to small 'relativistic' spin-lattice or spin-spin interactions. 
The instability may occur only in certain crystal structures lacking inversion symmetry. 
Until now, no realisations of such structures in real magnetic systems have been 
identified. In this paper it will be shown that the helical magnetic structures in MnSi 
and FeGe (cubic.phase) can be explained by the Dzyaloshinskii mechanism. We also 
study the phase transition into the helical phase by means of renormalisation group 
theory. It turns out that the appropriate Landau-Ginzburg-Wilson (LGW) Hamil- 
tonian has no stable fixed point with the proper symmetry. This leads to a first-order 
transition in agreement with experiments on MnSi (Ishikawa et al 1977, Hansen 1977). 

There have been reported several neutron diffraction experiments showing a helical 
magnetic structure in MnSi (Ishikawa et a1 1976, Hansen 1977). The wavevector is 
found to be in the (1 11) direction, and it is rather small (-0.036 A-'), indicating a 
very long period ( -  175 A). Magnetisation curves in FeGe show a similar magnetic 
structure (Lundgren et a1 1970). As well as MnSi, FeGe crystallises in the tetrahedral 
P2,3 structure, in which there is no inversion symmetry (figure 1). This is important in 
understanding the magnetic behaviour. 

As a starting point, the free energy is expanded in terms of a slow-varying spin 
density S(r) (Landau and Lifshitz 1977): 

F(r)  = $A(S,2 + Sy' + Sl) + b S .  (V x S) 

+ +B,[(VSJ2 + (VSJ2 + (Vs,y] 

+ $B2[($)2  + (21 + 
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This is the most general expression up to fourth order in the spins and to second order 
in the gradients, which is invariant with respect to the symmetry operations of the P2,3 
space group. The expansion is valid for magnetic structures, where the magnetisation 
is locally almost ferromagnetic. As we shall see, the b term, which is linear in the gradient, 
destabilises the ferromagnetic structure. Physically this term may be caused by rela- 
tivistic interactions between the spins of the form Si x Sj. We expect this term to be 
small compared to the other second-order terms, which may originate from the usual 
symmetric Heisenberg interaction Si. Sj. In the absence of the b term and for positive 
B ,  and B,, F(r) is minimised by a uniform S(r) (a ferromagnet), and the transition takes 
place when A = 0. The spin direction is determined by the fourth-order coefficients 
C and D. 

Figure I .  Crystal structure of MnSi and FeGe (T4 - P 2 , 3 ) .  There are four metal atoms 
in the positions (x, x, x), (x + i, + - x, X), (1, x + 1,i - x) and (i - x, Y, x + i). For MnSi, 
x = 0.137. 

Near T,  the free energy is generally minimised by periodic structures of the form 

S(u) = (1/J2) [S, exp(ik . Y) + S,*exp( - i k .  Y)]. (2) 
When equation (2) is inserted into equation (l), the free energy density becomes (to 
second order in S,) 

By setting S, = a, + i/?, we find that equation (3) is minimised when choosing 
a, I I,, lak( = I/?,] and k antiparallel to a, x j?, (b > 0). In the case b < 0, k is then parallel 
to a, x /?,. These two possibilities describe right-handed and left-handed spirals respec- 
tively. The b term has full rotational symmetry and gives no preferential direction for 
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the wavevector k.  The direction of k is fixed by the anisotropic second-order gradient 
term with coefficient B ,  : 

B, < 0: kll(111) 

B, > 0: k11(001). (4) 
On the basis of the experimental results indicating k I / (  11 1) (Lundgren et a1 1970, Ishikawa 
et al1976, Hansen 1977) we conclude that B,  < 0. By applying a magnetic field, one may 
rotate the wavevector into any direction (Ishikawa et a1 1977, Guy and Strom-Olsen 
1979). This indicates that the anisotropic second-order term is relatively small. The 
potential (3) is now given by 

F = ($A - Iblk) 

k = Ibl/(B, + SB,). 

+ ($B + +B2) k 2  IS,l2 ( 5 )  

(6) 

which is minimised by 

The smallness of k follows from the smallness of b compared to B ,  + +B2. This sum 
is assumed to be greater than zero in order to keep the k2 term positive definite. 

The spin structure can be expressed in terms of the real vectors in the following way: 

S(r) = a, cos(k . r)  - Bk sin(k. r )  (7) 
which indeed describes left-handed or right-handed spirals with a long period. Figure 
2 shows the free energy for left-handed (b < 0) and right-handed (b  > 0) structures. 
Clearly, the ferromagnetic k = 0 structure is unstable. For comparison, the free energy 
for a system with inversion symmetry (b = 0) is also shown. 

In principle, one may also have helical structures in systems with inversion symmetry, 
as seen for example in several rare earth compounds. In such systems F(k)  has two 
symmetric minima at some finite k,  in addition to the extremum at k = 0. There is no 

-k I k 

Figure 2. Free energy as a function of wavevector for left-handed and right-handed spirals. 
The broken curve shows the free energy for a system with inversion symmetry (b  = 0). 
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reason to expect k to be small in this case, and generally it is not. In MnO, (Dzyalo- 
shinskii 1964) the simple antiferromagnetic up-down structure is unstable, but there 
is no symmetry which forbids the structure to be ferromagnetic. Indeed, the wavevector 
is not small: q = (2/a) (2/7) (Yoshimori 1959). 

To study the nature of the phase transition we first identify the order parameter. 
Since the paramagnetic space group is P2,3, the star of the ordering wavevector consists 
of four vectors k, = (k/,/3)(1, 1, l), k ,  = (k / , /3)(-  1, - 1, I), k ,  = ( k / , / 3 ) ( -  1, 1, - 1) and 
k4 = (k/,/3)(1, - 1, - 1). For each wavevector there are two equivalent perpendicular 
directions in the plane normal to k ,  hi and Bi. These define altogether eight independent 
left-handed spirals described by the order parameters v i  and vi (Bak and Mukamel 1976): 

S(r) = cos(ki. r )  - Si sin(ki. r ) ]  + 
sin&. r )  + si cos(k, . r ) ] .  (8) 

Near T,, fluctuations in the order parameter become important. One way of taking 
this into account is by means of the Wilson and Fisher (1972) renormalisation group 
theory in d = 4 - E dimensions. The starting point is the LGW Hamiltonian, which 
in our case has the form 

4 

H = [(r/2)(~? + a;) + (VVi)’ + ( V ~ J z ]  
i = l  

4 + U( qi” + ,?), 
i =  1 

The coefficients in equation (9) are related to those in equation (3). Near the transition 
point, U and v are replaced by renormalised coefficients, and at a second-order transition 

Figure 3. Renormalisation group flow diagram (to order E )  for n = 8 LGW Hamiltonian 
describing the phase transition in MnSi and FeGe. 
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(U, U) converges to a stable fixed point. The recursion relations for (U, U) have been studied 
by Mukamel and Krinsky (1976), and they found a stable fixed point. It is important, 
however, to study the flow diagram more globally. Figure 3 shows the flow diagram to 
order E.  The diagram has the same structure as the one discussed by Bak and Lebech 
(1978) related to the rare earth neodymium. The phase diagram consists of three regions 
I, I1 and 111. The flow carries (U, U) either into the first-order regime 111, where the fourth- 
order term is not positive definite, or to a fixed point in a region where the magnetic 
structure is described by a superposition of four helicals (‘multiple q-structure’ with 
IS,,I = ISk1/ = ISk3/ = ISk4[). A single-q helical structure, as the one discussed here, is 
thus inconsistent with a second-order transition. Therefore the transition is predicted 
to be first order, in agreement with experiments on MnSi (Ishikawa et a1 1977, Hansen 
1977). The phase transition belongs to the class of transitions which are necessarily 
driven first order by fluctuations (Bak et al1976). We find that neutron scattering experi- 
ments on FeGe would be of interest to check the magnetic structure and to study the 
phase transition. 

In conclusion, we have demonstrated that the helical magnetic structures in MnSi 
and FeGe are caused by a ferromagnetic Dzyaloshinskii instability. Renormalisation 
group theory predicts the transition to be first order, in agreement with experiments on 
MnSi. 

Letter to the Editor 

We would like to thank C N Guy and B Lebech for discussing the experiments with us. 

References 

Bak P and Lebech B 1978 Phys. Rev. Lett. 40 800 
Bak P and Mukamel D 1976 Phys. Rev. B13 5086 
Bak P, Mukamel D and Krinsky S 1976 Phys. Rev. Lett. 36 52  
Dzyaloshinskii I E 1964 J .  E x p .  Theor. Phys. 46 1420 (1964 Sou. Phys.- J E T P  19 960) 
Guy C N and Strom-Olsen J 0 1979 J .  Appl. Phys.  50 1667 
Hansen P A 1977 Ris0 Report No.  360 (thesis), Rise National Laboratory, Gjellerup, Copenhagen, p 69 
Ishikawa Y, Komatsubara T and Bloch D 1977 Pkysica 86-88B 401 
Ishikawa Y, TaJima K, Bloch D and Roth M 1976 Solid St. Commun. 19 525 
Landau L D and Lifshitz E M 1977 Sfatistical Pkj.sics 2nd edn (New York: Pergamon) 
Lundgren L, Beckman 0, Attia V. Bhattacherjee S P and Richardson M 1970 Pliys .  Scr .  I 69 
Mukamel D and Krinsky S 1976 Phys. Reo. B13 5065 and 5078 
Wilson K G and Fisher M E 1972 Phys. Reo. Lett. 28 240 
Yoshimori A 1959 J .  Phys. Soc. Japan 14 807 


