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SUMMARY

The fundamental mechanisms that control and regulate biological organisms exhibit a surprising level of
complexity. Oscillators are perhaps the simplest motifs that produce time-varying dynamics and are ubiqui-
tous in biological systems. It is also known that such biological oscillators interact with each other—for
instance, circadian oscillators affect the cell cycle, and somitogenesis clock proteins in adjacent cells affect
each other in developing embryos. Therefore, it is vital to understand the effects that can emerge from non-
linear interaction between oscillations. Here, we show how oscillations typically arise in biology and take the
reader on a tour through the great variety in dynamics that can emerge even from a single pair of coupled
oscillators. We explain how chaotic dynamics can emerge and outline the methods of detecting this in exper-
imental time traces. Finally, we discuss the potential role of such complex dynamical features in biological
systems.
INTRODUCTION

Living species present us with a bewildering fauna of rhythms

and oscillations: circadian rhythms (Nobel Prize 2017) (Zehring

et al., 1984; Bargiello et al., 1984; Hardin et al., 1990; Thommen

et al., 2010), cell cycles (Tsai et al., 2008), calcium oscillations

(Goldbeter, 2002), pace maker cells (O’Rourke et al., 1994), tran-

scription factor responses (Hoffmann et al., 2002; Lahav et al.,

2004; Nelson et al., 2004; Krishna et al., 2006; Zhang et al,

2017), hormone secretion (Waite et al., 2009), and so on. Given

the ubiquity of oscillators, a natural question is as follows: if

two oscillators are each other’s neighbors—as they might well

be in tissues, organs, and cells—will they couple and generate

complex dynamics? Two coupled rhythms are ubiquitous all

over nature, not least in the biological world. Indeed, as

described in physics, coupling two oscillators is one of the

most general ways to produce diverse dynamics—from syn-

chronization to chaos (Pikovsky et al., 2003). Therefore, it is

important to consider the possibilities of how life might exploit

the effects of complex dynamics arising from coupled oscilla-

tors, and whether these phenomena exhibit common properties

even if one situation deals with cells and another with proteins.

Modern experimental tools now allow direct observation of the

dynamical evolution of different proteins, molecules, and signals

(Alon, 2006; Goldbeter, 2010; Sneppen, 2014). Thus, we can

study the exact trajectory and take dynamical features such as

responses and fluctuations into account and describe the exis-

tence of higher dimensional dynamics—with oscillations as the

simplest example (Strogatz, 2018). This paves a way to new in-
sights into biological systems, based on mathematical predic-

tions and experimental tests.

In this review, we illustrate the effects that can arise from a set

of two coupled oscillators (Nijhoff, 1893; Jensen et al., 1984;

Bohr et al., 1984; Stavans et al., 1985; Gwinn and Westervelt,

1986; Pikovsky et al., 2003; Gupta et al., 2018). We work through

simple, conceptual examples, starting with a small coupling con-

stant existing between two oscillators where quasi periodicity

and synchronization is found, and then discuss the concepts

of multistable cycles, period doublings, and chaos that arise as

the interaction strength increases (Strogatz, 2018). We define

the characteristics of chaos and explain how chaotic dynamics

might be identified from time traces in experimental biology.

Finally, we describe the dynamical features that result from

coupled oscillators in biology and speculate whether these func-

tions and properties might be useful for biological systems. We

argue that the importance of dynamics in maintaining the

complexity found in life is one of the least investigated areas of

modern science (Sneppen, 2014). We suggest that an interdisci-

plinary understanding of dynamical features in biological organ-

isms can lead to great advances within systems biology.
Synchronization and entrainment between two
oscillators
Oscillations are found in a vast number of biological systems (see

Figure 1A for a schematic depicting the variety of the timescales

of oscillations in biology), from the spikes in membrane potential

to the circadian clock; and they typically arise in networks with
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Figure 1. Diversity of oscillations in biology
(A) Schematic figure showing that oscillations in biology are a fundamental property which occur in a broad variety of different systems at many different
timescales (Zehring et al., 1984; Bargiello et al., 1984; Hardin et al., 1990; Thommen et al., 2010; Tsai et al., 2008; Goldbeter, 2002; O’Rourke et al., 1994;
Hoffmann et al., 2002; Lahav et al., 2004; Nelson et al., 2004; Waite et al., 2009; Zhang et al, 2017).
(B) Schematic version of a typical network with a transcription factor that stimulates production of its own inhibitor. Note that biological conditions (e.g., stresses,
adaptive environmental stimuli, random fluctuations) may change the parameters that govern the interactions and therefore any oscillatory behavior the network
exhibits (Mengel et al., 2010).
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some fundamental ingredients (Figure 1B). When two oscilla-

tions interact, we term them as ‘‘coupled oscillators.’’ This repre-

sents one of the oldest studies of a non-linear system and goes

all the way back to the Dutch physicist andmathematician Chris-

tian Huygens (Nijhoff, 1893), who, in 1665, observed how

pendulum clocks hanging on the same wall would synchronize

with each other. Models of multiple interacting oscillators also

show that interactions can lead to synchronization between the

entire population of oscillators (Kuramoto, 1975; Garcia-Ojalvo

et al., 2004). We will concentrate on the simplest form of coupled

oscillators considering the situation where one oscillator (de-

noted as the external or X) is affecting another oscillator (denoted

as the internal or Y) but is not affected back (Stavans et al., 1985)

(i.e., this represents an oscillator driven by an external cycle. For

a biological discussion, see Box 1). This is sufficient to give rise

to a rich variety of dynamics in the internal oscillator. In such a

case, where both the external and the internal systems show os-

cillations, the resulting dynamics depend on two fundamental

properties: their frequency ratio and the interaction strength be-

tween the oscillators (Figure 2A).

(1) Frequency ratio: The ‘‘bare’’ ratio between the natural fre-

quencies of the oscillators (i.e., in the absence of interac-

tion between the oscillators).
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(2) Interaction strength: The interaction strength describes

how much the oscillator will be affected by the external

cycle. Its definition depends on the particular system,

but the amplitude of the forcing cycle is typically corre-

lated with the interaction strength.

Depending on the frequency ratio, the oscillators can form a

locked (or entrained) state, which is denoted by a rational number

p/q, where they mathematically form a closed trajectory in phase

space, which means that after p periods of the internal oscillator

and q periods of the external oscillator the system returns to the

same state. If there is no interaction, this will occur only if the fre-

quency ratio is exactly a rational number (see the following section

for amoredetaileddescription). If theydonot formaclosed loop in

phase space—typically forweak interactions—theirmotionwill be

quasi periodic, where their mutual trajectory will never repeat. In

Figure 2B, this is indicated by the orange (external oscillator) and

the blue (internal oscillator) trajectories,which have a phasediffer-

ence that ‘‘drifts’’ over time. In other words, at one time Xwill have

a low point right before the peak of Y, but after some time X will

have a lowpoint right after the peak ofY. Thereby,Ydrifts in phase

and is not locked with X.

If the interaction strength is non-zero, the two oscillations can

synchronize even if the frequency ratio is not an exact rational



Box 1. The emergence of protein oscillations through negative feedback-loops with time delay

Oscillations are a fundamental ingredient of many systems in nature. They provide the simplest type of sustained dynamics, if the

system is not in a steady state where there is no time variation. Here we focus on oscillations, known as limit cycles, that have a

fixed amplitude, independent of the initial conditions of the system (i.e., a harmonic oscillator is not a limit cycle). From a biological

perspective, such oscillations can arise throughmany different mechanisms, but oscillations of protein concentrations in particular

are known to emerge from simple networks (Tiana et al 2007). In general, these networks should include:

(1) A dimensionality larger than one. By this we mean that the number of independent variables must be at least two (i.e., there

should be interactions between two or more elements in the network).

(2) At least one non-linear term - these will naturally emerge from molecular interactions.

(3) A negative feedback-loop. Such loops can arise inmultiple ways, for example in a circuit where one protein has a negative (i.e.,

inhibitory) impact on another, which in turn has a positive impact on the first. For a feedback-loop to be a negative, the number

of negative interactions between components should be an odd number.

(4) There should be an effective time delay in the network. A typical example of this could be a transcription factor that enhances

the production of its own inhibitor. Since several steps are involved in the formation of the inhibitor via transcription and trans-

lation, such systems exhibit a natural time delay.

These four ingredients are all present in many famous oscillatory protein networks for instance of p53 and NF-kB, as well as in

biologically engineered oscillators (Elowitz and Leibler, 2000; Tsai et al., 2008; Jensen and Krishna 2012). From a theoretical point

of view, fundamental insight into how these elements can lead to oscillatory dynamics has been mathematically derived (Anantha-

subramaniam and Herzel 2014; Morant et al., 2009). One aspect that is not included in these four ingredients is the role of stochas-

tic noise, which is always present in biological systems. Under the right circumstances, noise can drive a systemwhich possesses

a damped oscillator (that can be a linear system) into oscillations with well-defined amplitude statistics, and thereby make it look

like a noisy limit cycle (Black and McKane 2010; Biancalani et al., 2017).

It is often found that oscillations are not observed at all times but may appear as a response to external stresses. This is schema-

tized in Figure 1B, where a typical three-node network is shown. HereA represents a transcription factor, b represents themRNAof

B, andB is an inhibitor of A. Due to the generality of thismechanism, it is plausible that a large fraction of biological networks has the

ability to exhibit oscillations triggered by different external stimuli.
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number, which means that they will form a closed trajectory in

phase space, where the external oscillator will pull the internal

oscillator a bit, in order to achieve a rational observed frequency

ratio for the system. When the interaction strength is less, the

system tends not to synchronize unless the frequency ratio is

close to a rational number.

As we increase the interaction strength, starting from a low

value, regions of synchronization will be found for a larger span

of the frequency ratio, and this structure is formally known as

‘‘Arnold tongues’’ (Arnol’d, 1965; Herman, 1979; Jensen et al.,

1983, 1984), which are depicted as a diagram in Figure 2A. A ‘‘re-

gion of synchronization’’ means that the resulting dynamics of

the two oscillators is locked to each other in a part of the param-

eter space, where the axes are the frequency of the external

oscillator (or the frequency ratio) and the interaction strength

(Heltberg and Jensen, 2019).

These regions can be identified by the observed number of ro-

tations for the two oscillators. For instance, 1/2 would label a re-

gion of parameter space where the internal oscillator makes one

rotation for every two rotations made by the external oscillator

(the same logic goes for 1/3, see Figures 2A, 2C, and 2D).

Here, we would like to stress a word of caution: in the literature,

there is great mixture between defining 1/2 or 2/1 as the Arnold

tongue, where the external oscillator makes two rotations every

time the internal makes one. However, in the theory of Arnold

tongues, there exist locked states, both where the external

makes 2 and 1/2 rotations for each rotation of the internal. There-

fore, one should not be confused by this notation but simply be

careful writing out plainly whether the external or the internal has

the longest period.
As the interaction strength between the two oscillators in-

creases, highly complex phenomena start to emerge. The Arnold

tongues are known to grow, meaning that the range of fre-

quencies where the internal oscillator can be controlled widens.

Therefore, it is intuitively not hard to imagine that the different

tongues themselves start to overlap at some point. This means

that for some interaction strengths, two or more Arnold tongues

start sharing the same regions of parameter space (Jensen et al.,

1984). This leads to the possibility that multiple stable limit cycles

co-exist (Heltberg et al., 2016), which causes the internal oscil-

lator to be able to exhibit different frequencies and amplitudes

for identical parameters, depending on the initial conditions of

the system (Figure 2E).

It is worth noting that the coexistence of two stable states of

oscillations in the internal oscillator is defined as bistability (or

multistability when there are more than two), which is observed

inmany biological systems. It is well known fromphysical studies

of bistable systems that a particle, or even the entire system, can

make transitions between the two solutions depending on the

level of noise in the system. For the case of overlapping Arnold

tongues, it is the system’s trajectory that can jump between

oscillatory states in the presence of noise and thereby change

its amplitude and frequency dynamically. This phenomenon

was discovered by Heltberg et al. in a study where the dynamical

switching of oscillatory modes of NF-kB was found experimen-

tally, and bymeans of mathematical modeling, the authors could

explain the underlying mechanism for this behavior and how it

could regulate the protein production (Heltberg et al, 2016).

The switching between oscillatory states is named ‘‘modehop-

ping,’’ and this phenomenon is believed to allow living organisms
Cell Systems 12, April 21, 2021 293



Figure 2. Complex dynamics with two coupled oscillators
(A) Schematic figure showing the growing regions of entrainment known as Arnold tongues (Arnold and Avez, 1968; Jensen et al., 1984). The horizontal axis
represents a measure proportional to the external period (for instance its ratio to the unperturbed internal period) and the vertical axis represents the coupling
(interaction) strength between the oscillators. The dotted line here represents the critical line where the tongues start to overlap. Arnold tongues are also shown in
more details in Figure 3.
(B) Example of quasiperiodic dynamics where the two oscillators do not lock. Orange: external oscillator, blue: internal oscillator. Note that the scale of the internal
oscillator is arbitrary in (B–E).
(C) Example of an entrained state (also called a locked or synchronized state), where the external frequency is two times the internal (colors as in B).
(D) Example of an entrained state, where the external frequency is three times the internal (colors as in B).
(E) Above the critical line (dashed line in A) multistability occurs, where two stable oscillations can be found for the same external frequency. Blue: 1/2 and
cyan: 1/3.
(F) Example of period-doubling dynamics. Note that it is a locked state, but the internal oscillator exhibits two different peaks before returning to the initial point.
(G) Chaotic dynamics where the fixed frequency of the external oscillator leads to unpredictable dynamics with a spectrum of amplitudes and frequencies
observed in the dynamics of the internal oscillator.
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to use the existence of noise to exploit possibilities of oscillations

with different amplitudes. We emphasize that coupling two oscil-

lators gives a formal scheme to generatemultistable cycles, both

theoretically and experimentally, which is something that is

otherwise completely tedious to achieve.

At this level of the interaction strength, a period-doubling

sequence may also start to set in (Feigenbaum, 1978, 1979).

Period doubling is a phenomenon where the internal oscillation

starts to oscillate with two different amplitudes, for instance,

one large and one small, before the pattern is repeated

(Figure 2F). This phenomenon typically arises at the center of

the Arnold tongues, which is explained further in the next section.

Finally, if the interaction strength is increased even further, the

system can become chaotic.

Chaos emerges from coupled oscillators
Chaos refers to a well-defined mathematical concept that can

emerge in deterministic dynamical systemswith at least three di-

mensions and at least one non-linear interaction. This should not

be confused with the use of the word ‘‘chaos’’ in everyday lan-

guage, which often refers to something that is without any under-

lying structure, whereasmathematical chaos is very well-defined

(Strogatz, 2018).
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Even though different definitions are currently being used in

the field, the mathematical concept of chaos can be defined

by the property that two trajectories, separated initially by an infi-

nitely small amount, will exhibit exponentially diverging trajec-

tories as time proceeds (Figure 3G). As initial conditions are

never known with perfect precision, chaotic systems appear

random since it is impossible to predict the outcome, even

though the system is still deterministic. It should be mentioned

that the recent advances of machine learning have enormously

improved the predictability on both short term and long term

(Lu et al., 2018; Pathak et al., 2018). The trace of a chaotic sys-

tem is not closed, meaning that the trajectory never repeats it-

self, however, paradoxically it comes back, infinitely many times,

arbitrarily close to states previously visited.

Note that a quasiperiodic behavior also produces an open tra-

jectory, bounded within a sub volume in space, but unlike chaos,

two quasi-periodic trajectories that are initiated close to each

other will remain close as the system evolves. It can be shown

that chaotic systems are confined in the sense that they do not

‘‘run off’’ to infinity, but they also are not ‘‘closed’’ in the sense

that they do not repeat the same states as happens in an oscil-

lating system. In some sense, this seems like a contradiction: a

trajectory that is always moving within a bounded region but



Figure 3. A simple model of coupled
oscillators and Arnold tongues
(A) The sine circle map which is expressed in a
continuous variable xn depending on a discrete
time step n. The map has two ‘‘external’’ parame-
ters, U and K.
(B) The pattern of frequency locking and unlocking
in this simplified mathematical model. The x axis
on this graph is the basic period of the external
oscillator, U. The y axis is the strength of the non-
linear interaction between the oscillators, K. The
blue regions are ones in which the oscillators are
locked; the numbers attached to each region
describe the observed frequency ratio for the
locking. The white regions show intermixed quasi-
periodic and periodic behaviors, too finely inter-
mingled to be separated by our plot. The green and
red regions show similarly intermixed behavior, but
now also including a chaotic element. The broken
line at K = 1 indicates the onset of multistability and
chaotic behavior. Above this line, chaos is possible
(shown by a change in the blue color) and below it
there is only quasiperiodic and locked behavior
(Jensen et al., 1983, 1984).
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nevertheless passes through new segments of the space that is

not previously visited.

Thus, in order to have a trajectory that does not close in on itself,

the chaotic trajectory needs to fill up a larger part of the phase

space than for instance an oscillation. In mathematical terms,

weobserve that thechaotic trajectorygeneratesa ‘‘strangeattrac-

tor,’’ and this attractor has a dimension that is larger than two, but

not an integer, which is denoted a fractal dimension (Mandelbrot,

1983; Grassberger and Procaccia, 1983; Feder, 1988). Fractals

are geometrical objects with the property that they repeat the

same similar structures at arbitrary small scales, which come

about because the motion on the attractor exhibits stretching

and folding in the dynamics, often mimicked by how dough is

mixed in abakery, namely, alsobymeansof stretching and folding

(Strogatz, 2018). Many objects in nature exhibit this property (for

instance, the ice crystals forming a snowflake), but when we

need to define their dimensionality, the classical definition of

integer dimensions is no longer valid. Therefore, fractal structures

have a dimension that is a real number, and this definition has

given rise tomany important characterizationsof shapes innature.
These counterintuitive behaviors endow

chaotic systemswith the following unusual

properties: (1) the evolution of the system

is highly sensitive to initial conditions; (2)

one point of the system is never revisited

(i.e., no closed cycles); (3) the system ‘‘os-

cillates’’ with a spectrum of frequencies

and amplitudes; and (4) the dimensionality

of the phase space of the system is a non-

integer number larger than two. It is

tempting to explore whether these proper-

ties that, in some sense, are completely

counterintuitive are present in biological

systems. Below, we describe lessons

learned from studying the universal

behavior of coupled oscillators in physics,

introduce the basic methods to determine

chaotic traces in biological data, and
discuss the potential advantages that complex dynamics may

provide biological organisms.

Universal behavior of coupled oscillators
Historically, the study of two interacting oscillators saw a break-

through in a simple mathematical model of coupled oscillators,

known as the ‘‘sine circle map,’’ constructed by A.A. Kolmo-

gorov and later thoroughly investigated by Vladimir Arnold

(Arnold and Avez, 1968; Arnol’d, 1965). The name ‘‘circle map’’

refers to the fact that it maps the motion on a torus into a one-

dimensional discrete equation on a circle using a Poincare sec-

tion, and the name ‘‘sine’’ refers to the fact that the interaction is

described by a sine-function (Figure 3A). Basically, a Poincare

section is a surface that records the point every time the trajec-

tory passes through it (i.e., an N-1-dimensional surface for a tra-

jectory in N dimensions). This model is constructed by consid-

ering the state of an oscillator as a phase. The oscillator is

evolving cyclically on a closed orbit; and thus, we need only

one variable to describe the behavior, and that has allowed great

mathematical advances. Even though this model is completely
Cell Systems 12, April 21, 2021 295
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abstract, it can be used to describe the different kinds of trajec-

tories, and the pattern of their mingling, produced by coupled os-

cillators (Herman, 1979; Feigenbaum et al., 1982; Jensen et al.,

1983, 1984; Halsey et al., 1986).

This model includes two fundamental parameters: U, being

the ratio between the two frequencies, in units of the external

forcing cycle; and K being the interaction strength. As described

above, the tendency of the two oscillators to synchronize de-

pends on the strength of their interaction.Without any interaction

(K = 0 in Figure 3), the oscillators are uncoupled and each oscil-

lator proceeds with an unchanged frequency. For irrational

values of U, the motion is quasiperiodic, and since there are infi-

nitely more irrational numbers than rational ones, quasiperiodic

behavior dominates the K=0 line (Feigenbaum et al., 1982; Stro-

gatz, 2018).

As soon as the two oscillators interact just the slightest

amount, i.e., 0 < K << 1, the model displays frequency pulling,

where the frequency of one oscillator is pulled or changed by

the other, leading to a region of synchronization whenever U is

in a small interval around each and every rational number, p/q.

Figure 3 shows these regions of frequency locking as blue re-

gions. For each value of the rational number p/q, there will be

a region of synchronization called an Arnold tongue and, as K

gets larger, the tongues widen. This part of the phase diagram

is arranged in a very orderly fashion.

Some results from Henri Poincare’s work can be used to show

that for K < 1 only one solution exists at any point of parameter

space (Arnold and Avez, 1968). Since each tongue represents

a specific oscillation state it implies that no tongues can overlap,

and every oscillating state represents a unique solution. The

tongues 0/1 and 1/1 are special in the sense that their boundaries

in the U-K plane are linear. At these boundaries, the value of the

phase (qn) is either p/2 or �p/2, which is a measure of the phase

difference between the internal and the external oscillator.

As K increases further the area covered by the tongues con-

tinues to grow until, at K = 1, there is only an infinitesimal area

left for the irrational orbits. At this point, these quasiperiodic or-

bits occupy a fractal set (Mandelbrot, 1983; Feder, 1988) with a

universal dimension measured to be 0.870 (Jensen et al., 1984)

indicating that the irrational numbers only occupy a finite fraction

of the x axis and are relegated to a set of zero length. Thus, the K

= 1 line defines a complementary situation to that at K = 0 since

the rational numbers now fill up the line while the irrationals fill

nothing; however, they are still all there! Not only does this struc-

ture and dimension appear in the model, it has been experimen-

tally verified in a number of physical systems, including the onset

of turbulence (Stavans et al., 1985), Josephson junctions (Al-

strøm et al., 1984; Yeh et al., 1984; He et al., 1985), one-dimen-

sional conductors (Brown et al., 1984), semiconductors (Cum-

ming and Linsay, 1987; Gwinn and Westervelt, 1986), and

crystals (Martin and Martienssen, 1986). These observations

tell us that universal knowledge about systems in nature can

be extracted to a fascinating degree from a simple mathematical

model.

At K > 1 there is a dramatic change in the behavior. The orderly

progression of quasiperiodic orbits disappears, and the model

begins to show a much richer behavior than heretofore. For

some values of the model parameters, several different orbits,

even orbits of different characters, are simultaneously possible.
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Which kind one sees depends upon the parameters and initial

conditions of the motion, but it has been proven that the number

of stable solutions can never exceed two. Here, cycles showing

period doublings also exist (they typically arise around the center

of each Arnold tongue), and these tend to increase their doubling

number rapidly before turning into chaos. Therefore, chaotic or-

bits can also be found in this part of the diagram, where the long-

term motion is completely unpredictable. The regions of locked

motion still exist; and therefore, this model explains the

completely massive degree of complex dynamics that can be

found for large interaction strengths (Jensen et al., 1984; Bohr

et al., 1984).

The reason for studying this abstract sine circle map in detail is

that there is a lot to be learned about the qualitative features of all

coupled oscillator systems based on such simple models. The

point is that some features of models, particularly those involving

how different kinds of motion arise and fit together, are ‘‘univer-

sal.’’ That means that these features are to be found not only in

simplified models but also in a wide variety of circumstances in

which the same basic mechanisms are at work. The growth of

the Arnold tongues has been proven to occur for all rational

numbers in the simple model, and this has been observed in

numerous experiments (for instance, Stavans et al., 1985). It

can also easily be found by simulating dynamical systems of

coupled oscillators for arbitrary choice of network sizes, param-

eters, etc.

One may include intrinsic noise in the sine circle map by add-

ing a small normally distributed number to the equation. It turns

out that the Arnold tongue diagram in Figure 3 is quite robust to

the presence of intrinsic noise. Below the critical line, we know

mathematically that there can only exist one stable solution;

and therefore, the points will be smeared a bit, but the overall

behavior is not affected. Above the critical line, the tongue struc-

ture is still robust and period doublings as well as chaotic dy-

namics can still be found for reasonably small levels of noise.

Importantly, in the circle map with noise it is possible to observe

mode hopping where the frequency performs transitions be-

tween two stable levels. Another universal feature of an Arnold

tongue diagram is that the tongues will always appear in the

same order, given by increasing rational numbers from the left

to the right. In presence of noise and other non-linearities the

tongues might bend (typically to the ‘‘right’’) and the tongue dia-

gram will look less symmetric as compared with Figure 3. How-

ever, the overall structure and topology will remain the same.

Methods for inferring the existence of chaos from time-
series data: Challenges for biology
A chaotic state exhibits unpredictability, as discussed above,

and thus, one is tempted to ask whether it is possible to distin-

guish this from general stochastic dynamics. There are some

fundamental differences, which are possible to detect in many

cases that will be described below.

A chaotic strange attractor possesses a layered and detailed

structure, which repeats itself on much finer scales (Strogatz,

2018). This type of fractal pattern can be characterized bymeans

of a fractal dimension, which, as mentioned above, is a non-

integer number (the first studied example of chaos, the Lorenz

attractor, for instance, has a dimension of 2.05). A stochastic tra-

jectory will not exhibit this fine detailed structure but will instead



Figure 4. Schematized figure showing methods to detect chaotic dynamics in time traces
(A) Often one starts out with a complex one-dimensional pattern from experiments with recorded noise. We emphasize that the longer the trace is, the more
probable it is that one can actually detect chaotic markers.
(B) Next it is customary to transform the data into a higher dimensional form, where one usually chooses an embedding dimension with a suitable value of a time
delay. In this process it is also relevant to sort out as much noise as possible, by applying various de-noising algorithms along with relevant smoothening of data.
(C) Finally, one should use specific measures of chaos to see if it is possible to find the markers of chaos. The classical measure is to find two neighboring points
and measure the divergence of their trajectories. Another method is to calculate the correlation dimension of the attractor, by increasing the embedding
dimension and measuring the slope of log(N) versus log(R). Further, one can measure the discrete dynamics inside a Poincare section to compare the dynamics
here with what is expected from a simple limit cycle with noise or another periodic cycle. Blue: example of points stochastically distributed around a limit cycle,
red: example of points distributed due to chaotic dynamics.
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appear as a smeared trajectory around the underlying

deterministic trajectory. While time series from many physical

experiments are quite stable and close to deterministic like the

dynamical states found in convection, stochasticity and noise

are ubiquitous in the biological world. This complicates detection

of chaotic trajectories in real-world biological data (here, we use

one-dimensional time-series data as an example). Three key el-

ements are used to confront the challenge of showing the exis-

tence of chaos—(1) time-embedding, (2) de-noising algorithms,

and (3) chaotic measures (See Figure 4).

Experimental time series are oftenmeasured in one dimension

(meaning we measure, for instance, the concentration of one

protein in time), whereas the underlying biological network can

consist of numerous interacting components, giving a high

dimensional space. Since chaotic dynamics can only exist in

three dimensions or more, one needs to reconstruct the higher

order attractor, but luckily, one can estimate the properties of

the attractor by means of a time-embedding (Takens, 1981;

Roux et al., 1983). In a time embedding of a time series we can

at any time consider not just the present measurement (given

by x(t)) but also observations made at times removed from the

current time by multiples of a lag T (meaning x(t-n*T)). In this

way, the time-embedded vectors x(t-n*T) generate a higher

dimensional state space. It should be noted that there also exist

methods that do not need the time embedding; for instance, a

recent study (Toker et al., 2019) successfully relied on the 0-1

chaos test (Dawes and Freeland, 2008).

It is still difficult to investigate the detailed structure of the at-

tractor due to the smearing from noise, which is always present

in biological experiments. However, numerous de-noising algo-

rithms exist (Hegger et al., 1999; Grassberger et al., 1993; Han

and Chang 2013) and a great collection of these is found in the

book by Kantz and Schreiber (Kantz and Schreiber, 2004). A
very simple algorithm is suggested by T. Schreiber (Schreiber,

1993), which works well for many purposes, and is implemented

in many software suites, for instance, MATLAB. The intuition

behind it is to consider nearby points in the phase space gener-

ated by time embedding and then perturbing each point propor-

tional to a weighted average of the nearby points. Using this

method, one can recover the fine structure of the attractor in

higher dimensions, especially if this is combined with smoothing

methods. Here, de-noising algorithms present a way to remove a

large fraction of the high-frequency noise, and a proper use will

allow the detection of finer structures of the strange attractor.

However, one should be careful since ‘‘overuse’’ of those

methods will basically smear out everything and turn the fine

layered structure into a broad distribution.

Finally, one should test whether the data, now cleaned and

in higher dimensions, are actually chaotic. Here, major steps

have been taken by Rodriguez and Laio, using clustering algo-

rithms to compute the higher dimension of the attractor (Ro-

driguez and Laio 2014). One approach is to calculate the

spectrum of ‘‘Lyapunov exponents,’’ by measuring the sepa-

ration of two almost identical initial conditions (Wolf et al.,

1985; Rosenstein et al., 1993). That is, from the time-

embedded data one can identify two points that are very close

in the phase space and subsequently measure the initial,

exponential separation away from each other, which deter-

mines the Lyapunov exponent (Figure 4C, above). By

repeating the procedure, one obtains a spectrum of expo-

nents, which characterize the separation and if these are pos-

itive one defines the data to exhibit chaotic dynamics. This

approach is the canonical way for classification of chaotic

traces, but it relies on the noise level in the system being

low. If the noise levels are very high, traces will diverge even

though they are not chaotic simply due to phase drift.
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Another way to distinguish chaos from lower dimensional dy-

namics, such as period doubled trajectories, is by estimating the

fractal dimension of the attractor (Mandelbrot, 1983; Grass-

berger and Procaccia, 1983; Feder, 1988). Here, one constructs

an n-dimensional space using time-embedding and considers

the number of data points inside an arbitrary sphere of radius

R. This results in estimates of the number of points inside a

growing sphere and from the scaling as a function of the radius

R one can extract the fractal dimension. As the number of dimen-

sions increases, the gradient of the amount of points inside the

growing sphere approaches a constant value, which is the at-

tractor dimension (Figure 4C, middle).

Yet another way to distinguish chaos from lower dimensional

dynamics, is to construct a Poincare section inside the

embedded attractor and determine the correlations of the points

in this section (Heltberg et al., 2017). Here, stochastic data will

result in a cloud of points smeared by noise (if the noise level is

not too high) and be correlated (blue in Figure 4C, below),

whereas a strange attractor will show an underlying structure

and topology (red in Figure 4C, below). More rigidly, by applying

the Poincare section one can also use the topological signatures

of chaos. This is neatly carried out by Amon and Lefranc, who

use trajectories in the neighborhoods of periodic orbits, to esti-

mate the knot type of these orbits and exploiting the fact that

this knot type can be used to compute a lower bound on the de-

gree of chaos (technically, the topological entropy, which if pos-

itive indicates the presence of chaos in a rigorous way) (Amon

and Lefranc, 2004). A collection of such methods can be found

in the book by Gilmore and Lefranc (Gilmore and Lefranc, 2003).

Examples of complex dynamics in biology
By now, a vast variety of different biological systems have been

shown to possess interesting and complex dynamical features.

We believe that it is still only the tip of the iceberg that has

been observed, and in this section, we will review some classical

examples in nature that have been proven to exhibit traits of

complex dynamics.

A large number of biological studies from widely different

areas, suggest that oscillations couple and form synchronized

states. Famously, the synchronization of menstrual cycles in

co-habiting women has been observed (McClintock, 1971),

and conversely it has been said that locusts pick their 11-, 13-,

or 17-year cycle so that other species will find it hard to period

lock to them (Sota et al., 2013; Lloyd and Dybas, 1966). Exam-

ples of coupled oscillations and synchronized states also occur

on smaller scales in biology, as discussed below.

Many groups have observed Arnold tongues in their investiga-

tions of biological systems. These include studies of circadian

clocks (Abraham et al., 2010; Pfeuty et al., 2011; Schmal et al.,

2015; Pittayakanchit et al., 2018), experimental studies of popu-

lations of synthetic oscillators in bacteria (Elowitz and Leibler,

2000; Mondragón-Palomino et al., 2011), mammalian cell cycles

locked to the circadian clock (Gérard and Goldbeter, 2012; Bor-

dyugov et al., 2015), protein oscillations perturbed by an external

cytokine oscillation (Wang et al., 2011; Jensen and Krishna,

2012; Kellogg and Tay, 2015; Zambrano et al. 2016), and cell-cy-

cle dynamics in Caulobacter (Lin et al., 2012) and yeast (Charvin

et al., 2009). Deora and Sane (Deora et al., 2015) report the

entrainment of wing and haltere oscillations in flies. Here, they
298 Cell Systems 12, April 21, 2021
cut the wings to manipulate the frequency and find that the hal-

teres are phase locked up to a certain critical frequency.

At the scale of gene regulation, it has been found that many

transcription factors show complex dynamical features, most

famously p53 and NF-kB in response to external stresses. While

the precise functional role of oscillations in these systems is still

unclear, it is suggested that the dynamics might be an important

response to external stresses (Tiana et al., 2002; Jensen et al.,

2003; Nelson et al., 2004; Geva-Zatorsky et al., 2006; Purvis

et al., 2012; Purvis and Lahav 2013; Zhang et al., 2017; Reyes

et al., 2018; Hafner et al., 2019; Heltberg et al., 2019b). Since

these proteins are a part of numerous upstream and down-

stream networks, it is intriguing that they might at specific times

be part of coupled oscillator networks. In this case, the Arnold

tongue diagram will tell which amplitudes and frequencies are

capable of entraining the oscillations, and where the limits of

such control lie. Entrainment of NF-kB has been observed, and

it was shown how this entrainment affected the downstream

genes affected by NF-kB (Kellogg and Tay, 2015) (See Box 2).

Following the theory outlined above, the complex dynamics of

mode hopping was also found in this network and it was argued

that this could induce multiplexity in gene regulation (Heltberg

et al., 2016). Finally, computational studies might see the onset

of chaos in biological systems, and such an onset has been

argued to be helpful to biological function in order to enhance

low-affinity genes and protein-complex diversity (Heltberg

et al., 2019a).

At the scale of populations of cells, Hasty et al. (Mondragón-

Palomino et al., 2011) inserted synthetic oscillatory gene circuits

into bacteria and observed the entrainment of oscillations across

the population. The coupling between cells here was hypothe-

sized to be due to quorum sensing signals that these bacteria

secrete. Gupta et al. (2016) showed that intrinsic biochemical

noise can interact with dynamic non-linearities causing entrain-

ment of the population mean of uncoupled intracellular oscilla-

tors, even though these oscillators may not be individually en-

trained. They called this effect stochastic population

entrainment. In studies of cardiac dynamics, it has been found

that high-risk cardiac patients exhibit low-dimensional chaos in

their heartbeat intervals (Vybiral and Skinner, 1993).

At the scale of embryos, phase locking seems to play an

important role in vertebrate somitogenesis. Cells in the preso-

mitic mesoderm (PSM) show oscillations in various genes

controlled by the Wnt morphogen, such as Axin or betacetenin

(Mengel et al., 2010; Juul et al., 2018). Various theories exist to

explain how such temporal periodicity is translated to the spatial

periodicity required to form the somites, which eventually pro-

duce the vertebrae of the spine (Dequéant and Pourquié, 2008;

Hubaud and Pourquié, 2014; Lauschke et al., 2013; Soroldoni

et al., 2014). One suggestion is that the oscillations couple to a

gradient of Wnt with cells effectively moving toward the lower

end of this gradient as the PSM grows. This requires a tight

phase locking between adjacent cells, and we may speculate

that known inter-cellular couplings (such as Notch-Delta) be-

tween the oscillators of adjacent cells may be involved in entrain-

ing and phase locking these cells.

For the circadian clock (Thommen et al., 2010 and Pfeuty et al.,

2011) propose that there are generic phase-locked loop mecha-

nisms, which can ensure that the interaction strength goes to



Box 2. Observing coupled oscillators in biology

To investigate the effects and possibilities of coupled oscillations in biology, experimental data provide a crucial step. Here we

describe how this can be studied in living single cells, by explaining some of the universal mechanisms leading to coupled oscil-

lations.

(1) Find a protein that can show oscillatory behavior. This could typically be a transcription factor since they usually form a nega-

tive feedback-loop with a large time delay. Through biological engineering, proteins could also be generated in a feedback-

loop to produce oscillations (Elowitz and Leibler, 2000).

(2) Perturb by an external oscillation, which for instance could be a ligand delivered periodically. By using microfluidic chambers,

one ensures that the feedback between the cell and the ligand is kept to a minimum.

(3) Consider if theminimum value of the external signal is sufficiently high to initiate oscillations on the internal system (in technical

terms the internal oscillator should always be above the Hopf bifurcation, see Strogatz, 2018). If the external period is very long

compared with the internal, the external signal should not oscillate between a high value and zero, because then the internal

system would not oscillate independently and thus the system would not be of coupled oscillators (Zambrano et al., 2016;

Heltberg et al., 2016).

(4) For the Arnold tongues to emerge, the amplitude and period of the external oscillator should be varied independently and in

this way, synchronization will emerge by measuring the ratio between the external frequency and the observed internal fre-

quency. The shape of the Arnold tongues can vary from system to system and will rarely look as regular as in Figure 3. Some-

times the tongues bend sharply most often to the right as the external frequency is increased.

For small amplitude oscillations of the external oscillator, the complex dynamics described in the main text should emerge. Theo-

retically, this should also be a way to induce chaotic dynamics in the concentration of the transcription factor. If such simple sys-

tems do produce the predicted effects of the non-linear coupling, it is encouraging to believe that given the many small networks

found in living species, these effects would be ubiquitous in nature. Furthermore, it is worth stressing that in controlled conditions

like this, one can study the downstream effects of dynamical features of proteins. Finally, we emphasize that in principle any exper-

imental system that obeys the points 1–4 above should be able to entrain and lead to Arnold tongues. For instance, testing tem-

peratures, mechanical forces, radiation, etc., in a time-varying dose delivered to organisms, could potentially give rise to the com-

plex dynamical phenomena exhibited by coupled oscillators. A schematic picture of such a setup is shown in here.

Box figure: schematic figure showing an example of how coupled oscillations can occur in vivo and in vitro, by having an oscillating
system in an environment of time-varying concentrations or other physical conditions. The colors indicate how the concentration shifts
between a high and a low level, but never a level around zero (indicated by black color). As these concentrations vary, some of the
interactions in the network are perturbed (here shown as a degradation of B).
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zero when the phase difference between the external cycle and

the oscillator vanishes. The same mechanisms shield the clock

from variations in light because it does not see the light when en-

trained and prevents the appearance of chaos because the

effective interaction strength goes to zero as entrainment sets

in, thus avoiding the chaotic region, which always appears

‘‘higher’’ up in the Arnold tongue. As mentioned in the section

on universal behavior of coupled oscillators the phase difference

between the internal and external oscillator across the 1/1

tongue is shown to span from –p/2 to p/2. This has been inves-

tigated in several models (Bordyugov et al., 2015; Granada and

Herzel, 2009) and it has been implied that the multiple stable

phase lockings can have importance for a population where in-

dividuals synchronize to the circadian clock and in seasonal

adaptation. For the NF-kB model (Jensen and Krishna, 2012;
Heltberg et al., 2016) we have similarly also observed the phase

span from –p/2 to p/2 across the 1/1 tongue.

It has been observed experimentally that somitogenesis in-

volves repeated phase waves that travel from the posterior to

the anterior within the PSM and mark the location of somite for-

mation where they stop at the anterior end (Lauschke et al.,

2013). Constraints have been derived to connect the size of so-

mites, and the timing of their formation, to the growth of the PSM

and the gradient of the somitogenesis clock period across the

PSM (Juul et al., 2019).

In the field of neuroscience, neurons form a fantastically com-

plex network, ranging from the subcellular networks that main-

tain the membrane potential on a single-cell level, to the most

complex organizations of the nervous system (Korn and Faure,

2003; Power et al., 2012). On the single-cell level, chaotic
Cell Systems 12, April 21, 2021 299



Figure 5. Schematic figure showing how
fundamentally different types of dynamics
may affect biological systems, with each
playing different but important roles in
maintaining the diverse functions and
complexity of life
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bursting has been found in several experiments (Hayashi and

Ishizuka, 1992; Mpitsos et al., 1988), and on the network level,

synchronization and chaos has been observed both in vivo

studies (Babloyantz and Destexhe, 1986) as well as in numerous

models (Abarbanel et al., 1996; Aihara et al., 1990; Rulkov, 2001;

Rasmussen et al., 2017). A thorough understanding of the effects

of complex dynamics is still absent, but it is well accepted that

the various kinds of dynamics are necessary to obtain the high

complexity found in the human brain (Avena-Koenigsberger

et al., 2017). It has been argued that dynamical phenomena,

such as chaotic dynamics and entrainment, might play an impor-

tant role in the sleep-awake transition (Rasmussen et al., 2017),

in acoustic stimulation (Will and Berg, 2007), and in information

processing (Nicolis and Tsuda, 1985). Finally, complex dynamics

has also played an important role in the mathematical investiga-

tion of ecology. Since the seminal work of May in the seventies

(May, 1974), many studies have investigated the role especially

of entrainment and chaotic dynamics in ecology (Ferrière and

Gatto, 1993; May, 1987; Benincà et al., 2015; Schaffer and

Kot, 1985). Even though this has been investigated for several

decades now, the roles of the different kinds of dynamics and

the transitions between these are still an open question to

the field.

Concluding remarks
In this review, we have outlined the most important aspects of

the fascinating fauna of dynamics that can arise from the

coupling of two oscillators – from the control found in entrain-

ment at low coupling strength, to the appearance of multi sta-

ble limit cycles and mode hopping at intermediate strength, to

the intriguing aspects of chaotic dynamics at high interaction

strength. As we have shown, these types of dynamics have

been found in various biological systems, and as the techno-

logical methods of experimental biology are advancing

quickly, there is good reason to believe that they will be
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observed in many more fundamental

biological systems. However, in the

investigation of complex dynamics, it

has so far usually been detection of

the dynamics and explanation of the dy-

namics through mathematical models

that has governed the research. Very

rarely have the effects of complex dy-

namics been thoroughly investigated.

For instance, in the field of transcription

factors, it is a fundamental question to

figure out the detailed downstream ef-

fects that may be initiated when p53

and NF-kB start to oscillate in response

to stress. One practical problem in such

investigations lies in the difficulty of
varying aspects of the oscillation, such as frequency, in a

controlled manner in vivo.

Entrainment to an external oscillator that is under the control of

the experimenter is one way to exert control over the internal bio-

logicaloscillation andcouldbeused to systematically explore how

downstream effects vary as the oscillation is tuned by the external

oscillator. We believe that there is a lot of regulation and control

hidden in the dynamics of these biological systems, and that the

understanding of the mechanisms and principles behind this can

be one of the great steps forward in modern systems biology. As

schematized in Figure 5, one can—from a pragmatic point of

view—divide the observed dynamics into three qualitatively

different types: steady state, oscillations, and chaos; each of

which may be useful for different biological functions. While we

have just started to appreciate the variety of oscillations inbiology,

the presence of chaos in biology is still embedded in controversy.

Only the futurewill reveal how these different types of dynamics fit

together in the complete puzzle of maintaining both complexity

and regulation of living organisms, but at this stage it is tempting

to believe that living organisms at some level take an advantage

of the intriguing possibilities enabled by complex dynamics.
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