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The regulatory system of the transcription factor NF-κB plays a great role in many cell functions, including
inflammatory response. Interestingly, the NF-κB system is known to up-regulate production of its own triggering
signal—namely, inflammatory cytokines such as TNF, IL-1, and IL-6. In this paper we investigate a previously
presented model of the NF-κB, which includes both spatial effects and the positive feedback from cytokines. The
model exhibits the properties of an excitable medium and has the ability to propagate waves of high cytokine
concentration. These waves represent an optimal way of sending an inflammatory signal through the tissue as
they create a chemotactic signal able to recruit neutrophils to the site of infection. The simple model displays
three qualitatively different states; low stimuli leads to no or very little response. Intermediate stimuli leads
to reoccurring waves of high cytokine concentration. Finally, high stimuli leads to a sustained high cytokine
concentration, a scenario which is toxic for the tissue cells and corresponds to chronic inflammation. Due to
the few variables of the simple model, we are able to perform a phase-space analysis leading to a detailed
understanding of the functional form of the model and its limitations. The spatial effects of the model contribute
to the robustness of the cytokine wave formation and propagation.
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I. INTRODUCTION

Excitable media are naturally encountered in many biolog-
ical systems. A typical excitable medium behaves in a manner
much resembling spectators making a wave of raised hands at
a sports game. The excitable units (or sections) get stimulated
by their neighbors and amplify the exciting stimuli. At this
stage the units are said to be in an excited state. Subsequent to
excitation there is a recovery period in which new excitation
is not possible, referred to as the refractory period. As a result
of this behavior, spatially coupled excitable units are able
to propagate undamped waves of high stimuli concentration
through the system.

Some biological species have evolved to utilize the un-
damped waves that excitable media produce as a means of
sending information through the system. Two well-known
examples of biological excitable media are the neuron
[1,2], which is able to propagate action potentials down
the axon, and colonies of the social amoeba Dictyostelium
discoideum [3,4], which propagate spiral waves of cyclic
adenosine monophosphate (cAMP) and accordingly perform
self-organized directed migration toward a common center.
Both systems share the need for sending information through
relatively large distances, where simple processes, such as, for
example, diffusion, would not be adequate.

As recently shown by the authors, the regulatory system
of nuclear factor κB (NF-κB) also contains the necessary
components in order to exhibit “excitability,” i.e., behave as
an excitable medium [5].

NF-κB is present in all mammalian cells and is known to
play an important role during inflammatory response [6–8].
The NF-κB system is triggered by inflammatory cytokines
and in turn amplifies the cytokine signal, thus creating an
excited state in which cytokine production is high. But because
NF-κB also triggers production of its own inhibitors, the
excited state will not last: eventually inhibitor concentration
will become abundant and bind all NF-κB, making it inactive
and hence cytokine production ceases. As long as inhibitors

are plentiful, new activation of NF-κB cannot result in an
excitation comparable to the initial one, although NF-κB has
been shown to exhibit secondary small-amplitude peaks [6,7].
Thus the state with high inhibitor concentration constitutes a
refractory period.

As a result of this behavior tissue cells containing NF-κB
regulatory systems should theoretically be able to propagate
traveling waves of high cytokine concentration through the
tissue. Since cytokines also function as a neutrophil chemoat-
tractant, this scenario is in good agreement with the current
belief that neutrophils chemotax in a similar fashion as
Dictyostelium d., namely, through waves of chemoattractant.

As recently shown, a simple model of spatially coupled
NF-κB units (cells) naturally leads to the propagation of
cytokine waves in the tissue [5]. The model is a simplification
of the real NF-κB system and provides a useful tool for
investigating and understanding the underlying mechanisms
of the complex regulatory system. In this paper we present
and analyze the model in greater detail and obtain a better
understanding of the many mechanisms that the simple model
captures. The findings of this paper can hence contribute
to the general understanding of inflammatory response—in
particular, how different components of the immune system
may send and transmit information through the organism.
In addition, these findings contribute to the understanding of
neutrophil recruitment during inflammatory response.

II. MODEL

In order to create an excitable medium it is important that
the excitable unit responds with a transient amplification of
the stimuli (opposed to persistent amplification). This means
that the excitable unit must be an adapter in the sense that the
system must adapt to the new surroundings after a transient
phase. It is experimentally observed that the NF-κB system
responds with a pronounced initial peak in nuclear NF-κB and
thereafter, secondary oscillation of much smaller amplitude
[6,7]. The damped oscillatory behavior arises due to several
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FIG. 1. (Color online) The NF-κB regulatory system is simplified
as sketched here. Cytokines such as TNF, IL-1, and IL-6 activate the
NF-κB system through the IKK pathway. The cytokines are simplified
as a single variable denoted T. Active NF-κB is highly correlated to
active IKK, and these two variables are thus also simulated as a single
variable denoted N. Since cytokines activate IKK (and hence NF-κB)
and NF-κB in return up-regulates production of cytokines, there is a
positive feedback between the variables T and N . Inhibitors (IkBα,β,ε)
and upstream regulators (A20, cesanne) all function to perform a
negative feedback on either IKK or NF-κB and are hence simulated as
the single regulating variable R, which performs a negative feedback
on N . Activating interactions are sketched with → and inhibiting
interactions are sketched with �.

inhibitors performing negative feedback, but for our purpose
it is sufficient to note that the secondary behavior is of much
smaller amplitude than the initial peak, and hence the NF-κB
system is an adapter.

In order to analyze the system we have constructed a
simple model which captures the overall behavior of the
NF-κB system. (We have verified our results by also simulating
the system in greater detail, including several inhibitors and
upstream regulators, and confirm that the qualitative behavior
is also exhibited for this more sophisticated model.) The
NF-κB system is simplified as sketched in Fig. 1. Cytokines
such as tumor necrosis factor (TNF), interleukin-1 (IL-1), and
interleukin-6 (IL-6) stimulate the NF-κB system though the
IκB kinase (IKK). The cytokines are simulated by a single
variable which we denote T . When IKK is activated inhibitors
are degraded and NF-κB is released, translocating into the
nucleus where it is active. Thus the concentrations of IKK and
NF-κB follow each other and can be simulated by one variable,
which we denote N . The inhibitors (IkBα,β,ε) and upstream
regulators (A20, cesanne) all cause either IKK or NF-κB
concentration to go down. These inhibitors and regulators are
simulated by a “regulator” variable which we denote R.

The effect of inhibitors and other regulators is to perform
a negative feedback on NF-κB, and is modeled by a simple
negative feedback loop (see interactions between N and R in
Fig. 1). These interactions can be described by the equations

dN

dt
= kactivate f (T ) × (NT − N ) − kinhibitR (1)

dR

dt
= ronN − roffR (2)

The activation of N corresponds to translocating NF-κB
into the nucleus. This term is proportional to some function of
the cytokine concentration f (T ) and the amount of cytoplasmic
NF-κB (we assume the total amount of NF-κB (NT ) is
constant. Thus the amount of NF-κB which is available for
activation is given by the amount of cytoplasmic NF-κB;
NC = NT − N ) [9].

Inhibition of NF-κB is proportional to the amount of in-
hibitors R and is considered to be saturated in N. (Simulations
have shown that this approximation does not introduce an error
of noticeable size.)

The activation of R is proportional to N and inactivation of
R is modeled as a spontaneous degradation, only proportional
to R. In order for this simple model to function as an adapter,
it is important that the rate constant roff is slow compared with
the other rate constants of the system [5,10].

When the NF-κB network is stimulated by cytokines
it responds by up-regulating hundreds of genes, including
those coding for cytokine production. The newly synthesized
cytokines are secreted into the extracellular matrix, where they
can again stimulate the IKK pathway. Thus the interaction
between NF-κB and cytokines constitutes a positive feedback
(see interactions between N and T in Fig. 1).

The local concentration of cytokines (T ) is modeled by the
equation

dT

dt
= p

N2

N2 + K2
− T

τ
+ S. (3)

NF-κB–induced production of cytokines is proportional
to the rate constant p (for positive feedback) and to the
Hill function N2/(N2 + K2), because NF-κB is a dimeric
transcription factor. As we shall see below, this term could
also be modeled as a simple linear response (pN ) and still
give similar results. The cytokine degradation is modeled by
a simple linear decay with a typical lifetime τ . The term S

represents an additional cytokine production functioning as an
external stimuli: during inflammatory response cytokines are
secreted from nearby macrophages, which would correspond
to a small flux of cytokines. This flux is “turned on” at time
t = 0 and is modeled by a step function

S =
{

0 for t < 0
Son for t > 0,

(4)

where S = 0 corresponds to no stimuli. In the case of spatially
coupled cells only the cytokines are secreted into extracellular
space, and hence only the variable T is allowed to diffuse in
between cells. In this case the equation describing cytokine
concentration (at the ith cell) is given by

∂Ti

∂t
= p

N2
i

N2
i + K2

− Ti

τ
+ Si + D

∂2Ti

∂x2
, (5)

with the only difference being the addition of the diffusion
term.

For the system to react as an excitable medium the
activation of the excitable units must be strongly thresholded.
This threshold is in accordance with recent experimental
findings [11,12]. We implement this by modeling the acti-
vation of NF-κB with a sigmoidal response to T (and Hill
coefficient = 3):

f (T ) = T 3

T 3 + K3
A

. (6)

The variables have been renormalized in the following way:
N → N/NT and T → T/KA, which is equal to putting the
parameters NT and KA [Eqs. (1) and (6)] equal to unity (and
redefining the remaining parameters [5]). This also means that
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FIG. 2. (Color online) Simulation of reaction to stimulus using Eqs. (1), (2), and (3). The stimulus is turned on at time t = 0 [see Eqs. (3)
and (4)]. Top panels: cytokine concentration (T ). Middle panels: Active NF-κB concentration (N ). Bottom panels: regulator concentration (R)
(representing the combined effect of all inhibitors). The unit [M] stands for molar concentration. KA and NT are normalization constants of T

and N , respectively. (a) The weak stimulus (S = 0.5 M/(KA hr)) causes T to increase a little but not enough to activate N . The system comes
to rest in a new steady state with low concentrations of all three variables. (b) The intermediate stimulus (S = 1 M/(KA hr)) causes the system
to oscillate. The increase in T exceeds the triggering threshold for activating N and consequently, all variables rise to high levels. The high
level of R inhibits N, which decreases back to almost prestimulation levels after approximately 2 hours. At low N level T and R will begin
to decrease; R decreases slowly because of the slow degradation rate roff [see Eq. (2)]. After approximately 9 hours R has decreased back to
prestimulation levels and the system spikes again. (c) At high stimulus (S = 2 M/(KA hr)) the system will not settle back to prestimulation
levels, because the inhibition from R is not enough to drive N back down, once the positive feedback is present. As a result, the system comes
to rest in a new steady state in which both N and T levels are much higher than triggering levels. R is sustained at a high level, creating an
infinite refractory period.

the cytokine triggering threshold for activating N is reached
when T exceeds T ∗ ≈ 1.

The parameter K [Eqs. (3) and (5)] describes the NF-
κB positive-feedback threshold for internal transcription of
cytokines. To achieve maximal sensitivity to N this parameter
was chosen to match approximately half-maximum of the
initial N peak, which gave K = 0.3. (N reaches a maximum
of ≈0.6 in our simulation.)

The rate constants kactivate, kinhibit, ron, and roff have been
fitted to match the typical time scale of the NF-κB initial
peak (kactivate = kinhibit = ron = 5.0 hr−1 and roff = 0.5 hr−1).
The lifetime and diffusion constant of TNF have previously
been estimated [13] and are used here as the cytokine lifetime,
τ = 25 minutes, and diffusion constant, D = 2 × 10−7 cm2

min .
Thus the only free parameter of our model is the parameter p.
This parameter sets the strength of the positive feedback, and as
we shall see in the Results section, this parameter can be varied
to be both too small, not obtaining an adequate feedback, or
too large, making the system incapable of returning to resting
state.

III. RESULTS: TEMPORAL BEHAVIOR
OF A SINGLE CELL

The system described by Eqs. (1), (2), and (3) is simulated
starting from an initial steady state where all concentrations
are low and there is no stimuli (S = 0). At time t = 0 the
system is stimulated by “turning on” the small cytokine flux
(S = Son). Had there been no interaction with NF-κB, T would
increase to a steady-state level given by a balance between Son

and τ [see Eq. (3)]. But if the stimulation Son is strong enough
(roughly speaking, if T exceeds the threshold T ∗ ≈ 1), the
system will respond with an up-regulation of N , which in
turn amplifies T to values manyfold larger than the initial

stimulation. Depending on the value of Son, three qualitatively
different scenarios can be achieved: if Son is too small the
increase in T will not activate N [Fig. 2(a)]. If Son, on the
other hand, is large enough to make T exceed the triggering
threshold, T ∗ ≈ 1, N will increase and cause T to increase
further [Figs. 2(b) and 2(c)]. As a result N will also increase
to a high level and consequently activate production of its
own inhibitors: R begins to increase. As R peaks the negative
feedback causes N to decrease and settle back to lower values.
If Son is large, [Fig. 2(c)] a new steady state will be obtained in
which R is high and both N and T are balanced at levels
significantly higher than prestimulation values [Fig. 2(c)].
Interestingly, intermediate values of Son [Fig. 2(b)] will lead to
situations where N and T settle back to prestimulation values
when R is high. Because N decreases to such low values, the
inhibitor R will also start to decrease, although this is a slow
process because of the slow degradation rate roff [see Eq. (2)].
When R decreases sufficiently N is no longer inhibited and
after some time N and T can peak again [Fig. 2(b)].

A. Phase-plane analysis of the system

The intermediate Son, leading to oscillatory behavior, is of
course a very interesting situation. The system has many things
in common with classical excitable media, such as, e.g., the
Belousov-Zhabotinsky reaction, and we follow an approach
similar to the one described in the review by Meron [14].

Notice that N and T are fast variables whereas R is a rather
slow variable. Thus the model contains two effective time
scales and we can assume that N and T will effectively reach
steady state and follow changes in R adiabatically. In order to
understand the system in greater detail, we plot the nullclines
of N and T for fixed values of R. The nullclines are plotted in
N -T space (see Fig. 3). Before stimulation (t < 0) the
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FIG. 3. (Color) The situation shown in Fig. 2(b) is here shown in the phase plane of N and T . Nullclines are plotted in blue (dN/dt = 0)
and green (dT /dt = 0) lines. Stable fixed points are indicated with solid red dots. Unstable fixed points are indicated with dashed red circles.
Initially (t < 0) the system has three fixed points located at the intersections of the nullclines. Two of these fixed points have low N and T

values and are shown in the zoom of panel (a) (first panel). The system is at rest in the low stable fixed point, which we refer to as fixed point
A. At time t = 0 the stimulus S is turned on [see Eqs. (3) and (4)], causing the T nullcline to shift to the right as shown in the zoom of panel
(a) (first panel). Consequently, fixed point A and the unstable fixed point disappear in a saddle-node bifurcation and the system starts to evolve
toward the fixed point with high N and T , which we refer to as fixed point B [see panel (a)]. As N increases, R will also increase [see Eq. (2)],
causing the N nullcline to move as shown in panels (b)-(e). The system will dynamically change and always evolve toward the stable fixed
point, eventually causing N and T to decrease [panels (d)-(f)]. At some point R becomes so large (the N nullcline has moved so far) that
fixed point B disappears in a saddle-node bifurcation [panels (d) and (e)], and the system will now evolve toward fixed point A which has been
re-established [since panel (b)]. At this point N has decreased back to a relatively low level and R will consequently begin to decrease, causing
the N nullcline to move back [panels (f)–(h)]. Meanwhile, the system is caught in the basin of attraction of fixed point A [see panel (g)] and
will move toward this fixed point [panel (h)]. Eventually, R has decreased sufficiently and the N nullcline has moved such that fixed point A
disappears again and the system begins a new round in phase space [panel (i)]. The times corresponding to the panels are: (a) t = 0.0 to t = 1.0,
(b) t = 1.1, (c) t = 1.2, (d) t = 1.4, (e) t = 1.6, (f) t = 2.0, (g) t = 2.7, (h) t = 3.7, and (i) t = 9.1 hours. Panel (j) shows the nullclines as
they would look if cytokine production (up-regulation of T ) had been modeled with a simple linear term pN instead of the sigmoidal term
(N 2/(N 2 + K2)) used in Eq. (3).

nullclines intersect in three distinct fixed points—two stable
fixed points separated by an unstable fixed point in between.
We refer to the two stable fixed points as fixed point A and
fixed point B. For t < 0 fixed point A and the unstable fixed
point lie very close to each other in N -T space, and both have
relatively low levels of N and T . [See intersections of dotted
green line and blue line in the first panel of Fig. 3 (zoom of
panel (a))].

When S is shifted from S = 0 to S = Son, the T nullcline
is shifted to the right by an amount δ = 	Sτ . Hence, if Son

is large enough, fixed point A and the unstable fixed point
will disappear in a saddle-node bifurcation, and the only
fixed point of the system is now fixed point B [Fig. 3(a)].
As the system begins to evolve toward fixed point B, N

increases and causes R to increase correspondingly. As this
happens the N nullcline will begin to move, dynamically

changing the phase space as shown in Figs. 3(a)–3(c). The
system will continuously evolve toward fixed point B as it
moves “down” [Figs. 3(a)–3(c)], eventually making N and T

decrease [Fig. 3(d)]. While the N nullcline moves, fixed point
A and the unstable fixed point have re-established in a new
saddle-node bifurcation [since Fig. 3(b)]. Eventually R will
increase to such high values that fixed point B coalesces with
the unstable fixed point and disappears in a second saddle-node
bifurcation [Figs. 3(d) and 3(e)]. Now the system will evolve
toward fixed point A, causing N and T to decrease back to
almost prestimulation values [Figs. 3(e) and 3(f)]. As N is no
longer high, R will no longer be up-regulated and will begin to
decrease because of spontaneous degradation. This will cause
the N nullcline to move “back” [as shown in Figs. 3(f)-3(h)],
although as mentioned above this is a slow process (because
of slow roff). As the N nullcline moves, fixed point B and
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the unstable fixed point are re-established [Fig. 3(g)], but
now the system is caught in the basin of attraction of fixed
point A [Fig. 3(g)]. As R slowly decreases, the system rests
in fixed point A [Fig. 3(h)]. Eventually, the N nullcline has
moved such that fixed point A and the unstable fixed point
once again disappear in a saddle-node bifurcation, and the
system will once again make a round in the phase space
[Fig. 3(i)].

The three qualitatively different scenarios of Fig. 2 can be
well understood from an investigation of the phase space. In
order to exhibit oscillations the system must be able to undergo
the two saddle-node bifurcations described above: first, fixed
point A and the unstable fixed point coalesce, and second,
fixed point B and the unstable fixed point coalesce. The value
of Son sets the size of the T -nullcline shift, δ = 	Sτ (recall
Fig. 3, first panel). A too-small Son will not cause the first
bifurcation because the T nullcline is not shifted far enough.
A too-high Son will inhibit the system from undergoing the
second bifurcation because the shift is too large and the system
will come to rest in fixed point B.

As mentioned in the Model section, we could also choose
to model the positive feedback from NF-κB on cytokine
production as a simple linear response, pN , instead of the
sigmoidal response, N2/(N2 + K2), which is only valid if
NF-κB is truly a dimeric transcription factor [see Eq. (1)].
In this case the T nullcline would be a straight line and the
N nullcline would remain unchanged. We plot this situation
in Fig. 3(j), from which it can be inferred that such a
simplification of the model would lead to similar results. From
this plot we conclude that at least one of the nullclines must
have a sigmoidal form in order to obtain a bistable system. This
means that a smaller Hill coefficient, H = 2, would suffice in
Eq. (6). Hence a minimal model could be obtained by modeling
N and T dynamics by the equations

dN

dt
= kactivate

T 2

T 2 + K2
A

× (NT − N ) − kinhibitR

dT

dt
= pN − T

τ
+ S.

Compare with Eqs. (1), (3), and (6).

B. The excitability of the system depends on the strength
of positive feedback p

The effect of the positive feedback can be understood by
investigation of the nullclines upon variation of p [see Eq. (3)].
The slope of the T nullcline is roughly set by p [see dashed
green lines in Fig. 4(a)]. Qualitatively there are three distinct
behaviors with weak, intermediate, and strong feedback being
similar to the three states with weak, intermediate, and strong
stimuli in Fig. 2.

If p is small (p ≈ 10) the slope of the T nullcline is very
steep and hence fixed point B will have a small T value. The
system cannot get excited as even a small increase in R will
move fixed point B down to low N and T values and the system
will have only a very small round in the phase space before
reaching this fixed point. The system comes to rest in fixed
point B, because R will never become large enough to cause
the second saddle-node bifurcation. The resulting situation is
very similar to the one in Fig. 2(a).

On the other hand, a strong positive feedback (p >≈ 100)
allows for a single excitation followed by an infinite refractory
period. Large p makes the slope of the T nullcline flatter
[Fig. 4(a)]. Right after the stimulus is induced the system
follows a long trajectory in the phase space, resulting in a
spike in N and T . However, the system comes to rest in fixed
point B because the maximal R value is not high enough to
move the N nullcline sufficiently far down for fixed point B to
disappear in a saddle-node bifurcation. In this case fixed point
B has significantly higher N and T levels, meaning that the
cytokine concentration is sustained high above the triggering
level. The relatively high N level causes R to be sustained at
a high level, hence creating an infinite refractory period. This
situation will be very similar to the one shown in Fig. 2(c). We
refer to this situation as a locked state because the nullclines
are locked in fixed point B, even when the stimulus is removed.
In the picture of inflammatory response the locked situation
would correspond to chronic inflammation.

The nullclines of the system can of course also be altered
by other parameters of the model, and in order to explore
changes in cytokine production we have varied the parameter
τ which determines the typical lifetime of the cytokines before
they are degraded (the inverse degradation rate). Hence a high

FIG. 4. (Color online) (a) The slope of the T nullcline (dashed green line) becomes steeper as p decreases and flatter when p increases.
The N nullcline (solid blue line) is shown for two different values of R and will move from the high plateau to the low plateau as R increases
(recall Fig. 3). In the case of small p the N nullcline will not need to move very far before fixed point B (recall Fig. 3) has moved to relatively
low levels of N and T , hence creating a situation as shown in Fig. 2(a), where the system comes to rest in fixed point B. In the case of high p

the system will also come to rest in fixed point B, which in this case is created at high T levels. R will never become large enough to make
fixed point B disappear in a bifurcation and the system is locked in fixed point B. (b) Combinations of the parameters p and τ which lead to
oscillatory behavior. The color of the graph indicates the frequency of the oscillations.
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p (a high production rate of cytokines) should be counteracted
by a low τ in order to keep the cytokine concentration balanced
such that it can repeatedly transcend the triggering threshold
at T ∗ ≈ 1, corresponding to repetitive rounds in phase space
as shown in Fig. 3. In other words, the nullclines must lie such
that they are able to undergo saddle-node bifurcations both at
fixed point A and at fixed point B. Whereas p sets the slope of
the T nullcline, τ sets the size of the shift to the right when the
stimulus S is introduced. The frequency at which the system
can spike depends on how fast the system will undergo the two
bifurcations. In Fig. 4(b) we show a plot of the combinations
of p and τ which lead to self-oscillatory situations together
with their spiking frequencies.

IV. RESULTS: SPATIOTEMPORAL MODEL OF THE
TISSUE LEADS TO PROPAGATING WAVES

When the cells are coupled in space and cytokines are
allowed to diffuse between them, waves of high cytokine
concentration arise [see Fig. 5(a)]. We have constructed a
spatial model consisting of a one-dimensional lattice of cells.
Every cell is able to regulate cytokine production as described
in Eqs. (1), (2), and (5), and only the variable T is allowed
to diffuse between cells. We use open boundaries representing
the bloodstream in which the cytokines (T ) will be absorbed.
During inflammatory response only cells at the site of infection
would be subject to the external stimulus S [see Eq. (5)], and

we simulate this by adding the external stimulus S only to the
central cell of the one-dimensional lattice; Si = S × δ(i,0).
Adding the diffusion term [see Eq. (5)] causes the effective
removal of cytokines to become larger, and in order to
counteract this we have increased S tenfold compared to the
above (Son = 10 hr−1).

At time t = 0 the central cell is stimulated and starts to
amplify the cytokine concentration. The cytokines will diffuse
to neighboring cells which consequently also get stimulated,
and thus a wave is created. We stress that the second (and later)
waves arise because of the oscillatory behavior of the central
cell which will initialize new waves that can propagate through
the system. The cells which do not feel the external stimulus S

will only get stimulated when they feel a spillover of cytokines
from their neighbors. Hence the situation is indeed cooperative
in the sense that the cytokine wave is truly propagated from
one cell to the next; the cells are not oscillating individually.
If the external stimulus S is removed from the central cell,
no new waves will be initialized and the system will settle
back to rest as soon as the last wave has reached the absorbing
boundary.

A. Space contributes to the robustness of the model

An interesting observation is that the spatial model seems
more robust toward creating repetitive waves. In Fig. 5(d) we
plot the combinations of p and τ which lead to propagating

(a) (b) (c)

(d) (e) (f)

FIG. 5. (Color) (a)–(c) Space-time plots of the cytokine (T ) concentration for three different values of the parameter p, which describes
the strength of the positive feedback between N and T [see Eqs. (1), (2), and (5)]. (a) The central cell is stimulated at time t = 0 and initializes
waves of high cytokine concentration which are propagated through the spatial system. (b) At higher values of p the positive feedback is so
strong that the system becomes flooded with cytokines (the cells are in the locked state described in the text). But diffusion effects from the
absorbing boundaries enable the system to resettle to prestimulation values and new waves can propagate. (c) If p is very large only the cells
close to the boundary will be able to escape the locked state. Here oscillations will arise even though p is very high. Notice the different
time scales. (d)–(f) Combinations of p and τ which lead to repetitive waves in the spatial model. We plot frequency (d), velocity (e), and
amplitude (f).
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(a) (b)

FIG. 6. (Color online) Diffusion effects will shift the T nullcline
(dashed green line) horizontally and can be both positive (correspond-
ing to a shift to the right) and negative (corresponding to a shift to
the left). (a) The N nullcline (blue line) is plotted for a relatively
low R level. If the diffusion term is positive, it can cause the system
to bifurcate such that fixed point A disappears. This stimulates the
system to move around in phase space as shown in Fig. 3. (b) The
N nullcline (blue line) is plotted for a relatively high R level. If
the diffusion term is negative, it can cause the system to bifurcate
such that fixed point B disappears and the system is unlocked from
the locked state. This effect contributes to the ability to bifurcate at
both fixed points and makes the spatial model more prone to exhibit
repetitive waves than the single isolated cell.

waves. As can be seen from the plot, there are far more
p-τ -combinations that lead to repetitive waves than in the
case of a single isolated cell [recall Fig. 4(b)]. Figures 5(d)–
5(f) also display how typical wave characteristics such as
frequency, velocity, and amplitude change with p and τ .
Velocity and amplitude of the waves grow with increasing
p (and decreasing τ ), which leads to strong and fast cytokine
production. On the other hand, the frequency is highest where
p and τ are correctly balanced, in order to be able to undergo
the saddle-node bifurcations, described above, as fast as
possible.

The reason why the spatial model is more robust can be
found in the effects of diffusion. In the nullcline picture,
the diffusion term [see Eq. (5)] acts to shift the T nullcline
horizontally (see Fig. 6). As opposed to the external stimulus
S, which also shifts the T nullcline horizontally, the diffusion
term can become both positive and negative. A positive
diffusion term corresponds to cytokines diffusing in from the
neighbors, leading to an increased positive flux of cytokines
and hence a shift of the T nullcline to the right [see Fig. 6(a)].
In this situation the diffusion terms acts as a stimulus just like
S, but a stimulus which travels through space and stimulates
the cells one by one, creating a wave. On the other hand a
negative diffusion term, meaning that cytokines diffuse away,
leads to a shift of the T nullcline to the left. The spacial
organization increases the chance that somewhere between
the source and the absorbing boundary there will be a cell
where the positive and negative diffusion terms balance such
that cells can undergo saddle-node bifurcations at both fixed
points. If, for example, p is high, a group of cells near the center
become locked in fixed point B (locked state). For cells further
away from the source a large negative diffusion term will shift
the T nullcline to the left [see Fig. 6(b)]. In this situation the
diffusion term unlocks the system so that it will again be able
to undergo the bifurcation; hence the diffusion term expands
the parameter space that can undergo both bifurcations and
hence create waves.

Of course, some combinations of the parameters p and τ

will lead to situations where most cells in the system cannot
undergo bifurcations because diffusion is not strong enough.
This can lead to situations where almost all cells become
locked in fixed point B [see Fig. 5(c)]. In this situation we still
observe oscillations but only close to the boundaries. These
oscillations arise because the diffusion term will be very large
and negative close to the boundary. Hence the cells which are
close enough to the boundary will always be able to undergo
bifurcations and oscillate. In Fig. 5(b) we show an intermediate
situation where diffusion into the absorbing boundaries also
plays a large role — it enables the system to oscillate, although
with a smaller frequency.

V. CONCLUSION

The simple model presented in this paper captures many of
the most important features of the NF-κB system, although it
is highly simplified and consists of only three variables. The
model essentially consists of a coupled positive and negative
feedback, which makes it able to transiently amplify a signal
of high cytokine concentration. This simple system provides a
good tool for investigating and understanding the interactions
between NF-κB and cytokines, especially because it makes it
possible to explore the phase space, thereby achieving a greater
understanding of the parameters.

The model captures how a single unit (cell) can become an
oscillator if it is stimulated appropriately (close to the site of
infection), but also how it can simply pass on the signal if it is
stimulated transiently (in tissue farther away).

From phase-space analysis we conclude that the system
is bistable and able to oscillate because it can undergo
bifurcations, shifting the system between low and high
fixed points [14]. The phase-space analysis also provides a
useful understanding of the unknown parameter p, describing
the strength of the positive feedback between NF-κB and
cytokines. We find that the positive feedback must have an
appropriate intermediate strength in order to create oscilla-
tions. Too-weak positive feedback leads to almost no response,
whereas too-strong positive feedback leads to a sustained
strong amplification of cytokine concentration, a situation
which can be related to chronic inflammatory response.

A spatial model is highly relevant for understanding
possible spatial effects that might appear in nature and which
are not captured in most laboratory experiments because of
space-averaging or mixing. Our spatial model of the tissue
naturally leads to the propagation of traveling waves of high
cytokine concentration, because the system behaves as an
excitable medium.

Excitable media are also observed in many other biological
systems which share the need of sending information over
many-cell distances, and the resulting traveling waves are in
good agreement with the expected spatial form of a neutrophil
directing signal.

We find that spatial effects play a large role in the
model and contributes to the model’s ability to propagate
repetitive waves. By changing the parameters of the model,
we observe qualitatively different spatial patterns and we see
that a even very strong positive feedback leading to chronic
inflammation gives rise to oscillations close to the absorbing
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boundaries representing the blood stream. Hence the situation
corresponding to chronic inflammation would also recruit
neutrophils from the bloodstream, but they would not be able
to orient themselves once in the tissue because there is no
directed signal to guide them.
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