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Using empirical data from a social media site (Twitter) and on
trading volumes of financial securities, we analyze the correlated
human activity in massive social organizations. The activity, typi-
cally excited by real-world events and measured by the occurrence
rate of international brand names and trading volumes, is charac-
terized by intermittent fluctuations with bursts of high activity
separated by quiescent periods. These fluctuations are broadly
distributed with an inverse cubic tail and have long-range temporal
correlations with a 1=f power spectrum. We describe the activity by
a stochastic point process and derive the distribution of activity
levels from the corresponding stochastic differential equation. The
distribution and the corresponding power spectrum are fully consis-
tent with the empirical observations.
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Online social networks have emphatically changed the way
people interact. The development of network theories and

growth in available data on human behavior (1–4) has prompted
an explosive interest in research on the evolution of behaviors (5–7)
and social structures (8, 9). Among the many forms of online social
media, microblogging services such as Twitter (10–12) are char-
acterized by a real-time dynamics with large numbers of user
broadcasts related to real-world events. Twitter is a popular
microblogging platform where a registered user can submit small
pieces of information, named “tweets,” that are either private or
made public to the user’s followers. The length of a tweet is
limited to 140 characters and its content ranges widely from
personal updates to massively distributed advertisements or po-
litical messages. Twitter has a global outreach and, hence, is used
by an increasing number of companies and political organizations
to disseminate news. To a large extent, Twitter users can be seen as
direct social sensors to measure the popularity of various topics. A
large part of recent research on Twitter uses user activity as pre-
dictor for real-world events including the dynamics of stock market
prices (13), box office revenues (14), real-time detection of the
location of earthquakes hitting populated areas (15), and for
opinion mining and political sentiment analysis (16). Large-scale
behavioral data from other online media have been shown to have
a similar predicting power, e.g., Google query volumes have been
used to detect early signs of stock market moves (17) or more
general movements in society (18).
Whereas behavioral data from Twitter have been suggested to

predict many real-world events or have been used in mapping
out social networks, the statistics of the combined user activity
are not well understood. Here we suggest a stochastic model for
the user activity in massive online communities. Our model sheds
light on the statistical properties of the large-scale user activity
on Twitter as well as the underlying correlations. Similar to the
user activity on Twitter, trading volumes on the stock market
reflect the interest that investors have in particular securities or
products at given prices. Interestingly, as we will point out below,
we find that the trading activity on financial securities is quite
similar to the large-scale user activity on Twitter.
We have automatically queried Twitter for tweets containing

one or more international brand names (SI Text). These tweets

appear at highly irregular time intervals (Fig. 1), reflecting in-
termittent user activity levels. We consider the broadcasting of
tweets to be a random point process with large fluctuations in the
time intervals between the online appearances of messages. The
number of tweets containing a certain brand “A” as a function of
t is therefore given by a time signal gAðtÞ composed of isolated
events occurring at random times tℓ, gAðtÞ=

P
ℓδðt− tℓÞ; where the

index ℓ refers to a specific posting event. For each query,
a number of the latest tweets nA ≤ 1; 500 is returned. Thus, we
determine an average tweet rate for a given query k as

γAðtnAÞ=
1

tnA − t1

ZtnA

t1

dtgAðtÞ= nAðtnAÞ
tnA − t1

; [1]

where t1 and tnA correspond to the time of the oldest, respec-
tively, latest, tweet returned by the query k. The time interval
τk = tnA − t1 for a fixed number nA of tweets is a highly fluctuating
variable from one query to another. We notice that the appear-
ance of tweets on Twitter resembles a nonhomogeneous Poisson
process with random fluctuations in the average tweet rate γA.
We have further collected data for the trading volume of se-

lected equities over a period similar to that covered by the Twitter
data. In particular, we consider the trading volume in three shares:
Apple Inc. (AAPL), Nokia Corporation (NOK), and Green
Mountain Coffee Roasters Inc. (GMCR). The number of shares
traded for each security was accumulated and sampled in 1-min
intervals. Changes in trading volume and price are known to be
highly leptokurtic (19), have long-range correlations (20), and
intriguing scaling properties (21, 22). We consider the volume as
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a simple proxy for the temporal interest that the market has in
a given security, disregarding more complex effects that might in-
fluence the price formation process.
In the Twitter data, we distinguish two types of user activity,

one where users post messages independently of other tweets and
one where users interact directly, e.g., by reposting information
from other users in so-called retweets or by submitting responses
to existing tweets. In general, a retweet contains text from the
original tweet together with a reference to the author who posted
it. Retweets typically form a smaller subset of all tweets, and the
frequency by which individual tweets are retweeted follows a
power law with an exponent similar to the out-degree distribution
of Twitter users (SI Text). The out-degree is here measured by the
number of followers of a user, i.e., the number of people that
directly receive tweets posted by that user. This suggests that the
rate of information spread by reposting is proportional with the
number of followers and is limited by the local network to-
pology. However, because there are only few tweets that gen-
erate a large flux of retweets, this may not be the most efficient
way to diffuse information between Twitter’s users. There are
information pathways that are not only related to the network
topology, but, to a larger degree, correspond to many users
tweeting at the same time about the same thing triggered by
events outside the network.
The intermittent dynamics of individuals has previously been

modeled in terms of a timing selection mechanism between dif-
ferent tasks (23). The prioritization of various tasks is suggested
to lead to a bursty dynamics with power-law distributed waiting
times. This is in contrast with a homogeneous Poisson process,
where the waiting time between tasks that are being selected at
random follows an exponential distribution. Here, we propose
a global measure of collective human behavior and introduce
a stochastic model for the global activity rate associated with
many interacting individuals in a large social organization. The
activity rate is characterized by long-term memory effects as well
as nonexponential distributed waiting times.

Results
Interestingly, the intermittent tweet rates of specific brands fol-
low a distribution PðγÞ with a power-law tail with an exponent β
close to an inverse cube, β= 2:9± 0:4 (SD), as seen in Fig. 2 and
in SI Text. For the trading volumes, we achieve values for the
exponent βAAPL = 2:9, βNOK = 3:1, and βGMCR = 3:0. Moreover,
the fluctuations in the flux of tweets are long-range corre-
lated with a power spectrum that decays as 1=f α, where f is the

frequency and α= 1:0± 0:4 (SD), in an intermediate frequency
window corresponding to timescales from 20 min to 24 h as
shown in Fig. 3. This means that tweets posted at a given time are
influenced with an equal strength by tweets on all timescales
ranging back as far as ∼ 24 h. At the same time, high bursts of
new tweets, extreme events, occur in the tail of PðγÞ. The 1=f
noise is a widespread phenomenon observed in a variety of dif-
ferent systems, including voltage fluctuations (24), heartbeats
(25), freeway traffic (26), music (27), and trades in financial se-
curities (20), along with many other examples. Although there is
not a unified theory that would apply to all systems exhibiting 1=f
noise, there are numerous models that reproduce the 1=f fluc-
tuations in temporal signals with fluctuations drawn from dif-
ferent distributions. On the other hand, there are also plenty of
studies that focus on the non-Gaussian, power-law statistics of
time signals, PðγÞ∼ γ−β, independent of their power spectrum.
More recent studies on stochastic point processes investigated
the relationship between Pareto-type distributions of the varia-
bles and their 1=f α power spectrum, e.g., refs. 28–30. The idea
behind a stochastic point process is to model the average waiting
time between random, discrete events by a multiplicative noise
process. Essentially, the complexity of scale-free distributed
variables with a 1=f α spectral density emerges from the multi-
plicative noise. Here we present a stochastic point process that
captures both the PðγÞ∼ γ−3 and 1=f -noise features. Other
models of correlated human behavior (31) predict similarly a
power-law distribution of the activity rates. However, these

Fig. 1. Temporal variation of tweet rates of three international brands,
IBM, Pepsi, and Toyota. The time signals are for all brands intermittent, i.e.,
they have longer periods of relatively steady activity levels interrupted by
sudden high-activity spikes. The time signals are all modulated by an un-
derlying periodic variation over days and weeks.

A

B

Fig. 2. Probability density functions of (A) brand tweet rates and (B) trading
volume rates for stocks. The mean values have been subtracted from the
individual rates and the rates have been normalized by their respective SDs.
The density functions collapse and reveal a common scaling behavior for
relatively large rates. The green line added to both A and B is a guide to the
eye and is consistent with a scaling exponent of −3. In B, we consider trading
activities in the companies Apple Inc. (AAPL), Nokia Corporation (NOK), and
Green Mountain Coffee Roasters Inc. (GMCR).
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models possess a weaker memory effect and do not reproduce
the scaling exponent for the power spectrum that we observe.
We assume a scenario where the human activity in the case of

no external input is determined by a natural drift toward in-
activity. That is, the waiting time τ since the last activity increases
with time ∂tτ= 1. On the other hand, excitation by external events
drives the system toward higher activity levels. Without correla-
tions in the user activity, the rate γðtÞ is determined by a balance
between the drift toward inactivity and repeated excitation. We
assume that the correlation in the human dynamics is controlled
by a current waiting time between events in the shape of a mul-
tiplicative noise with an amplitude given by

ffiffiffi
τ

p
. The stochastic

process for the average waiting time is therefore determined by
a stochastic differential equation of the form

dτ
dt

= 1+ f ðτÞ+ ffiffiffi
τ

p
ηðtÞ; [2]

where η is Gaussian noise with zero mean and unit variance, and
the deterministic part f ðτÞ is chosen such that the process attains
a nontrivial stationary distribution. Collective interactions be-
tween users sending messages on Twitter are effectively modeled
by the intrinsic, multiplicative noise. The amplitude of the in-
trinsic noise term is proportional to

ffiffiffi
τ

p
, which implies that if the

dynamics was solely driven by noise, the waiting time τ would
have an absorbing state, i.e., τ= 0, corresponding to a tweeting
activity that is constant in time and never ceases. The drift term
equal to 1 is added to mimic that, if nothing happens, the average
waiting time would increase linearly with time as mentioned
above. Due to this constant drift term, the absorbing state τ= 0
is never attained, although there are sudden excursions in its
neighborhood. The stationary probability distribution function
of waiting times FðτÞ corresponding to Eq. 2 is obtained as the

steady-state solution of the Fokker–Plank equation in the Ito
formulation and is given as

FðτÞ∼ τe2
R τ

0
f ðτ′Þ=τ′dτ′

; [3]

apart from the normalization constant. The divergence at large
τ is suppressed by the cutoff function which depends on f ðτÞ.
However, at small τ, corresponding to large tweet rates γ, the
function f ðτÞ is irrelevant because FðτÞ∼ τ. Thus, in the scaling
regime, we can safely ignore f ðτÞ. Using that γ ∼ 1=τ, the sto-
chastic dynamics for γ follows from Eq. 2 by Ito’s lemma and is
given as

dγ
dt

= γ3=2ηðtÞ; [4]

where we ignore the contributions due to f ðτÞ that only de-
termine the range over which γðtÞ is power-law distributed as
PðγÞ∼ γ−3. The power spectrum of tweet rate fluctuations is
determined by the joint distribution Pðγ; t; γ′; t′Þ associated
with the stochastic process in Eq. 4. By the Wiener–Khintch-
ine theorem, the power spectral density of γ is related to the
correlation function as

Sðf Þ = 4
Z∞

0

dthγð0ÞγðtÞi cos  ð2π ftÞ; [5]

where the correlation function hγðtÞγð0Þi is defined as

hγðtÞγð0Þi=
Z

dγdγ′Pðγ; t; γ′; 0Þγγ′: [6]

As with other point processes, one may assume that the transition
distribution has an eigenfunction expansion, and therefore

Pðγ; t; γ′; 0Þ≈
X
n

PnðγÞPnðγ′Þe−λnt [7]

where the unnormalized probability eigenfunctions PnðγÞ satisfy
the master equation corresponding to Eq. 1 and are given by

−λnPnðγÞ = 1
2
d2

dγ2
�
γ3PnðγÞ

�
: [8]

Combining Eqs. 6 and 7, we have that

hγðtÞγð0Þi=
X
n

γ2ne
−λnt; [9]

where γn =
R∞
0 dγγPnðγÞ is the first moment of the probability

eigenfunction. By its Fourier transform as in Eq. 5, the power
spectrum can be written as a sum of Lorentzian spectra

Sðf Þ≈ 4
X
n

γ2nλn
λ2n + 4π2f 2

: [10]

The relation between γn and the eigenvalues λn follows from the
structure of the unnormalized eigenfunction obtained from Eq. 7
and given as PnðγÞ= γ−5=2J1ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
2λn=γ

p Þ, where J1ðxÞ is the Bessel
function of the first kind. Hence, the first moment of it is
γn = ð2λnÞ−1=2. The regime Sðf Þ∼ 4

R∞
0

dλ
λ2 + 4π2f 2

= 1=f is obtained
when γn ∼ λ−1=2n .
The joint appearance of the 1=f fluctuations distributed with

an inverse cubic law for the flux of tweets and volume of trades
has interesting implications. Although there is no consensus on

A

B

Fig. 3. Power spectra of the activity rates γðtÞ for the individual brands in SI
Text (A) and stocks (B). For high frequencies 0.1–24 h−1, the spectra have
a characteristic 1=f behavior with a crossover to white noise at very high fre-
quencies. The green line is a guide to the eye and corresponds to a 1=f behavior.

Mathiesen et al. PNAS | October 22, 2013 | vol. 110 | no. 43 | 17261

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304179110/-/DCSupplemental/pnas.201304179SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304179110/-/DCSupplemental/pnas.201304179SI.pdf?targetid=nameddest=STXT


a unique underlying process generating 1=f noise, we associate
this kind of fluctuations with complex systems that exhibit an in-
crease in structures and information due to a long-term memory.
In general, the collective interactions in relation to trading and
tweeting exhibit the characteristics of an emergent phenomenon.
Intermittent fluctuations in the rate of tweets on Twitter can

happen by two types of information pathways: (i) the influx of
tweets triggered from the outside world onto Twitter (many in-
dependent users tweet about the same thing) and (ii) cascades of
retweets or replies to existing tweets. Because there is a larger in-
flux of new tweets compared with the rate of retweets, we conclude
that most of the information spread across the online network
happens in a “one-step” cascade when many unrelated people
tweet about the same thing.
The activity on Twitter may not be very different from the

dynamics of stock trades on financial markets because both are
influenced by the social behavior inside massive communities
combined with simple rules on the interaction set by, e.g., the

platform through which the individuals interact. Furthermore, the
similarity on large scales indicates a common feature in the com-
plex process underlying the decision-making of users on Twitter
and participants in financial markets.

Materials and Methods
From the Twitter Application Programming Interface (API), we automatically
query for tweets on Twitter containing one or more of 92 preselected in-
ternational brand names. The full list of brand names is given in SI Text. For
each query to Twitter a maximum number of 1,500 tweets is returned by the
API. Each returned tweet has a time stamp, which can be used to estimate an
average tweet rate. The dataset used in this study was created by moni-
toring the public timeline for a period of 4 mo, November 2010 to February
2011; 2 mo, January–February 2012; and 2 mo, October–November 2012.
During these periods, we computed the tweet rates of selected international
brands with a sampling rate down to half a minute.
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