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Multiscaling and Structure Functions in Turbulence: An Alternative Approach
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We propose an alternative formulation of structure functions for the velocity field in fully developed
turbulence. Instead of averaging moments of the velocity differences as a function of the distance, we
suggest to average moments of the distances as a function of the velocity difference. This is like an
“inverted” structure function, with a different statistics. On the basis of shell model calculations we
obtain a new multiscaling spectrum.

PACS numbers: 47.27.Eq, 02.50.Fz

The understanding of intermittency effects in fully de-
veloped turbulence and the associated multiscaling spec-
trum of exponents, is probably the most fundamental open
problem in turbulence research [1]. The traditional way
of describing this is, as already suggested by Kolmogorov
[2], to consider the velocity difference between two points
of the turbulent state, raise this difference to the moment
q, and then study the variation with respect to the dis-
tance between the two points. To improve the statistics,
the moments are averaged in space (and maybe time), and
one obtains the well known structure functions where the
corresponding scaling exponents are called structure func-
tion exponents [1]. During the last decades it has become
clear from many experimental [3–5], numerical [6], and
theoretical considerations [7,8], that this set of exponents
is very nontrivial, defining an infinity of independent ex-
ponents leading to a “curved” variation of the scaling
exponent with the moment. Notable is also the recent fun-
damental advances in obtaining the multiscaling spectrum
analytically for a passive scalar advection in a spatially
correlated, but temporally noncorrelated, velocity fields,
the so called Kraichnan model [9,10].

We propose simply to “invert” the structure function
equation, and consider instead averaged moments of the
distance between two points, given a velocity difference
between those points. This leads to an alternative way
of describing and analyzing a turbulent velocity field
(in particular when measured experimentally), and one
obtains a new set of exponents that we have not yet been
able to relate to the traditionally estimated exponents,
though we suspect that there might be a relation. This
inversion is inspired by studies in passive scalar advection
where one often, say for pair particles, considers averages
of the advection time versus the distance, instead of
averages of the distance versus time [11–14]. To start
let us introduce the well known structure functions for the
velocity field u�x, t� of a fully developed turbulent state,
obtained either from the Navier-Stokes equations or from
measurements

�Dux���q� � �
zq (1)

where the difference is defined as

Dux��� � u�x 1 r� 2 u�x�, � � jrj . (2)

The average in Eq. (1) is over space (and maybe time).
We have assumed full isotropy of the velocity field. The
set of exponentszq forms a multiscaling spectrum [7].

Alternatively, we now consider the following quanti-
ties, which are denoted thedistance structure functions

���Dux�q� � jDuxj
dq , (3)

where the differenceDux is again defined as in Eq. (2)
and ��Dux� is understood as theminimal distance in
r, measured fromx, for which the velocity difference
exceeds the valueDux. In other words, we fix a certain
set of values of the velocity differenceDux. Starting
out from the pointx, we monitor the distances��Dux�
where the velocity differences are equal to the prescribed
values. Performing an average over space (and maybe
time) the distance structure functions Eq. (3) are obtained.
By assuming self-similarity of the small scale velocity
differences, one expects a trivial set of exponentsdq

where the variation with the momentq is determined by
one exponent. Say, in the standard Kolmogorov theory
we know that the velocity differences behave asDu �
�

1�3, forgetting for a moment the averaging brackets.
Inverting this equation, we of course obtain� � Du3

and would expect a trivial relationdq � 3q. In the
case of an intermittent and singular velocity field without
self-similarity of the small scale velocity differences
(see [15]), this would be completely different and the
averaging brackets will be crucial, relating to the statistics
of the varying quantity that is averaged. We will show,
based on shell model calculations, that in turbulence there
exists a new spectrumdq, that appears not to be trivially
related to the spectrumzq [16,17]. Let us for a moment
reflect on the caseq � 1. Using the standard value
z1 � 0.38 0.40, the simple inversion givesd1 � 2.5.
Our calculations indicate that this value is not obtained
in a turbulent model field. Instead we find a valued1 �
2.0 2.1. Another way to do the comparison is to aim at
velocity exponent 1 and find the corresponding moment
q̂, i.e., ��q̂� � Du1. We obtainq̂ � 0.45, again different
from 0.40. These differences are, of course, attributed
to the very different statistics, i.e., whether the velocity
differences or the corresponding distances are averaged.
Also, we obtain strong intermittency corrections in the
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sense that the value of the 8th moment isz8 � 12.9, i.e.,
much smaller than8z1 � 16.3.

In order to apply this scheme in a direct calculation we
employ the Gledzer-Ohkitani-Yamada, GOY, shell model
[18,19] which has been intensively studied over recent
years [20–26]. This model is a rough approximation
to the Navier-Stokes equations and is formulated on a
discrete set ofk values,kn � rn. We use the standard
valuer � 2. In term of a complex Fourier mode,un, of
the velocity field the model reads
µ

d

dt
1 nk2

n

∂

un � ikn

µ

anu�

n11u�

n12 1
bn

2
u�

n21u�

n11

1
cn

4
u�

n21u�

n22

∂

1 fdn,4 , (4)

with boundary conditions b1 � bN � c1 � c2 �

aN21 � aN � 0. f is an external, constant forcing, here
on the forth mode.

The coefficients of the nonlinear terms must follow the
relation an 1 bn11 1 cn12 � 0 in order to satisfy the
conservation of energy,E �

P

n junj
2, whenf � n � 0.

The constraints still leave a free parametere so that one
can setan � 1, bn11 � 2e, cn12 � 2�1 2 e� [24]. As
observed by Kadanoff, one obtains the canonical value
e � 1�2, if helicity conservation is also demanded [23].
The set (4) ofN coupled ordinary differential equations
can be numerically integrated by standard techniques. We
have used standard parameters in this paperN � 27, n �

1029, k0 � 0.05, f � 5 3 1023.
The GOY model is defined ink space but our formal-

ism is written in direct space and we therefore apply a
sort of inverse Fourier transform [27]. Here we employ
an idea proposed by Vulpiani [28,29] and write the three-
dimensional velocity field in the following way:

u�x, t� �

NX

n�1

cn�un�t�eikn?x 1 c.c.� . (5)

The wave vectors are defined by

kn � knen , (6)

where en is a unit vector in a random direction, for
each shell n. Also cn are unit vectors in random
directions. One can easily ensure that the velocity field
is incompressible, divu � 0, by the following constraint
[28]

cn ? en � 0 ;n . (7)

Note, that this condition could be relaxed to
P

N
n�1 cn ?

en � 0. In our numerical computations we consider the
vectorscn anden quenched in time but, nevertheless, av-
erage over many different realizations of these; i.e., one,
or several, specific measurements of the distance structure
functions are performed with one realization of the vec-
tors. After that a new realization ofen, cn is applied in
order to perform a good statistical average.

Equipped with a real space time dependent velocity field
we start out with a test of this field by computing the stan-

dard velocity structure functions, given by Eq. (1) [30].
Indeed, the field exhibits nice scaling invariance as shown
in Fig. 1a, where the first-order velocity structure function
is presented. We have extracted all the exponents with
moment up toq � 10 and the corresponding results are
shown in Fig. 2a (and for completeness also in Table I).
These results agree with the exponents obtained by numeri-
cal computations of the GOY model ink space [20], i.e.,
without performing the transformation to real space. In
the averaging, we have assumed isotropy and for prac-
tical convenience, the distance is varied only along the
three coordinate axes. Having checked this we proceed to
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FIG. 1. (a) The velocity structure function of order 1. The
line has a slope of 0.39. (b) The distance structure function
of order 1. The line has a slope of 2.02. Note the inner
cutoff related to the dissipative cutoff in (a), and the outer
cutoff given by velocity of the forcing scale. (c) The distance
structure function of order 8. The exponent isd8 � 13.1. The
“raggedness” is due to discretization of the varying length scale.
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FIG. 2. (a) The exponentszq for the velocity structure
functions, with selected error bars. The line corresponds to
Kolmogorov theory. (b) The exponentsdq for the distance
structure functions. The line is adjusted to pass through the
value of the first order exponent�1, d1�.

extract the distance structure functions, Eq. (3). Prac-
tically, both the distance and velocity differences are
discretized as� � l

i
d andDu � l

j
u. In the present cal-

culations the valueld � lu � 1.02 is chosen. As the
starting point we setx � 0 and vary again along the
coordinate axes. For a fixed value ofDu0, � is increased
until for the first timethe velocity difference exceeds this
fixed value: this defines��D0u�. ThenDu0 is increased by
one more step, and so on. Figure 1b presents the scaling
of the first order distance structure function and the cor-
responding exponentd1 is estimated to a rather good
precision, d1 � 2.02 6 0.05, with a scaling regime of
2 decades on theD0u axes and 4–5 decades on the� axes.
Note, the cutoff at low values ofD0u. This cutoff is re-
lated, both for values of velocity and distance, to the dissi-
pative cutoff of the standard structure function; see Fig. 1a.
The cutoff at large values ofD0u is related to the velocity
at the forcing scale. In all the presented calculations we
have averaged over 24 630 situations. Figure 1c presents
the distance structure function of orderq � 8, resulting in

TABLE I. Values of the scaling exponents for velocity struc-
ture functionszq and distance structure functionsdq with se-
lected error bars.

q 1 2 3 4 5 6 7 8

zq 0.39 0.73(2) 1.0 1.28(5) 1.53 1.77(6) 2.0 2.20(8)
dq 2.04 3.70(5) 5.4 7.0(2) 8.53 10.0(4) 11.7 12.9(6)

an exponentd8 � 12.9 6 0.5. The graph is “rough” due
to the binning ofD0u and due to the high moment. Fig-
ure 2b shows the multiscaling spectrum ofdq. We have
included a straight line through the point�1, d1� in order to
show the curved nature of the spectrum. For completeness,
Table I also displays the measured scaling exponentsdq.

It is well known, that one can improve the scaling sig-
nificantly using the technique of extended self-similarity
(ESS) [31] where one moment of a given variable is
varied against another moment. In the present case this
means a graph of one distance structure function���D0�q�
versus another���D0�q0

� for two different momentsq, q0,
and this results in ESS plots which span over three times
as long a regime as compared to traditional ESS plots
where the quantities�Dux���q� are applied (the large
regime is of course due to the Kolmogorov1

3 exponent re-
lation). Applying ESS we have obtained the exponentsdq

in an independent way and the results agree well with the
values listed in Table I. This property of a much larger
scaling regime of the ESS plots could be one of the advan-
tages of the presented formalism. Details will be given in
a forthcoming publication.

To obtain a better understanding of the obtained results
we need to consider the statistics of��Dux�q in the
following way

���Dux�q� 	
Z

��Dux�qP�����Dux� jDux��� d� , (8)
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FIG. 3. Probability distribution functionsP�����Dux� jDux��� for
(a) the velocityDux � 0.0027, which is close to the dissipative
length scale (see Fig. 1), and for (b) the velocityDux � 0.26,
close to the velocity of the outer cutoff.
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where we have introduced theconditional probability dis-
tribution function P�����Dux� jDux���. This measures the
probability of a distance� given the velocity difference.
We show this PDF for two different values of the veloc-
ity difference in Fig. 3 on linear scales. In both cases,
the distributions are clearly non-Gaussian with long expo-
nential (or in fact stretched exponential) tails, as expected
in intermittent systems. The surprising difference to the
standard PDF’s for velocity differences is that it does not
tend towards a Gaussian for large scales. We would have
expected that. We have not been able to relate this PDF,
P�����Dux� jDux���, to the “usual” PDF,P�Dux j ��; these
two PDF’s measure simply very different things.

In conclusion, we have introduced the distance structure
functions defined for a velocity field in fully developed
turbulence. The corresponding multiscaling spectrum
appears not to be related to the well-known spectrum
for velocity structure functions. The distance structure
function could be very relevant for experimental velocity
data measured in one point [17]. Here one typically
applies the Taylor hypothesis in order to relate a temporal
segment to a spatial segment. For this type of time series,
the distance structure functions should be easily extracted.

I am grateful to J. Sparre Andersen, L. Biferale,
P. Muratore-Ginanneschi, M. Vergassola, and A. Vulpiani
for comments and discussions.
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