Hurricanes
and
butterflies

Thomas C. Halsey and Mogens H. Jensen

Chaotic systems can be

characterized by the swirling
patterns of ‘strange attractors’.
A powerful method to determine

their behaviour has been

validated for the most famous
case, the Lorenz attractor.

haotic systems are famous for their

sensitive dependence on initial con-

ditions. Small changes in the origi-
nal variables describing a system, induced
perhaps by the flapping wings of a butterfly,
can result in large changes in the outcomes
— such as the magnitude of property dam-
age in Florida, in the wake of a hurricane.
History only happens once, so it would
seem impossible to determine a posteriori
that the path of a particular hurricane could
have been altered if only the butterflies had
been more cooperative.

However, writing in Physical Review Let-
ters, Sam Gratrix and John N. Elgin' provide
grounds for optimism: they have developed
a powerful new method to determine from
experimental observation of a system
whether it is chaotic, and, if it is, what the
precise quantitative nature of that chaos is.
Their method is based on fractal geometry.
Fractals are structures or curves that remain
rough or heterogeneous on all length scales
and are characterized by their ‘fractal dimen-
sion’. The coastline of England is such a
curve, as pointed out by Benoit Mandelbrot,
because the coastline can be regarded as
rough at least down to the scale of the
individual sand grains on the beaches.

Dynamical systems are generally analysed
in terms of their behaviour not in real space
but in the phase space spanned by the
variables describing the system — for a
hurricane, these include values of atmos-
pheric pressure, humidity and velocity, on a
grid sufficiently fine to determine the future
course of the hurricane. Depending on the
number of such variables, the phase space for
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Figure 1 The Lorenz attractor, tracing the phase-space trajectory for a simple model for atmospheric
convection. The trajectory is quite densely bunched in some regions and is quite sparse in others,

which makes this ‘strange attractor’ multifractal.

aparticular system will have a corresponding
number of dimensions. As they evolve, how-
ever, chaotic systems settle on some structure
of alower dimension than their correspond-
ing phase space, structures called ‘strange
attractors’. These are fractals, and perhaps
the most famous strange attractor is the
Lorenz attractor (Fig. 1), discovered in 1963
by Edward Lorenz’ for a model of atmos-
pheric convection (hurricanes again).

Butstrange attractors are not simple frac-
talslike the coast of England. They are ‘multi-
fractals’, whose quantitative properties vary
from point to point in an intricate manner,
with the result that they are characterized by
a range of fractal dimensions. Imagine that
the strange attractor in Figure 1 is covered
with small boxes; then consider what per-
centage of its time the system finds itself in
any particular box. The distribution of times
for the boxes is extremely wide — from boxes
that are almost never visited by the system
dynamics, to boxes in which it spends a dis-
proportionately large amount of time. So it
seems elementary to determine whether or
not a particular dynamical system is chaotic:
simply reconstruct its trajectory through
phase space, cover that trajectory with boxes,
measure the amount of time spent in each
box, and then determine whether or not the
multifractal structure you have computed is
consistent with chaos.

This box-counting method to diagnose
multifractality has been applied to a wide
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variety of systems over the past 15 years.
Many systems known on other grounds to be
multifractal have had their multifractality
confirmed in this way. Unfortunately, many
systems known on other grounds not to be
multifractal have also had their ‘multifractal-
ity’ confirmed in this way. Alas, box-count-
ing proves little about multifractality, and
much about the truth of a famous Mark
Twain saying regarding statistics and lies.

Nevertheless, there is an alternative route
to the determination of multifractal proper-
ties. Mathematicians know that the strange
attractor can actually be constructed from
the union of all periodic trajectories of a sys-
tem, provided that trajectories of arbitrarily
long periods are included (over a short
observation time, these trajectories might
not be obviously periodic, just as it takes at
least 28 days’ worth of observations to con-
clude that the Moon does, indeed, revolve
around the Earth). Using an ingenious
method to categorize these long trajectories,
Gratrix and Elgin' have reconstructed in
great detail both the Lorenz attractor and its
multifractal properties.

Of course, in nature we rarely have the
opportunity to observe a dynamical system
for long enough to find enough trajectories
to rebuild the strange attractor in such detail.
However, the results from the periodic tra-
jectory study can be compared with a much
simpler approach, based on recurrence
times. Recurrence times are simply defined:
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consider a point on the attractor, and ask
howlongitwill bebeforea trajectorystarting
atthat pointreturns, not exactly to that point
(as in the periodic trajectory calculation),
but to within some certain distance of that
point. Although a method was developed in
the mid-1980s to find multifractal proper-
tiesbased on the properties of the recurrence
times’, this method had not been applied to
strange attractors, and had not been verified
against more rigorous methods (an impor-
tant step, given the unfortunate history of
box-counting).

These gaps have now been filled by
Gratrix and Elgin', by developing the recur-
rence-time method for the Lorenz attractor
and by verifying it against the periodic trajec-
tory method. Because calculations based
on recurrence times should be relatively
straightforward for experimentalists, and as
we now have reason to believe that they will
be more reliable than box-counting results,
we can confidently await a new series of
experimental demonstrations of the chaotic
properties of a variety of natural systems.

Human longevity

But will this solve the problem of the
butterfly and the hurricane? The Lorenz
attractor lives in a three-dimensional phase
space; a hurricane lives in a phase space
with an enormous number of dimensions.
After several decades of work on chaos, we
still do not understand the extent to which
systems with such large numbers of degrees
of freedom (typically turbulent systems) can
be understood using the same concepts as for
chaotic systems, which are relatively simple
in comparison. So if a hurricane destroys
your beach house, the verdict against the
butterfly is: not proven. ]
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The grandmother effect

Kristen Hawkes

Why do women live long past the age of child-bearing? Contrary to
common wisdom, this phenomenon is not new, and is not due to support
for the elderly. Rather, grannies have a lot to offer their grandchildren.

ose who think postmenopausal
I women make little difference in the
story of human populations will be
surprised by the report of Lahdenperi and
colleagues on page 178 of this issue'. The
authors have unearthed firm evidence in
support of the ‘grandmother hypothesis),
according to which a grandmother has a
decidedly beneficial effect on the reproduc-
tive success of her children and the survival
of her grandchildren.

The question of human longevity has
deeper evolutionary importance than many
think. It is often assumed that the steady
increase in life expectancy over the past cen-
tury and a half” has resulted in a larger pro-
portion of older people than ever before.
But, until the past few decades, increases in
life expectancy reflected reductions in infant
and juvenile mortality, and made little dif-
ference to the fraction of women past child-
bearing age. As shown in Fig. 1, it is levels of
fertility, not life expectancy (mortality), that
shift the proportion of elders in a popula-
tion. Even when life expectancy is well below
40 years, most girls who survive childhood
live past their child-bearing years. In both
historical and hunter-gatherer populations,
athird or more of women are usually beyond
theage of 45.
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This large proportion of older people
has fundamental implications for all human
social organizations. Its unusual character
is highlighted by comparisons with other
primates. For example, among our closest
living relatives, chimpanzees, female fertility
declines at about the same age as in people,
from a peak before age 30 to virtually zero at
age 45 (ref. 3). But chimpanzee survival rates
fall along with fertility, so that in the wild less
than 3% of the adults are over 45 (ref. 4).

We might assume that the large fraction
of elders in human populations reflects a
characteristically human social safety net.
But natural selection generally favours the
flow of help from older to younger kin
(Fig. 2), so we should be sceptical that a
species-wide pattern of care for older people
explains human longevity’. Developments
in evolutionary life-history theory suggest
that, instead of help for older members
of the population, it is help from post-
menopausal grandmothers that accounts
for the age structures of human societies.

Mammalian life histories fall along a
fast—slow continuum®. At one end, matura-
tion is quick, fertility is high and adults die
young. At the other, maturity is delayed,
reproduction is slow, and adults usually
live long enough to grow old’. The most
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Figure 1 Population profiles for women —
females over 15 years of age — for different
variables. a, The proportion of women over 45
for different life expectancies (20,40 and 60
years) and fertility levels (expressed as gross
reproduction rate, GRR, which is equivalent to
the average number of daughters for women who
survive the fertile years). When life expectancies
are the same, higher fertilities make younger
cohorts larger and the proportion of elders
smaller (compare all the purple bars, all the
green bars, all the orange bars). When fertility
levels are the same (each cluster of bars), the
fraction of elders varies little even across a
tripling of life expectancies. Life expectancies
vary widely with differing levels of infant and
juvenile mortality. The point to stress is that, at
the same fertility level, populations with shorter
life expectancies do not have fewer elders: in fact,
they have slightly more women past fertile ages.
b, Population growth rate (r= annual rate of
growth/1,000) accompanying each combination
of fertility and life expectancy. The very high
proportions (> 50%) of women past 45 occur

in sharply declining populations, and the very
small proportions ( <20%) in swiftly growing
populations. Growth rates that differ from zero
cannot be sustained for long. (Data from ref. 17.)

successful model for explaining this cross-
species variation® shows that adult lifespans
can determine the other life-history traits.
The relationship between average adult life-
span and average age at maturity is much
the same across the living primates, includ-
ing humans’. Chimpanzees are at the slow
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