
Physica A 605 (2022) 127917

D

t
e
i
H
c
n
H

b
t
m
t
a
o

t
u
s
d

h
0

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Detecting limit cycles in stochastic time series
Emil S. Martiny, Mogens H. Jensen, Mathias S. Heltberg ∗

epartment of Physics, University of Copenhagen, Denmark

a r t i c l e i n f o

Article history:
Received 9 January 2022
Received in revised form 23 June 2022
Available online 28 July 2022

Keywords:
Oscillations
Limit cycles
Stochastic dynamics
Statistical test

a b s t r a c t

The emergence of oscillatory behaviour represents fundamental information about the
interactions of the underlying system. In biological systems, oscillations have been
observed in experimental data, but due to the significant level of noise, it is difficult
to characterize whether observed dynamics based on time series, are truly limit cycles.
Here, we present a simple three step method to identify the presence of limit cycles in
stochastic systems. Considering input from one-dimensional time series, as are typically
obtained in experiments, we propose statistical measures to detect the existence of limit
cycles. This is tested on models from chemical networks, and we investigate how the
underlying dynamics can be separated depending on the noise level and length of the
series.

© 2022 Published by Elsevier B.V.

1. Introduction

The presence of oscillations is an important marker, observed in many biological systems [1–10]. In the past decades
here has been growing evidence, that many of the most important regulatory proteins, known as transcription factors,
xhibit oscillatory behaviour following external perturbations [11–24]. One particularly interesting example is the
mportant protein p53, that exhibits oscillations in the nuclear concentration following a high dose of γ -radiation [25–28].
owever, so far it has not been possible to make a decision on whether this behaviour is actually the result of a limit
ycle, or whether this is the stochastic fluctuations that generate the oscillatory behaviour. Understanding the underlying
etwork of these proteins is a key challenge to the field of systems biology, and therefore the precise identification of a
opf bifurcation can be a very important element in the analysis and as a guidance in the model construction [29,30].
There is a large body of literature describing bifurcations in a variety of dynamical systems including the Hopf

ifurcation, generally by using either maps [9,10], or invariant measures of the mathematical variables [31–35]. Applying
echniques from these sources, we use the equilibrium distribution of the Fokker–Planck (FP) equation as an invariant
easure, as a key tool to classifying the oscillatory behaviour. However we believe that there is a lack of applicability in

he proposed methods, and our task is therefore to apply realistic series (similar to the ones extracted from experiments)
nd in a direct way proposes a tool that will lead to an understanding of the underlying systems and decipher the nature
f oscillations.
Here, we outline a simple three-step method to analyse one-dimensional signals and decipher the origin of series that

o the eye look like real oscillations. First, we transform the one dimensional series to a two dimensional distribution
sing time embedding. We then use Taylor expansion of the FP equation to obtain a general relation between the steady
tate probability distribution and the direction of the force on the trajectory close to the fixed point. Finally, we use this
istribution to fit a curvature-parameter and based on the uncertainty in this parameter, we can quantify the likelihood
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Fig. 1. (A) Schematic figure showing the phase space of oscillatory motion and the oscillatory dynamics in stochastic simulations of (1) a stochastic
cycle (purple) and (2) a deterministic cycle (orange). (B) Schematic figure showing the probability distribution in one dimension for (1) small noise
(blue), (2) medium noise (orange) and (3) large noise (green). Two probability distributions are shown for comparison. (C) Linear correlation of two
data series as a function of the applied time delay τ . The arrow show the value we choose to generate the polar coordinates, when the linear
correlation is equal to zero.

that the time signal stems from a limit cycle. To verify this, and show the applicability of the method, we test this on a
series of chemical systems (with stochasticity similar to what is found in biological experiments) and estimate the rate
of success for the method as a function of the parameter distance from the Hopf bifurcations, the levels of noise and
the length of the time series. We believe that this work can be of great help and importance, to a broad audience doing
research on dynamical protein networks [36].

2. Theory

We consider following the situation: In a laboratory, a long (or several short) time series have been measured. They
exhibit oscillatory dynamics, but in order to extract knowledge from them, or include them in a mathematical model
framework, we need to understand whether these oscillations show that the underlying system exhibit a stable limit
cycle. Such systems can exhibit similar behaviour and therefore be difficult to distinguish (Fig. 1A).

In this section we derive how one can extract observables from the time series in order to determine the nature of the
observed oscillations. We will use previously presented mathematical arguments, but since the main point of the article is
to present an applicable method, we will point to references where the mathematical analysis is showed more rigorously.

Our aim is to determine whether oscillatory time series stems from a limit cycle in the underlying dynamical system
(i.e. the system is above a Hopf bifurcation). We term this true Hopf bifurcation a deterministic cycle (DC). As an
alternative, the system could have a fixed point, where the stochastic noise levels drive the system out of this point
resulting in oscillatory dynamics with a well defined power spectrum [37,38]. In this case, the Jacobian matrix still
possesses imaginary eigenvalues, but the real part of the eigenvalues is negative. We term this a stochastic cycle (SC),
since the noise moves the system out of the stable fixed point.

Our approach is now to quantify the statistics for each of these systems and separate them based on hypothesis testing.
Time embedding is based on a data series x(t), and a definition of a time embedded variable x(t + τ ) where τ is

a time delay. Therefore time embedding presents a way to include the history of information in the trajectories and is
fundamentally based on Takens theorem which has been used in many studies of dynamical systems [39]. One basic
property of the time embedding is that if x(t) is periodic then x(t + τ ) is periodic as well. Therefore we will use this
to introduce two variables and thereby transform the time series into a two-dimensional phase space, spanned by x(t)
and x(t + τ ). Theoretically, this works for all τ , but in practice we choose τ such that x(t) and x(t + τ ) are linearly
uncorrelated, meaning the noise in the two dimensions is linearly uncorrelated as well. To obtain this, we choose τ by
minimizing the absolute value of the linear correlation between a signal and itself shifted by some amount i.e. x(t) and
x(t +τ ) (See Fig. 1(B)). This means that we increase the value of the time-delay until we reach a linear correlation of 0 for
the first time. To get an intuition for this, one can consider the simple example of a x(t) = sin(t) signal. Time embedding
gives (sin(t), sin(t + τ )), a time delay equal to of 1/4th of the period will clearly give (sin(t), cos(t)) - a circle, where the
two coordinates are uncorrelated. Other choices of τ will result in ellipses. This use of uncorrelated data simplifies the
derivations in the next step, and reduces the required amount of data.

The probability distribution of the radial coordinate, P(r), represents the probability that the trajectory will be at
a distance r from the centre of the cycle. With the constructed two-dimensional space from time embedding, we can
empirically compute this distribution, but we will derive expressions for the theoretical model. Here we follow a scheme
similar to one that has been presented in Refs. [31–35], but we propose to apply it directly to the empirical distribution
instead of a system of equations. This is advantageous since it makes the method applicable when we do not know the
equations leading to the observed dynamics.
2
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Close to the Hopf bifurcation, a limit cycle takes an elliptic form, so x(t) (one of the two coordinates) will be on the
form:

x(t) = a cos(ωt + φ) = a cos(θ ) (1)

where a is the amplitude of the oscillatory motion. This means that the velocity of this will be:

v(θ ) = −aωsin(cos−1(
x
a
)) = −aω

√
1 − (

x
a
)2 (2)

If we now assume that the system is moving in the presence of stochastic, white noise, the resulting stochastic differential
equation will take the form:

dx = dt
(
aω

√
1 − (

x
a
)2

)
+ σdW (3)

Where the parameter σ represents the strength of the stochastic noise. We can write the Fokker–Planck equation for this
system, and without loss of generality we can for simplicity set a = ω = 1 to obtain:

∂tP(x, t) = ∂x(
√
1 − x2 · P(x, t)) + D∂xxP(x, t) (4)

= ∂xP(x, t)
√
1 − x2 − P(x, t)

x
√
1 − x2

+ D∂xxP(x, t) (5)

where P(x, t) is the probability density function of the variable. We now look at the steady state (∂tP(x, t) ≈ 0) and in
the limit where 1 ≫ D. This represent the system with extremely low noise level, and we should be able to recognize a
true oscillations above the Hopf bifurcation. Here our equation take the form:

∂xP(x)
√
1 − x2 − P(x)

x
√
1 − x2

= 0 (6)

⇒
x

√
1 − x2

dx =
1

P(x)
dP (7)

⇒ P(x) ∝
1

√
1 − x2

(8)

This distribution clearly has two singularities at x = ±1 (for a = 1), and in stochastic systems, this distribution will
epresent two separated peaks. We note that the existence of such peaks can be used to distinguish between DC’s and
C’s from P(x), but this is only valid far above the Hopf bifurcation, since the peaks will ‘‘melt’’ together close to the
ifurcation where v(t) is no longer significantly larger than σ (Fig. 1C).
In this regime we apply time embedding, thereby turning the time series into polar coordinates where the radial

omponent r , is the distance to the fixed point. A circular limit cycle is then a stable fixed point in r equal to the radius
f the limit cycle (r∗). Assuming Gaussian noise (i.e. a Wiener process) in polar coordinates, the radial Langevin equation
akes the form (see Appendix A):

dr = dt
(
f (r) +

D
r

)
+

√
2DdWr (9)

where f (r) is again the direction of the radial motion, similar to a force in an overdamped system. The Fokker Planck
equation, in steady state where there is no dependency on t, describes the probability distribution P(r) and takes the
form:

−

(
f (r) +

D
r

)
P(r) + D∂rP(r) = 0 (10)

⇒
1

P(r)
dP =

( f (r)
D

+
1
r

)
dr (11)

⇒ P(r) = Cre
F (r)
D (12)

ere C is a normalization constant and F (r) is the antiderivative of f (r). Note that we assume that eF (r) ↦→ 0 for r ↦→ ∞,
ince we consider a physical system that does not diverge to ∞, since otherwise the system would not have a well defined
robability distribution in steady state.
Now differentiating this expression twice lead to the expression:

d2P(r)
dr2

= Ce
F (r)
D

( f (r)
D

+
1
D

∂r (rf (r)) + r
f (r)2

D2

)
(13)

valuating this for r ≈ 0 and Taylor expanding to first order f (r = ϵ) ≈ f (0) + f ′(0)ϵ we obtain:

d2P(r)
2

⏐⏐⏐⏐ ≈ Ce
F (ϵ)
D

( f ′(0)ϵ
+

1
∂r (r2f ′(0))

⏐⏐⏐ + ϵ3 f
′(0)2

2

)
(14)
dr r=ϵ D D r=ϵ D
3
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Fig. 2. Two examples of the proposed method. (A) Simulations of the Brusselator system with parameters a = 1, b = 2.15, σ = 0.05 (See Appendix B).
B) Distribution of x(t), x(t + τ ) in two dimensions, of the time embedded data series for the data shown in (A). The white dots represent the fixed
oints. (C) Histogram of measured radial distribution of time embedded system (P(r)), The orange line is straight (second derivative=0), The red
urve is fitted with a second order polynomial. (D) Simulations of the Glycolysis system model with parameters a = 0.1, b = 0.4, σ = 0.01 (See
ppendix B). (E) Same as B, but for the Glycolysis system. (F) Same as C, but for the Glycolysis system.

ery close to the fixed point we keep only terms up to first order in ϵ leaving us with:

d2P(r)
dr2

⏐⏐⏐⏐
r=ϵ

=
3f ′(r)
D

Ce
F (r)
D + O(ϵ2) ∝ f ′(r) (15)

ince the stochasticity constant, D, is always positive, this equation reveals the desired information about the distribution
f radial positions of the system. Note that the only information we do know about f (r) is that its first derivative is
ositive for unstable fixed points and negative for stable fixed points. The sign in the second derivative of the steady state
robability distribution P(r) is therefore only dependent on the stability of the fixed point. This means we can use the
urvature of P(r) as a test of whether the system is a DC or an SC and we can quantify our belief by the uncertainty in
he fit.

Based on this we will apply the theoretical framework to simulated data, and investigate how one can use this approach
o determine whether simulated systems has a limit cycle or a stable fixed point.

. Practical implementation using hypothesis testing

To use the proposed method on a system in practice, it boils down to calculating the probability distribution P(r)
nd measure whether it is concave or convex, which is the third step in the proposed method. From a practical point of
iew, we calculate the second derivative of the distribution by fitting it close to r = 0 with a second order polynomial
(r) = ar2 + br . In Fig. 2 the method is explained in steps:

• We use a one dimensional time series of arbitrary length as input (Fig. 2 A+D).
• We apply time embedding to the series, resulting in a two-dimensional space (Fig. 2 B+E),
• We transform all points to radial coordinates and measure the second derivative of the distribution for P(r) (Fig. 1

C+F).

or the distribution around r ≈ 0, we can compare it to a straight line and classify it as either a DC or SC dependent on
he sign of the curvature.

To check the general validity of the above arguments, we investigate four two-dimensional oscillators (see Appendix B
or details):

1. The normal form of the Hopf bifurcation
2. The Glycolysis oscillator,
3. The Chlorine oscillator
4. The Brusselator.

o minimize the number of parameters, we will in the remaining part of this paper define the oscillations in terms of two
arameters:
4



E.S. Martiny, M.H. Jensen and M.S. Heltberg Physica A 605 (2022) 127917

A
d

t
t
c
h

t
c
t
A
o
v

3

W
n
t
b
m
i
f
a
2
m

Fig. 3. (A) P(r) as a function of r for λ = 0.01. Simulations made for the Glycolysis model with parameters a = 0.1, b = 0.4, σ = 0.01 (See
ppendix B). (B) Same as A, but with λ = 0.022. (C) Same as A, but with λ = −0.01. (D) Kolmogorov Smirnov test statistic for a straight line
istribution. The colours in the heatmap represents the KS statistics. Parameter values in λ and σ . Coloured dots correspond to A–C.

1. The bifurcation parameter λ which has the value λ = 0 at the Hopf bifurcation. For λ > 0 the system is a limit
cycle (DC) (See Appendix B for details).

2. The noise parameter σ =
√
2D. This defines the strength of the applied white noise level and is the constant

multiplied by a random number at each time step in the Langevin simulations.

We use these models, to test the concept by varying the values of λ. For λ > 0 the system is a DC, and for values where
he repulsive force away from the fixed point dominates the stochastic fluctuations (i.e. λ > σ ), it is possible to identify
he curvature of P(r) and reject the hypothesis of a straight line (Fig. 3A). For values λ ≈ 0, where the stochastic level is
omparable to the deterministic movement of the system, the curvature looks flat and it is not possible to reject neither
ypothesis (Fig. 2B). Finally, if λ < 0, it is possible to extract the negative curvature of the distribution for the SC (Fig. 3C).
As a first test, we wanted to investigate how well these empirical curves differed from a straight line, that corresponds

o the singular point of the Hopf bifurcation. Therefore we applied the one-sided Kolmogorov–Smirnov (KS) [40,41] test, to
ompare the empirical distribution with the reference distribution of a straight The KS test assumes as a null-hypothesis
hat the distributions are equal, and gives as output a probability to reject this, allowing us to make a hypothesis test (See
ppendix C for further explanation). We obtained the test-statistic from the KS test and evaluated this for combinations
f the Hopf parameter (λ) versus the stochastic parameter (σ ) and visualized this as a heatmap (Fig. 3D). This heatmap
isualize for what combinations of λ and σ we will be able to determine the second derivative of the distribution.

.1. Dependency on the length of the time series

Since our method relies on results in equilibrium, it is clear that the longer the time series, the more certain is the result.
ith our method applied above, we investigate howmany oscillations (or periods) are necessary to identify the underlying
ature of the oscillations correctly. We applied this scheme for six λ-values above and below the Hopf bifurcation, and
ypically after 100–300 periods, the oscillations had been identified correctly (Fig. 4A). When comparing the time series
y eye, it can otherwise be very difficult to distinguish a DC (Fig. 4B) from an SC (Fig. 4C), but using this our proposed
ethod it relatively quickly becomes clear. We repeated the method for a doubled noise level, and found similar results

n general, but where some of the DC simulations were more difficult to determine (Fig. 3d). Representative time series
or this noise level is also shown for the DC (Fig. 4E) and the SC (Fig. 4F). We note that for the SC simulations (red, green
nd orange in Fig. 4A+D) the method correctly gives low probability for the dynamics to be a DC after approximately
50 oscillations. We want to stress, that since it is an equilibrium measure, these oscillations can also be gathered from
ultiple cells, if they are measured under the same conditions.
5
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Fig. 4. (a) Probability for the time signal to be a DC evaluated after an increasing number of oscillating periods. Colours correspond to different
values of λ. Noise level, σ = 0.02. (b) Representative trace for λ = 0.02 (c) Representative trace for λ = −0.01 (d–f) same as a–c but for σ = 0.04.
g) Heatmap showing a/σa for different combinations of parameters, it is the same underlying simulations of the Glycolysis oscillator as Fig. 3.
oloured dots correspond to lines in a+d.

Finally we tested the significance of the curvature parameter by fitting a second degree polynomial to the distribution
or a large range of parameter combinations of λ and σ . In this procedure, we obtain a fitted value of the curvature
arameter, abest and an uncertainty in the parameter, σa. Taking the ratio of these two numbers, gives a measure of the
ignificance of this parameter (i.e. how far away it is from zero in terms of its standard deviation). We therefore extracted
his ratio, and generated a heatmap of abest/σa for the σ , λ-space is shown in Fig. 4G. The parameters for the curves in
Fig. 4 A+D are shown as points in Fig. 4G. Note that the results are asymmetric around the Hopf bifurcation (λ = 0),
showing that the method never defines a non-oscillatory system (SC) to be a DC. Therefore the method should be applied
with the null-hypothesis that the observed data is not a DC. Assuming Gaussianity in the parameters, the measure abest/σa
gives a probability with which one can reject the hypothesis of whether the oscillatory data comes from an SC and use it
to declare the existence of a deterministic limit cycle.

4. Discussion

Oscillations are often observed in dynamical systems, and provides an important finger print of the dynamical
behaviours in parameter spaces for a long list of systems in physics, chemistry and biology. In this paper we have shown
how to transform one-dimensional time series into a form where the theory of stochastic dynamical systems can be used.
This is done through a time embedding technique, leading to a system where the equilibrium distribution of the radial
component close to the fixed point changes at the Hopf bifurcation. The method gives a simple way of distinguishing
between stochastic (SC) and deterministic (DC) cycles, by determining whether the empirical probability distribution P(r)
is concave or convex.

We note that in our derivations all calculations have been performed in the framework of additive Gaussian noise.
If instead the noise is multiplicative, it can still be Taylor expanded around the same fixed points, and the calculations
will still hold, since the signs will not change. Multiplicative noise can make the approximations worse away from the
fixed points, but the measure of curvature for very small values of r can still be used, since we are just looking at the
6
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ign of the curvature. Therefore these results are also valid for systems where we perform simulations using the Gillespie
lgorithm [42], which is a method often used in modelling biological systems.
A fundamental challenge for many systems, especially in the field of biology, is to measure the required number of

scillation periods, in order for the hypotheses to properly be distinguishable. As far as the requirements to use the
ethod, it unsurprisingly depends on the noise level and how close to the Hopf bifurcation the system is. The closer to

he bifurcation and the more noise in the system, the larger data series are needed. Here we note that this is one of the
trengths of using the equilibrium distribution as a measure, since one can in theory gather the distribution, by combining
eries from many cells. Thus the input data does not have to be one long time series, but could be the sum of multiple
ndependent series. Such an approach will therefore be possible for many systems, except for systems with large series
ariation where combining data series leads to problem, since each individual series is not representative for the same
quilibrium distribution. In such a case it is necessary to normalize the data.
We believe that this paper presents a valuable tool in applying theoretical results to describe various different

ynamical systems and applying them to experimental time series obtained from physical, biological and chemical
ystems. We outline a simple way to separate the two cases; deterministic (DC) and stochastic (SC) oscillating cycles.
f the requirements are fulfilled, the method should be easy to use for biological data series, since both time embedding
nd identifying whether a distribution is concave or convex are relatively simple tasks. Since oscillations represent a
biquitous type of dynamics, the method can significantly help to improve the modelling approaches in the future.
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ppendix A. Stochastic differential equation in polar coordinates

Let us assume we have a two-dimensional system of coupled ordinary differential equations, with stochastic Langevin
oise. These take the form:

dX = (−∂x(f (x, y)))dt +
√
2D · dW1 (16)

dY = (−∂y(f (x, y)))dt +
√
2D · dW2 (17)

ere dWi has the fundamental property that dWi ·dWi = 1 and dWi ·dWj = 0, since the noise is uncorrelated. The function
(x, y) corresponds to a potential in an overdamped system. Now assuming radial symmetry so f ↦→ f (r) we can change
he coordinates so the equations take the form:

dX = (−∂r (f (r))
x
r
)dt +

√
2D · dW1 (18)

dY = (−∂r (f (r))
y
r
)dt +

√
2D · dW2 (19)
7
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ow we apply Ito’s lemma, which can be viewed as the stochastic counterpart to the chain rule of calculus. We derive
he differential for r(x, y):

dr = ṙdt + ∂xrdX + ∂yrdY +
1
2

(
∂xxrdXdX + ∂yyrdYdY + 2∂xyrdXdY

)
(20)

ince r has no time dependency ṙ = 0, the next two terms give:

(∂xr)dX + (∂yr)dY =
x2

r2
∂r f (r)dt +

y2

r2
∂r f (r)dt +

x
r

√
2DdW1 +

x
r

√
2DdW2 (21)

= ∂r f (r)dt +
√
2D

(
cos(θ )dW1 + sin(θ )dW2

)
(22)

inally we note that dWidWi =

{
dt if i = j
0 otherwise

.

Now gathering terms and keeping only terms to first order in dt, we get:

1
2

(
∂xxrdXdX + ∂yyrdYdY + 2∂xyrdXdY

)
=

1
2

(
(∂xxr)2Ddt + (∂xxr)2Ddt

)
+ O(dt

3
2 ) (23)

=
D
r
dt + O(dt

3
2 ) (24)

here we in the last line used the fact that ∂xxr + ∂yyr =
1
r .

Collecting all these terms, and keeping only terms in first order of dt , leaves us with:

dr = ∂r f (r)dt +
√
2D

(
cos(θ )dW1 + sin(θ )dW2

)
+

D
r
dt (25)

ince dW1 and dW2 are normally distributed variables, their sum is also a normally distributed variable. This has mean
= 0 and standard deviation σ =

√
2Dcos(θ )2 + 2Dsin(θ )2 =

√
2D. We can therefore write as a new stochastic variable

Wr , allowing us to describe the radial component of the stochastic variable:

dr = dt
(
∂r f (r) +

D
r

)
dt +

√
2DdWr (26)

his is the radial part of the description. Note that in two dimensions we can also obtain the angular (θ ) part of the
tochastic differential, by applying the same recipe as above and using ∂xθ =

−y
r2

, ∂yθ =
x
r2

, ∂xxθ + ∂yyθ = 0. Here we end
up with:

dθ =

√
2D
r

dWθ (27)

e observe that there is no dependency on the ‘‘force’’ (f (r)) and since this is the one we aim to obtain information about
e will not use the angular part in this paper. In the normal form of a limit cycle, the radial part has the form in the
eterministic system:

dr
dt

= r − µr3 (28)

ith the above description, the radial part in the stochastic version takes the form:

dr = dt
(
r − µr3 +

D
r

)
+

√
2DdWr (29)

he noteworthy part of this is the added deterministic term D
r in the radial equation that behave like a pressure away

from the fixed point.

Appendix B. Mathematical description of oscillators

In this work we have used 4 different mathematical systems of ordinary differential equations to simulate the
oscillatory behaviour in the presence of noise. These are each described here:

• The normal form:

ẋ = xµ − ωy − (ax + yb)(x2 + y2) (30)

ẏ = yµ + ωx − (ay − bx)(x2 + y2) (31)

µ = λ (32)
8
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W
f
N

b
e

H
r

• The Glycolysis oscillator [44], b is the bifurcation parameter:

ẋ = −x + ay + x2y (33)

ẏ = b − ay − x2y (34)

b2 =
1
2
(1 − 2a − 2λ ±

√
4λ2 + 1 − 8a − 4λ) (35)

• The Chlorine oscillator [45], b is the bifurcation parameter:

ẋ = a − x −
4xy

1 + x2
(36)

ẏ = bx(1 −
y

1 + x2
) (37)

b = −
10λ
a

−
2aλ
5

+
3a
5

−
25
a

(38)

• The Brusselator [46], B is the bifurcation parameter:

ẋ = A + yx2 − Bx − x (39)

ẏ = Bx − yx2 (40)

B = 2λ + 1 + A2 (41)

e note that for all the models, we apply stochastic noise, by including a white noise term, through the Langevin
ormulation. In this way all models, will have a stochastic term, where the parameter σ specifies the level of the noise.
umerically, we include this in the simulations, by adding a stochastic term of the form: σ ∗

√
dtR, where R is a random

number following the unit gaussian.

Appendix C. One sided Kolmogorov–Smirnov test

The Kolmogorov–Smirnov test is a non-parametric test that gives a probability that an empirical distribution is similar
to some underlying distribution. Using a null-hypothesis that the two distributions come from the same probability
density function, the test calculates the maximal distance between the empirical density function and the cumulative
distribution function of the reference distribution. Suppose we have n random numbers: X1, . . . , Xn. The empirical
distribution function is defined as:

Fn(x) =
1
n

∑
1≤j≤n

I{Xi ≤ x}

Translated this means, that the value for some value x, is the number of elements that are smaller than x. Note that the
empirical distribution function takes values from [0; 1] and it increases stepwise in step heights of 1

n . The largest distance
etween the empirical distribution function and the cumulative distribution function for the reference distribution is now
xpressed as:

Dn = subx∈R|Fn(x) − F (x)]

ere the Glivenko–Cantelli theorem proves that for large n Dn ↦→ 0 and Kolmogorov took this further and derived the
ate of convergence [41]. Using this Kolmogorov distribution, one can use that:

P(
√
n = subx∈R|Fn(x) − F (x)] ≤ t)

≡ H(t) = 1 − 2
∞∑
j=1

(−1)j−1e−2j2t2

With this one can directly obtain the probability of any distribution is similar to an underlying distribution. Note that we
do not need any assumption on the shape of the distributions since the result holds for any distribution.
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