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Abstract We study the dynamics in a system of coupled oscillators when Arnold Tongues
overlap.Byvarying the initial conditions, the deterministic systemcan be attracted to different
limit cycles. Adding noise, the mode hopping between different states become a dominating
part of the dynamics. We simplify the system through a Poincare section, and derive a 1D
model to describe the dynamics. We explain that for some parameter values of the external
oscillator, the time distribution of occupancy in a state is exponential and thus memoryless.
In the general case, on the other hand, it is a sum of exponential distributions characteristic
of a system with time correlations.

Keywords Coupled oscillators · Mode hopping · Arnold tongues · Poincare sections · Time
correlations

Introduction

Leo Kadanoff was a giant pioneer in the field of dynamical systems and chaos theory and
was a fantastic inspiration for many of us collaborating with him over the years. With this
paper we wish to honor the legacy of Leo by presenting a study of mode locking phenomena
in a system with two characteristic frequencies, a topic that interested Leo for many years
[1–5]. We analyse the hopping between limit cycles using Poincare sections, another topic
that was of close interest to Leo.

Already in 1676, the dutch physicist Christian Huygens [6] observed that the dynamics
of two coupled clocks resulted in synchronization [7]. This is one of the oldest non-linear
phenomena ever to be described, and despite many attempts [8], the dynamics of a system
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of coupled oscillators is still far from completely understood. A classical example of this
consists of two self-sustained oscillators where an external oscillator is weakly coupled to
an internal oscillator. Systems of this character can show surprisingly complex bevaviour
[3,5], only parts of which are understood due to the pioneering work of Vladimir Arnold [9]:
in regions called Arnold Tongues, these oscillators become synchronized, or entrained, to
each other. In recent years, synchronization of coupled oscillators has been found in a variety
of physical systems from fluids [2] to quantum mechanical devices [10,11], and during the
last 10 years this has also been observed in many biological processes such as cell cycles
[12–14], gene regulatory dynamics in synthetic populations [15], and protein oscillations in
single cells [16], in particular oscillations in the transcription factor NF-κ B [17–20]. An
important, but less well-understood, aspect is the dynamics in regions where two or more
Arnold tongues overlap [21]. Here different synchronization are possible; mathematically,
the trajectory in phase space can be attracted to different stable limit cycles depending on
initial conditions.

1 Model of Protein Oscillations: Limit Cycles and Poincare Section

In this studywe consider a network of 5 coupled differential equations, describing the dynam-
ics of the important transcription factorNF-κB, previously published in[22].Herewe consider
the concentration of a molecule, that has a fixed concentration Nx , whose active form is
described by x. This indirectly starts production of the molecule z, mediated through the
variable y. As z increase the activation level of x decrease, leading to a negative feedback
mechanism resulting in oscillations. A molecule, that has fixed concentration w, can assume
three states, u, v and w − u − v and the active form, u. It can lead to degradation of z, which
again make x active. The activation of u is mediated by a periodically varying component,
described by τ . A schematic version of the network can be found in Fig. 1a. The equations
now take the following form:

ẋ = Vx (Nx − x)
Kz

Kz + z
− Vz · z x

Kx + x

ẏ = �y x
2 − �y y

ż = �z · y − �z · u · (Nx − x)
z

Kz + z

u̇ = �u · τ · w − �u · u
v̇ = �v · u − Vv · v

KA

KA + A20τ

τ = 0.5 + Asin
(2π
T

t
)

w = Nuv − u − v

Here all the capital letters refer to fixed parameters of the model, whereas lowercase letters
refer to variables.

In order to study the system, we define a Poincare section at x = 1500 allowing us to
perform discrete analysis on the 4 other variables and the time of each period [23]. For
a set of external parameters corresponding to a region where two Arnold Tongues over-
lap, we find that the deterministic system can settle into different limit cycles (Fig. 1b),
where typically the period of the internal oscillator is an integer times the period of the
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794 M. L. Heltberg et al.

Fig. 1 a Schematic figure showing the network, that give rise to the equations in the model. b The two stable
limit cycles for the deterministic system with external oscillator parameters T = 50 min and A = 0.1. Shown
here is the phase space of variables x, y, and z, and the Poincare section we use in our analysis. c Fluctuations
in the time period for this system in the presence of noise; external oscillator parameters are T = 50 min and
A = 0.1

external oscillator (in principle other limit cycles exist, but it is harder to find the initial
conditions and paramater values that produce them). Dynamical systems of multi-stability
have been studied in many aspects [24,25], usually through the coupling of separate attrac-
tors, but the arise of multi-stability through the overlapping of Arnold tongues, has not
been thoroughly investigated and serve as an interesting system to study the appearance
and disappearance of different stable limit-cycles. Interestingly, we find that when we add
noise to the system (by using the Gillespie algorithm to simulate the system [26]), tran-
sitions between these co-existing limit cycles is observed (Fig. 1c). This phenomena we
describe as mode hopping, reflecting that the trajectory inside the Poincare section hops
between different entrainment modes. Our goal is to describe the time correlations between
transitions in this system with a discrete time model, using information extracted from the
Poincare section. Transitions are of course only possible when noise is added to the sys-
tem. The noise makes it difficult to determine every transition with complete precision, but
combining studies of the deterministic system with sufficiently long stochastic time-series
to generate enough statistics, we will be able to make conclusions about the nature of these
transitions.
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Distribution of Noise in the Poincare Section

We begin by studying the distribution of positions on the Poincare section after precisely one
period of oscillation, where all trajectories started at the same initial point in the Poincare
section. Mathematically speaking we want to find the distribution P(xni | xn−1

i = μi ),
where xni is the position of the i th variable on the Poincare section after n periods of the
oscillation, given that the position in the Poincare section after n − 1 oscillations was μi

(the period is also regarded as a variable). From our simulations, we find that, independent
of the starting position μi , the distribution of time period of the oscillation is Gaussian (Fig.
2a), and that its standard deviation, σ , to a good approximation, can be treated as constant
(Fig. 2b). Furthermore, we observed the same for every other variable and thus, to a good
approximation, we can describe P as a multivariate Gaussian:

P(x | x0 = µ) = 1
√
2π

5√|V |
e
− 1

2

[
(x̃−µ̃)V 1(x−µ)

]

Thus, within the Poincare section, the system can be described as a deterministic trajectory
with Gaussian noise. This observation is of great importance, and to use this further, we study
how a trajectory with initial position perturbed from the limit cycle, is attracted to the given
limit cycle within the Poincare section, which in general depends on the possibly complex
geometry of the basin of attraction of the limit cycle. We first consider the absolute value of
the difference between the period and the period of the previous oscillation in deterministic
simulations. We find that this quantity exhibits a complicated structure, but overall goes
to zero with an exponential decay as the limit cycle is approached (Fig. 2c, d). We find
that independent of the initial condition, but for fixed parameters of the external oscillator,
the exponential decay has the same decay constant, that changes slightly, as the external
parameters change (Fig. 2c, d). The non-smooth structure arises from the coupling between
variables and is reminiscent of a damped harmonic oscillator, but in our subsequent analysis
we will treat this as a negligible effect on top of the basic exponential decay characteristic to
each basin of attraction.

To finish the description, we must locate the boundary between each basin of attrac-
tion. Starting from various initial conditions, we need to map which limit cycle each initial
conditions settles into. In order to choose sensible initial positions, we take 104 recorded
points from a stochastic simulation, and use these as initial conditions. After 10 oscilla-
tions, we find that the majority have settled into one of the two limit cycles, but some are
still unsettled (Fig. 2e). This seems to an result of an unstable 5/2 Arnold tongue. We note
importantly that the basins are not riddled, but to good approximation can be regarded as
divided in groups. To simplify this we consider the shortest distance between the two stable
limit cycles in the Poincare section, and consider the points in between as initial condi-
tions. Figure 2f shows that after 40 oscillations, all trajectories have settled into one of the
two stable limit cycles, and that as we increase the amplitude of the external oscillator, the
basin of attraction for one basin grows, whereas the other decreases. Thus, for a given set
of external parameters, we can approximate the width of the basin of attraction compared
to the standard deviation of the Gaussian noise. Changing the amplitude of the external
oscillator would change the probability to be in one of the limit cycles for the stochastic sys-
tem and thus change the average number of oscillations before leaving the given entrained
state.
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Fig. 2 aGaussian fits for the distribution of periods after one trajectory started at 4 different initial positions in
the Poincare section. bValue of the standard deviation of the Gaussian fit at different positions in the Poincare
section. The normalized distance is here defined as the norm of a vector from the position in phase space of
one limit cycle to the other limit cycle, when they intersect with the Poincare section. c, d Absolute value
difference between period and previous period, as the trajectories decay into the limit cycle. The parameter b is
the exponential decay constant. e 104 points from stochastic simulation used as initial values for deterministic
simulation. After 10 oscillations blue has period greater than 145 min and red has period smaller than 105
min. Green refers to points between these values. f Width of the basin of attraction for different values of the
amplitude of the external oscillator after 40 oscillations

A Model for the Dynamics in the Poincare Section

At this point we have argued that for a fixed set of parameters of the external oscillator, the
decay into a limit cycle for the internal oscillator follows exponential decay with a constant
depending on the basin of attraction. Secondly, the boundaries, and therefore width, of this
basin are determined by the external parameters. Thirdly, the next position in phase space
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Fig. 3 a Schematic cartoon of the 1D model. b Ratio between the probability to leave the state after the
first jump and after 20 jumps (in steady state), plotted for the different parameters and initial positions in the
model. c The probability to leave the state, plotted on the error function. Orange starting from d0 = 0 and
blue starting from d0 = �. �/σ = 1. The cross indicates the steady state. d The probability to leave the state,
plotted on the error function. Orange starting from d0 = 0 and blue starting from d0 = �. �/σ = 4. The
cross indicates the steady state.

inside the Poincare section is Gaussian distributed with a characteristic standard deviation
determined by the noise in the system.

From these results, we thus create a simple, discrete 1D model, that should be able to
qualitatively explain the results we find for the dynamics for the stochastic system. We
imagine a measure, dn , that defines the distance to the center of the limitcycle inside a given
basin of attraction. We consider the 1D map:

dn = dn−1� = d0�
n = d0e

ln(�)n (1.1)

Now we add Gaussian noise to the system, so the update is:

dn = dn−1� + N (0, σ ) = N (dn−1�, σ), (1.2)

whereN defines the normal distribution with parameters given in the argument. A schematic
version of this simple model, is shown in Fig. 3a. We are now interested in knowing the
probability density function, P(dn). This can thus be described as:

P(dn) = P(dn |dn−1)P(dn−1) (1.3)
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We start by considering the position after one jump, given the initial position is d0, described
by:

P(d1) = 1√
2πσ

e
− 1

2

(
d1−�d0

σ

)2

Now we want to calculate the distribution for the position after the second step. To calculate
this we are thus (to avoid too many ds we define d = d0, y = d1 and x = d2) solving the
integral:

P(x) = 1√
2πσ1σ2

∫ ∞

−∞
e
− 1

2

(
x−�y

σ1

)2

e
− 1

2

(
y−�d

σ2

)2

dy

= N
(
�2d,

√
σ 2
1 + σ 2

2 �2
)
.

As this holds for every step, we can iterate from the first jump d1. That is, the PDF of the nth
jump becomes:

P(dn) = 1√
2πσn

e
− 1

2

(
dn−�nd0

σn

)2

where σn = σ

√√√√n−1∑
i=0

�2i = σ

√
1 − �2n

1 − �2 .

Now in order to consider transitions between basins of attraction, we must consider the
probability that the distance d is larger than the boundary of the basin, defined as �. Thus:

P(dn > �) =
∫ ∞

�

1√
2πσn

e
− 1

2

(
x−�nd0

σn

)2

dx

=1

2
erfc

(
� − �nd0

σn

)

From this we can also see that this will always reach a steady state, where the probability of
leaving (i.e., a transition out of the basin of attraction) will be:

lim
n→∞ P(dn > �) = lim

n→∞

(
1

2

[
erfc

(
� − �nd0

σn

)])

= 1

2

[
erfc

(
�

σ

√
1 − �2

)]

This means that the probability of leaving will, in steady state, be highly dependent on the
relation between � and σ , but independent of the initial position d0. The probability to leave
the state in the first jump, however, will always be dependent on the initial position. If we
assume d0 = � we obtain:

P(d1 > �|d0 = �) = 1

2

[
erfc

(�

σ
(1 − �)

)]
,

which shows that the probability to leave in the first jump is higher than in the steady state.
If we consider d0 = 0 we obtain:
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P(d1 > �|d0 = 0) = 1

2

[
erfc

(�

σ

)]
,

which shows that the probability to leave in the first jump is lower than in the steady state.
With these results, we have an interesting measure, the ratio between the probability of

leaving in the first iteration, divided by the probability of leaving in the steady state. This
ratio is plotted in Fig. 3b for different values of � and different initial positions. Another
visualization of this is the probability to leave for each step, depending on the initial condition,
for �/σ = 1 (Fig. 3c) and for �/σ = 4 (Fig. 3d).

We now proceed to calculate the probability distribution for the first time to leave the
entrained state, J1, meaning the first time the distance will be greater than �:

P(J1 = n) = 1

2n

[
1 − erf

(
� − �nd0

σn

)] n−1∏
j=1

erf

(
� − � j d0

σ j

)
. (1.4)

Assuming that d0 = � we can reduce the above expression:

P(J1 = n|d0 = �) = (1.5)

1

2n
erfc

(
�

σ

√
1 − �2

√
1 − �n

1 + �n

) n−1∏
j=1

erf

(
�

σ

√
1 − �2

√
1 − � j

1 + � j

)
. (1.6)

From this expression, it should be deduced, that the argument depending on n will converge
to one, meaning that the probability to jump out will quickly reach a steady state. In the
steady state there is always the same probability to jump out, and the distribution describing
a discrete event with the same probability will be the exponential distribution.

Approximation to the Distribution

As we observed in the above expressions and in Fig. 3c, b, it takes several iterations to reach
the steady state, and we expect that these initial probabilities can be described by a single
exponential distribution. Therefore, we expect that the distribution of oscillations in one limit
cycle before transition, can be described by a sum of two exponential distributions:

f (n) =
Initialposition

Ae−bn +
SteadyState

Ce−dn

where n ≡ dn > � ∧ dn−1..d1 ≤ �.

Testing this assumption, we now try to compare simulations on the 1D model with the real
system. For both systems we start at d0 = �, i.e., on the border of the basin of attraction,
defined from the normalized distance between the limit cycles (Fig. 4a, b), and at d0 = 0,
i.e., at the center of the limit cycle (Fig. 4c, d). In these simulations, we define that the
trajectory leaves the entrained state when the period becomes closer to the period in the other
limit cycle. Even though these simulations cannot be compared quantitatively, since the 1D
model does not take the cycles of the decay into account, they do have the same qualitative
description of the dependence on initial positions, and are well described by the suggested
function. The interpretation of the above result is as follows: The first several oscillations
follows a distribution of either decreasing (if d0 = �) or increasing (if d0 = 0) probability
of transition out of the entrained state, before reaching the steady state probability. In the
steady state, this should follow an exponential distribution since there is at each iteration the
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800 M. L. Heltberg et al.

Fig. 4 a Distribution of number of jumps before leaving the state for the model. Initial position d0 = �. b
Distribution of number of jumps before leaving the state for the simulated system. Initial position around the
boundary. c Distribution of number of jumps before leaving the state for the model. Initial position d0 = 0. d
Distribution of number of jumps before leaving the state for the simulated system. Initial position in the center
of the limit cycle

same probability to leave, which can be seen from the fact that the exponential decay, if the
first fraction of the plot is neglected, has exactly the same slope independent of the initial
position. However, the effect of the initial effect conditions is captured in the first part of the
fit, where we find that these effects can be estimated by adding another exponential function.

Long Time Dynamics

Now we want to study the long term dynamics, and estimate the distribution of number of
oscillations in one limit cycle, before leaving the limit cycle. As seen in Fig. 1b, there clearly
are transitions between states, but to define exactly when the trajectory is out of the basin
of attraction of a specific limit cycle can be difficult. We here use Fisher’s discriminant,
implemented in MATLAB, to separate the points, and classify them between different states
[27]. From the model we expect the distribution to reach a steady state after some trajectories
in the same limit cycle, but having much higher probability to leave the state in the early
rounds, as we usually enter a new state close to the boundary.We again expect the distribution
to fit the sum of two exponentials, where the first position in the basin of attraction follows
a distribution but is always close to the boundary of the basin. This is confirmed in Fig. 5a,
where we have also plotted the best exponential and stretched exponential fit. From Fig. 4b
the other limit cycle in this experiment also follows the sum of two exponentials, and that
this state is a little different from the one shown in 5A, due to the � of this state is higher.
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Fig. 5 aDistribution of oscillations in 3/1 state for totally 600000oscillations. Parameters of external oscillator
is T = 50 min and A = 0.1. V = 2 · 10−14L. b Distribution of periods for the 2/1 limit cycle. From the model
perspective this distribution is different from a in the value of �. Same parameters used. c Distribution of
oscillations in 3/1 limit cycle. for external parameters T = 33 min and A = 0.1. d Distribution of periods for
the 3/1 limit cycle. Parameters of external oscillator is T = 50 min and A = 0.1. V = 1 · 10−14L

Now if the value of �/σ can be estimated to be small, the effective dynamics is however
imagined to be closer to an exponential distribution as the ratio shown in Fig. 3b gets smaller.
Now from the model we estimate that we would have more exponential like fits, if we:

(a) Decreased external period (causing smaller �)
(b) Decreased external amplitude (causing smaller �)
(c) Decreased Volume = Larger noise (causing larger σ )

Lowering the amplitude of the external oscillator, effectively decreases the distance
between the two limit cycles and transitions between limit cycles should be more frequent, as
the noise level remains constant. This prediction is confirmed in Fig. 5c where the probability
of leaving the limit cycle in the steady state is higher than in Fig. 5a, b. Also we note that this
distribution is much closer to being exponential than the figures above, which was predicted
by the results in Fig. 3. In the same manner we expect that if we keep the width of the basin
constant, meaning we fix the parameters of the external oscillator, but we add more noise
to the system, similar effects should be observed. In Fig. 5d we see that if we increase the
noise of the system, the probability to leave the state increases in the steady state, and the
distribution is again closer to an exponential distribution than before. This means that we
have obtained an understanding, not only of why the distribution of time in one state follows
two exponentials, but also how the parameters in this distribution change, as we change the
external parameters.
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Conclusion

We have shown how the dynamics of a system of coupled oscillators, in the overlapping
Arnold Tongue regime, can show bistable behaviour, and how the statistics for the transitions
between limit cycles can be controlled by changing the parameters of the external oscillator.
We have observed how the distribution of the number of oscillations in each state tends to
look exponential in some parameter ranges, while in others looks very stretched. We showed
that this behaviour is reproduced in a simple 1D system, derived from the behaviour within
Poincare section of the system, leading us to a useful description of the dynamics as a sum of
two exponential functions. We believe that these results can be used to describe the dynamics
of many synchronized oscillating systems in the presence of noise, even when the basins of
attraction are divided by several regions.

Acknowledgements SK thanks the Simons Foundation for funding. MLH and MHJ acknowledge support
from the Danish Council for Independent Research and Danish National Research Foundation through Stem-
Phys Center of Excellence, grant number DNRF116.

Appendix A

Description of the biological model
The network of the transcription factorNF-κB is very important for themammalian protein

production, and several models have therefore been constructed to capture the essential
dynamics

Here we use the NF-κB model, published in 2012 by Jensen and Krishna. In this model,
we consider the NF-κB inside the nucleus, acting as a transcription factor for a great variety
of different proteins, including I-κB. This forms a complex with NF-κB, making it unable
to enter the nucleus, which means it is inactive. In order to create a time delay, the equation
for the I-κB RNA is added, which gives a three node network. Now we consider the protein
complex IKK, that can phosphorylate the NF-κB - I-κB complex and thus make NF-κB
active again. We assume that there IKK can be in three states: active, neutral and inactive.
Furthermore we assume that is a finite amount of both NF-κB and I-κB, but nothing is
spontaneously degraded. With these assumptions at hand, we describe the system by the five
coupled differential equations:

Ṅn = kNin(Ntot − Nn)
KI

KI + I
− kI in I

Nn

KN + Nn

˙IRN A = kt N
2
n − γm IRN A

İ = ktl IRN A − α I K Ka(Ntot − Nn)
I

KI + I
˙I K Ka = ka f (t)([I K K ]tot − I K Ka − I K Ki ) − ki I K Ka

˙I K Ki = ki I K Ka − kp I K Ki
kA20

kA20 + [A20] f (t)
f (t) = 0.5 + Asin

(
2π

T
t

)

The parameters in the mode can be seen in the Table 1.
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Table 1 Default values of parameters in the model. [I K K ]tot and [A20] were chosen in order to obtain
sustained spiky oscillations with frequency in the range 0.3–1 hr−1 when [T N F] is kept fixed at 0.5 (the
actual frequency obtained with these values is ν0 = 1/1.8 hr−1)

Original parameter Parameter in paper Default value

kNin Vx 5.4 min−1

kI in Vz 0.018 min−1

kt �y 1.03 (μM)−1.min−1

ktl �z 0.24 min−1

KI Kz 0.035 μM

KN Kx 0.029 μM

γm �y 0.017 min−1

α �z 1.05 (μM)−1.min−1

Ntot Nx 1. μM

ka �u 0.24 min−1

ki �u 0.18 min−1

kp Vv 0.036 min−1

kA20 KA 0.0018 μM

[I K K ]tot w 2.0 μM

[A20] A20 0.0026 μM

Appendix B

Implementation of Gillespie algorithm
In the Gillespie algorithm we consider a volume V, with a spatially uniform mixture of

N chemical species that can react through M different reactions, R1 . . . RM . The number of
each of the species is denoted X1 . . . XN . At t = 0, we thus consider the initial number of
molecules and calculates all reactions. The first goal is now to calculate the PDF, for the time
until the next reaction occur

We consider the probability that the next reaction is of type ε, and it occurs in the time-
interval [t + τ, t + τ + dt]. We therefore consider:

P(τ, ε)dτ = No reaction in [t,t+τ ]
Pnot (τ ) · Reaction εoccurs

Rεdτ

Therefore we want to describe Pnot (τ ) in terms of the rates. Since at each timestep ε, the
probability for no reaction to appear is:

Pnot (dt) = 1 −
N∑
i=1

Ridt
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Fig. 6 Trajectories starting from
the same initial conditions for
different noise levels. Here
oscillations are shown in the
variable x

We can thus define τ ≡ n · dt and then:

Pnot (τ ) =Pnot (dt)
n =

(
1 −

N∑
i=1

Ri
τ

n

)n

= e−rτ

where r ≡
N∑
i=1

Ri

This means that we should generate a random number according to the exponential dis-
tribution, and a random number according to a uniform distribution. Here we can use the
transformation method, and we can then create the update process, where at each step we
jump a step in time τ to next reaction, and picks the reaction according to r. Schematically
the Gillespie algorithm can be described as:

• Pick two random numbers, ν1 and ν2. Calculate time until next reaction:

τ = − ln(ν1)

r

Pick the next reaction:

ε =
∑k−1

i=1 ri∑n
j=1 r j

< ν2 ≤
∑k

i=1 ri∑n
j=1 r j

• Update the system according to the chosen reaction.

In this way the system can be updated, and adjusting the reactions to each time step. As
can be seen in Fig. 6, changing the volume, changes the noise level, since we have two fixed
concentrations in the model and therefore the considered number of molecules change. In
the limit of a high number of molecules, this should be very close to deterministic.
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