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We construct a hexagonal lattice of repressing genes, such that each node represses three of the

neighbors, and use it as a model for genetic regulation in spatially extended systems. Using symmetry

arguments and stability analysis we argue that the repressor lattice can be in a nonfrustrated oscillating

state with only three distinct phases. If the system size is not commensurate with three, oscillating

solutions of several different phases are possible. As the strength of the interactions between the nodes

increases, the system undergoes many transitions, breaking several symmetries. Eventually dynamical

frustrated states appear, where the temporal evolution is chaotic, even though there are no built-in

frustrations. Applications of the repressor lattice to real biological systems are discussed.
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Our understanding of genetic regulation inside the cell
has greatly improved in recent years. A number of genetic
circuits have been quantitatively characterized, ranging
from switches to oscillators made up of negative feedback
loops. The latter class of circuits is ubiquitous in regulatory
networks with oscillating gene expressions, two of the
most important examples being the NFkB network for
inflammatory response [1–3] and the p53-mdm2 system
which regulates cell apoptosis [4,5].

However, decisions taken inside the cell may depend
crucially on the environment and may be cooperative, i.e.,
depend on the behavior of neighboring cells. This calls for
theoretical modeling which explicitly takes the spatial
arrangement of different cells into account. As a basic
unit, we consider a negative feedback loop consisting of
three proteins that repress each other by blocking the
associated genes, which Elowitz and Leibler termed the
‘‘repressilator’’ [6]. Previously, others have studied
coupled repressilators to investigate quorum sensing [7]
and cell-to-cell communication [8]. As a further step, one
might consider systems made up of regular arrays of cells
interacting in a specific manner with neighboring cells.
Because of close packing, real arrays of cells in planar
tissues often display hexagonal or near-hexagonal struc-
ture, e.g., in hepatic or retinal tissue [9–11].

Here we approach this general problem by extending the
simple repressilator to a repressor lattice—a hexagonal
array of repeated and overlapping repressilator motifs, as
shown in Fig. 1. Each node is repressed by three neighbor-
ing nodes and at the same time represses three other
neighbors. A biological implementation of such a system
would require a tissue where cells communicate specifi-
cally with their immediate neighbors, rather than in a
mean-field manner as in quorum sensing. Such direct
communication is in fact quite common, either through
small conduits that connect the cells or via proteins that
span the membrane of the cells [12]. Further, the directed
nature of the interactions would require some form of
epigenetic gene silencing, resulting in adjacent cells ex-

pressing different genes even though they have exactly the
same DNA [13–15]. The modeling framework we propose
is, however, general and can be used to describe other kinds
of interactions, such as bidirectional ones, which might be
easier to realize experimentally.
The lattice in Fig. 1 can be naturally constructed to be

translationally invariant and such that all local loops are
repressilator motifs. We will approach the problem by
imposing periodic boundary conditions in order to preserve
translational invariance. Later, we will discuss how these
results translate to the case of a large lattice without the
periodic boundary conditions, which is more relevant for
biology.
The basic repressilator motif may exhibit an oscillating

state with a phase difference between consecutive variables
equal to 2�=3. One can ask whether the entire repressor
lattice might exist in an oscillatory state where only three
different phases are allowed, each differing by 2�=3. We
will show that this is indeed the case, but lattice commen-
surability effects may break this scenario.
In the repressor lattice, the variable at a node (m, n) is

repressed by three neighboring nodes which we repre-
sented by an interaction term Fint, leading to a dynamical
equation for the concentration of species xm;n:

dxm;n

dt
¼ c� �xm;n þ �Fint: (1)

FIG. 1 (color online). The construction of the repressor lattice
from ‘‘units’’ of single repressilators suitably placed on a hex-
agonal lattice. Each link symbolizes a repressor between two
nodes corresponding to repressing genes, proteins, species, etc.
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We consider two types of interaction terms—either an
additive repression (an ‘‘OR gate’’),

Fint ¼ 1

1þ ðxmþ1;n

K Þh þ
1

1þ ðxm;n�1

K Þh þ
1

1þ ðxm�1;nþ1

K Þh ; (2)

or a multiplicative repression (an ‘‘AND gate’’),

Fint ¼ 1

1þ ðxmþ1;y

K Þh
1

1þ ðxm;n�1

K Þh
1

1þ ðxm�1;nþ1

K Þh : (3)

In either case we use standard Michaelis-Menten terms
to model the repression. The parameter c measures the
constitutive production of the proteins, � determines the
degradation rate, and � the strength of the repression by
another protein. Further, K is the dissociation constant of
the binding complex, whereas h is the Hill coefficient
measuring its cooperativity. For simplicity we assign the
same parameter values to all the nodes in the lattice. We
note that Ref. [6] also introduced the associated mRNA for
each gene, resulting in six coupled ordinary differential
equations. For simplicity we keep only the protein varia-
bles leading to three coupled equations—a single repres-
silator with this simplification can still be brought into an
oscillating state [16].

For a single repressilator there exists a large regime
of parameter space where oscillations are possible [6,16].
The transition to oscillations occurs via a Hopf bifurcation.
We find similar behavior in the repressor lattice. As a
starting point, a lattice with 3� 3 nodes as in Fig. 2(a)
was simulated both with additive, Eq. (2), and multiplica-
tive, Eq. (3), couplings. Just above the Hopf bifurcations,
we found smooth oscillations with only three distinct
phases as indicated by the numbers 1,2,3 labeling the
nodes in Fig. 2(a). The oscillating time series are shown
in Fig. 3(a). These solutions are trivially related to the
solutions of the basic repressilator motif since each node
receives three identical inputs, with a 2�=3 phase shift
with respect to itself. Note that this solution is invariant
under lattice rotation of multiples of 2�=3

However, this scenario is not completely general. For
instance, in the case of a lattice of size 4� 4 (16 nodes) the
corresponding dynamical solutions are different, as shown
in Fig. 3(b). As in the previous case [Fig. 3(a)] we are
relatively close to the first Hopf bifurcation. However, now
phases of the oscillating solutions differ by 2�=4 between
the nodes. The origin of this is a commensurability ef-
fect between the number of nodes in the lattice and the
associated number of possible phases of the oscillating
solutions. This commensurability effect is of course en-
forced by the periodic boundary conditions. The complete
structure of the phases is shown on the 4� 4 unit cell in
Fig. 2(b). The case of 5� 5 is also affected by commen-
surability effects, as shown in Figs. 2(c) and 3(c).

As opposed to the 3� 3 system, here the inputs arriving
to a specific node are different. This reflects the fact that
the oscillatory solution is no longer rotationally invariant.

We note that all lattices which are commensurate by three,
i.e., 6� 6 [see Fig. 3(d)], 9� 9, etc., allow a nonfrustrated,
symmetric state similar to the 3� 3 system. These periodic
solutions all exhibit a Goldstone mode in the sense that it is
possible to slide the phases as long as the phase differences
are kept constant. This means that the specific values of the
phases for the solutions are determined by the initial
conditions.
In order to understand these solutions in depth, we

perform a stability analysis. We consider the ‘‘OR gate,’’
Eqs. (1) and (2), and since the system is translationally
invariant, we search for a constant homogeneous solution:

xm;n ¼ x� 8 m; n ! 3�Kh ¼ ð�x� � cÞðKh þ x�hÞ:
(4)

The equation for x� always has one, and only one, real
positive solution. The next step is to perturb the homoge-
neous solution in order to perform a stability analysis. We
consider a first order perturbation of the form

xm;nðtÞ ¼ x� þ � exp

�
�tþ 2�iðkmmþ knnÞ

L

�
: (5)
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FIG. 2 (color). Systems of 3� 3 (a), 4� 4 (b), and 5� 5 (c)
nodes subjected to periodic boundary conditions as indicated by
the extra links. The numbers refer to the different phases of the
solutions just above Hopf bifurcations. In (a) the solution ex-
hibits symmetry with respect to rotations of angles which are
multiples of 2�=3. In (b), (c) this symmetry is broken, so that 3
distinct solutions coexist above the Hopf bifurcation.
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Notice that since the solution must have the periodicity of
the lattice, km and kn should be natural numbers and also
1 � km, kn � L. Plugging the solution into Eq. (1) and
expanding to first order in � yields the following dispersion
relation:

� ¼ �~aðeð2�ikmÞ=L þ e�ð2�iknÞ=L þ e½2�iðkn�kmÞ�=LÞ � �;

(6)

where ~a ¼ �hKhðx�Þh�1=½Kh þ ðx�Þh�2. Other kinds of
interaction terms lead to the same dispersion relation sim-
ply with a slightly different definition of x� and ~a, for
example, taking multiplicative interactions leads to ~a ¼
�ðh=KÞðx�=KÞh�1=½1þ ðx�=KÞh�4. Eigenvalues � with a
positive real part will destabilize the homogeneous solu-
tion. Taking the real part of expression (6), the eigenvalue
with the largest real part is the one that minimizes the
function:

fðkm; knÞ ¼ cos

�
2�kn
L

�
þ cos

�
� 2�km

L

�

þ cos

�
2�ðkm � knÞ

L

�
: (7)

Before finding the solutions, we stress that fðkm; knÞ ¼
fð�km;�knÞ, while the imaginary part of the eigenvalue
changes sign when the wave vector changes sign. This
means that the two vectors (km, kn) and (� km, �kn)
minimizing the function f are the complex conjugate
pair that will cause the Hopf bifurcation. The function f
is independent of the parameters of the system, meaning
that the kind of pattern depends not on the form of the
interaction (as long as the lattice is homogeneous with the
same geometry) but on the number of sites in the lattice.

The value of � determines only how much we have to
increase ~a to encounter the Hopf bifurcation.
Plotting the function fðkm=L; kn=LÞ in the first Brillouin

zone, 0 � km, kn < L, we see that it achieves its absolute
minimum for the couple of eigenvalues ðkm=L; kn=LÞ ¼
ð1=3; 2=3Þ and ðkm=L; kn=LÞ ¼ ð2=3; 1=3Þ, where
fðkm; knÞ ¼ �3=2 (see Fig. 4). This means that a Hopf
bifurcation will occur when 3~a ¼ 2�. Of course these
wave vectors are allowed only when L is a multiple of 3,
so that the values of km and kn at the minimum are natural
numbers.
We can of course minimize the function f also for values

of L that are not multiples of 3. For L ¼ 4, the minimum is
fð1; 3Þ ¼ fð3; 1Þ ¼ �1, but also fð2; 3Þ ¼ fð3; 2Þ ¼ �1
and fð3; 4Þ ¼ fð4; 3Þ ¼ �1. The case L ¼ 5 is also a
degenerate case. The minimum is fð2; 3Þ ¼ fð3; 2Þ �
�1:309 02, but also fð1; 3Þ ¼ fð4; 2Þ � �1:309 02 and
fð2; 4Þ ¼ fð3; 1Þ � �1:309 02. All cases that are not mul-
tiples of 3 have this degeneracy, due to the symmetry of the
lattice. Close to the Hopf bifurcation, the number of ob-
served phases will reflect the periodicity of the eigenfunc-
tion. In particular, there will always be 3 distinct phases if
L is a multiple of 3 and L phases if L is a prime number.
The phases of the eigenfunctions can be used to figure

out how the oscillation pattern will look on the lattice: sites
on the lattice at a distance �m, �n such that km�mþ
kn�n ¼ 0 will be in phase. Figure 2(c) shows one of these
solutions of the 5� 5 lattice, namely, fð4; 1Þ. The other
‘‘symmetric’’ solutions can be obtained through rotations
of multiples of 2�=3, respecting the hexagonal rotational
symmetry of the lattice.
One might expect that the symmetric solutions with five

different phases, Fig. 2(c), could exist even when parame-
ters are varied. This is not the case: when the coupling
parameter � is increased, several transitions related to
strong nonlinear effects take place. Starting out with

FIG. 4 (color online). The landscape of the function Eq. (7).
Red dots mark absolute minima, corresponding to the symmetric
solution for L multiple of 3. Thick blue lines mark the bottom of
the valleys around the minima. When L is not a multiple of 3, the
absolute minima are not achievable, and the degenerate solutions
are given by 3 complex conjugate pairs along these valleys.
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FIG. 3 (color). Solutions of repressor lattices of sizes
(a) 3� 3, (b) 4� 4, (c) 5� 5, (d) 6� 6 with multiplicative
interactions, Eq. (3), and parameters c ¼ 0:1, � ¼ 1:0, K ¼ 1:0,
h ¼ 2. The value of � is in each case chosen to be just above the
Hopf bifurcation. Note that three, four, and five different phases
exist in (a), (b), (c), respectively. In (d) there are however only
three different phases.
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smooth periodic solutions of five distinct phases, amplitude
modulations set in when the coupling constant � � 2:6. At
the same parameter value, we also observe that some
phases that were distinct before this transition now co-
alesce with each other. At higher � values, amplitude
modulations become even more pronounced, and further-
more temporal period doubling sets in. Increasing � even
more, chaotic solutions eventually appear as shown in the
bifurcation diagram and the attractor of Fig. 5 (similar
bifurcation diagrams are observed for repressive cell-cell
communication [8]). Even though the lattice is made up of
simple repressilators without local frustration, the resulting
dynamics is chaotic: it is not possible to keep the simple
five-phase solutions when the repressilators are coupled
strongly with the neighbors. Each node in the 5� 5 lattice
exhibits a different bifurcation diagram (no simple period
five symmetry operations are present), showing that all
symmetries are eventually broken through a series of non-
linear transitions.

One may wonder how realistic periodic boundary con-
ditions are for modeling real biological systems. In the 3�
3 case, this might be implemented in a single cell with 9
different genes, each repressed by three different ones.
Having in mind extended systems, a more realistic case
is to consider a large, finite lattice with nonperiodic bound-
ary conditions to represent an isolated planar tissue, in
which cells at the boundary receive no external signal.
We found from simulations that such a system shows
frustration effects similar to the case of periodic bounda-
ries: when the steady state is destabilized, cells far from the

boundaries exhibit the three-phase dynamics of the repres-
silator circuit, while closer to the boundaries the dynamics
is more irregular, with more phases possible. We did not
observe any chaos in this case, even for very large values
of �.
In conclusion, the lattice model we have investigated

here provides a simple starting point to study regulation in
spatially extended biological systems. The future direction
could include, for instance, introducing an intrinsic ‘‘frus-
tration’’ in the repressor lattice. There are several ways of
doing this, e.g., by lattice defects or by mutations modify-
ing some of the interactions. For example, one can consider
what happens when a specific repressor link is mutated into
an activator. These generalizations may provide a useful
framework for describing more specific cases of cell-to-
cell communication in biological tissues.
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FIG. 5 (color online). A specific chaotic solution for a 5� 5
lattice with multiplicative coupling (Lyapunov exponent equal to
0.028) obtained at a coupling strength equal to � ¼ 12:8with the
variable in node (4, 5) plotted against the variable in node (2, 2).
Other parameter values are c ¼ 0:1, � ¼ 1:0, K ¼ 1:0, h ¼ 3.
Inset: Bifurcation diagram, showing the maxima and minima for
dynamical solutions in the node point (4, 5) after a transient
period of 15 000 time units. The extremal values are plotted
against varying values of the coupling strength �. The critical
value for the Hopf bifurcation calculated from the dispersion
relation 6 (see main text) gives �c ¼ 1:838.
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