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I just think too many nice things have happened in string theory for it to be all wrong. Humans do not
understand it very well, but I just don’t believe there is a big cosmic conspiracy that created this incredible

thing that has nothing to do with the real world.

— Edward Witten



A B S T R A C T

We begin by studying holographic renormalization of a free Einstein-Maxwell-Dilaton theory, which
we call the electromagnetic uplift. Imposing asymptotically locally AdS boundary conditions, we em-
ploy a generalized version of the Hamilton-Jacobi approach to holographic renormalization and find
a novel counterterm for d = 4. We construct the associated Fefferman-Graham expansions recursively
and identify the Ward identities. We also comment on a subtlety regarding holographic renormaliza-
tion of p-form fields and provide a conjecture based on our results for one-forms. We present a simple
method to determine the counterterm action for massless p-form fields in AdSp+2 and illustrate the
approach for d = 2.

We then develop charged Lifshitz holography for z = 2 by performing a Scherk-Schwarz reduction
of the electromagnetic uplift. The Lifshitz space-time in the reduced theory is shown to correspond
to a z = 0 Schrödinger geometry in the electromagnetic uplift. The sources are identified as the
leading components of the bulk fields in a vielbein formalism and are shown to transform under a
U(1)-extended Schrödinger group. We show that the new sources can be identified with the fields of
Galiliean Electrodynamics (GED). Since the Scherk-Schwarz reduction becomes null on the boundary,
we are directly lead to the conclusion that the boundary geometry becomes torsional Newton-Cartan
(TNC), which we also explore from the perspective of gauging the Schrödinger algebra. We then
determine the VEVs along with all Ward identities, and we show that the integrated Weyl anomaly
becomes an action describing Hořava-Lifshitz gravity coupled to GED on a Newton-Cartan geometry.
Finally, based on a dimensional analysis of GED on anisotropic backgrounds, we provide a conjecture
for the extension of charged Lifshitz holography to general values of z.

We provide the required background in holography, Newton-Cartan geometry and holographic
renormalization. We also provide a survey of pure Lifshitz holography for arbitrary values of z.
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We are all agreed that your theory is crazy.
The question which divides us is whether

it is crazy enough to have a chance of being correct.
My own feeling is that it is not crazy enough.
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N O TAT I O N & C O N V E N T I O N S

We use the mostly positive Minkowski metric—for Rd,1,

ηµν = diag(−1, 1, . . . , 1︸ ︷︷ ︸
d entries

). (i)

Further, we make use of the summation convention, i.e. all repeated indices (of any kind!) are summed
over unless explicitly stated. In the chiral—or Weyl—representation the four-dimensional Dirac ma-
trices are given by:

γµ =

(
0 (σµ)αβ̇

(σ̄µ)α̇β 0

)
, (ii)

with Pauli matrices

(σµ)αβ̇ = (1, σi)αβ̇, (σ̄µ)α̇β = (1,−σi)α̇β. (iii)
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x acronyms

They satisfy the Clifford algebra, {γµ, γν} = −2ηµν
1. Objects contracted with γ-matrices may be

written in Feynman slash notation, e.g. /∂ := γµ∂µ. The van der Waerden indices are raised and
lowered using the two dimensional Levi-Civita symbol

εαβ = εα̇β̇ =

(
0 1

−1 0

)
= −εαβ = −ε α̇β̇. (iv)

Further, we can define representations of generators of Lorentz transformations in terms of the Pauli
matrices,

(σµν)
β

α =
i
4

(
σ

µ
αα̇σ̄να̇β − σν

αα̇σ̄µα̇β
)

, (v)

(σ̄µν)α̇
β̇
=

i
4

(
σ̄µα̇ασν

αβ̇
− σ̄να̇ασ

µ

αβ̇

)
. (vi)

We denote antisymmetrization of indices with “[]” and symmetrization with “()”, e.g.

T[µ...µn ] =
1
n! ∑

σ∈Sn

sgn(σ)Tµσ(1) ...µσ(n) (vii)

where Sn is the symmetric group on n symbols. The Riemann tensor is defined via

[∇µ,∇ν]Xρ = Rµνσ
ρXρ − 2Γρ

[µν]
∇ρXσ, (viii)

for an arbitrary one-form Xρ, where

Rµνσ
ρXρ = −∂µΓρ

νσ + ∂νΓρ
µσ − Γρ

µλΓλ
νσ + Γρ

νλΓλ
µσ, (ix)

from which the Ricci tensor obtained via the contraction Rµν = Rµσν
σ. Given a metric gµν, the Christof-

fel symbols are given by

Γλ
µν =

1
2

gλρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
. (x)

We will, unless stated otherwise, adhere to the following index convention

µ, ν, . . . : General space-time indices. In the context of Lifshitz holography in chapters 5 and 6, the
three-dimensional indices on radial hypersurfaces.
i, j, . . . : Spatial part of the general space-time indices. The time compoenent will be denoted t.
a, b, . . . : Tangent space indices including time.
a, b, . . . : Tangent space indices excluding time. The time component is denoted “0”.
M,N , . . . : Five-dimensional space-time indices. Used in bulk models for the uplift in chapter 6.
u: The compact direction in five-dimensional models.
A, B, . . . : Four-dimensional space-time indices. The same as M,N , . . . , but excludes the radial direc-
tion.
M, N, . . . : Four-dimensional space-time indices. The same as M,N , . . . , but excludes the compact
direction u.

We point out that in chapter 3, the index structure is different: there, we use µ, ν, . . . to denote
(d + 1)-dimensional space-time indices, while index i, j, . . . are used for d-dimensional indices that
exclude the radial direction. We also point out that tangent space indices a, b, . . . in this chapter
incluces time.

Note also that in chapter 2, we use z to denote the radial coordinate in Poincaré coordinates, while
in later chapters—notably chapters 3, 5, and 6, we use r. In particular, since in the context of Lifshitz
holography, z is the symbol for the dynamic exponent, we hope that this does not cause any confusion.

Throughout the thesis, we will use ' to indicate the leading term. For example, if a quantity X has
an expansion in a parameter r near r = 0 of the form X = X(0)r−2 + X(1)r + X(2)r75 + · · · , we write
X ' X(0)r−2.

Unless stated otherwise, we work in natural units, where h̄ = c = k = 1.



1I N T R O D U C T I O N

The seminal paper by Maldacena in 1997 on the AdS/CFT correspondence [1] sparked a veritable rev-
olution in theoretical physics. The correspondence provides a concrete realization of the holographic
principle put forth by ’t Hooft and Susskind in [2, 3], and was the culmination of the second super-
string revolution initiated by Witten in [4].

While the most general version of the AdS/CFT correspondence posits an exact equivalence be-
tween type IIB string theory on AdS5 × S5 and N = 4 super-Yang-Mills theory, a more moderate
and well-established version of the correspondence relates weakly coupled gravitational theories in
asymptotically locally AdS—the bulk—to strongly coupled field theories on the boundary (usually
of either flat or spherical topology). This feature of the duality is extremely useful: it offers tantaliz-
ing opportunities of describing strongly coupled field theories using weakly coupled—that is to say
classical—gravitational theories, and many of the most interesting not-yet well understood physical
phenomena belong in this class of theories, e.g. high Tc superconductivity—explored holographically
in e.g. [5–8]—and the N = 4 quark-gluon plasma, for which the viscosity to entropy ratio was calcu-
lated holographically in the seminal work [9] (see [10] for a review). The attempt to describe strongly
coupled condensed matter systems using the AdS/CFT correspondence has garnered much attention
in recent years [11–14] following the groundbreaking work of Sachdev and Herzog in [15].

However, most strongly coupled condensed matter systems are non-relativistic in nature. This is
an inherent problem and would seem to render the application of holography in the context of such
systems void, as succinctly pointed out by Nobel laureate Phil Anderson in [16]:

“As a very general problem with the AdS/CFT approach in condensed-matter theory, we can point to those
telltale initials “CFT”—conformal field theory. Condensed-matter problems are, in general, neither relativistic
nor conformal. Near a quantum critical point, both time and space may be scaling, but even there we still have
a preferred coordinate system and, usually, a lattice. There is some evidence of other linear-T phases to the left
of the strange metal about which they are welcome to speculate, but again in this case the condensed-matter

problem is overdetermined by experimental facts. ” —Philip W. Anderson.

This is of course a legitimate point of critique. While holographic systems in an AdS/CFT context
are conformal, relativistic and, to make matters worse, supersymmetric, at short distances, many
of these symmetries are broken at large distances in the presence of a finite chemical potential or
temperature. This long distance behaviour can, in fact, be captured by gravity duals, showcasing the
power of the fluid/gravity correspondence [10, 11, 17, 18].

Another—and more recent—way forward is to directly consider bulk space-times, whose asymp-
totic behaviours are different from AdS as emphasized in [19–22]. Such space-times include Schrödinger,
Lifshitz and hyperscaling violating geometries, which are all characterized by a so-called dynamical
exponent z, which expresses the anisotropy between space and time on the boundary. Developing such
notions of non-relativistic holography turns out to be extremely challenging, and despite a flurry of
research (see e.g. [23–29]), this is still very much a work in progress, and many aspects remain poorly
understood. It is important to emphasize in this context that there are no conventional tools available
to the condensed matter theorist that allows him/her to attack such problems, and as such these
holographic approaches are unique in their scope.

In addition to the applications of non-relativistic holography to condensed matter problems, it is
also of intense theoretical interest to ascertain the validity of the holographic principle in concrete
settings that go beyond the original AdS setting, and circumstantial evidence for the principle in
the form of exotic gravity/field-theory dualities constitute important milestones on the road towards
quantum gravity.

For Lifshitz bulk geometries, which will be the focus of this thesis, such a non-relativistic holo-
graphic correspondence for z = 2 was developed in [23, 24], where it was shown that this model
could be embedded in a higher-dimensional model with conventional AdS geometry. By considering
perturbations around a z = 0 Schrödinger geometry (which has AdS boundary conditions) in the
higher-dimensional theory, it was shown that a Scherk-Schwarz reduction produced a corresponding
z = 2 Lifshitz geometry with associated perturbations, and this mapping allowed for a complete
identification of the holographic dictionary for z = 2 Lifshitz holography. A crucial observation was
the realization that the boundary is described by a novel extension of Newton-Cartan (NC) geometry

1



2 introduction

(originally developed by Cartan in [30, 31]) called torsional Newton-Cartan (TNC) geometry. This
analysis was subsequently extended to generic values of z > 1 in [29] (see also [32, 33]). The sources
and VEVs of Lifshitz holography possess a Schrödinger symmetry, and it was shown in [34] that TNC
geometry as it appears in Lifshitz holography can be obtained by gauging the Schrödinger algebra
for suitable values of z.

Concretely, it was recently shown in [35, 36] (see also [37, 38]) that TNC provides a framework for
field theory analyses of the (fractional) quantum Hall effect. It has also been used in connection with
other problems involving strongly correlated electrons [39, 40]. In these approaches, the symmetry of
the problem is used as a guiding principle, and various quantities such as the Hall viscosity and the
Hall conductance can be computed as responses to the geometric data.

1.1 outline & summary

Below, we provide an outline of the contents of each chapter. Note that chapters 3, and 6 in particular,
contain mainly new material—these results will be the subject of [41], to appear. We also remark that
each chapter has its own outlook section, where we comment on interesting extensions of the analyses
provided in the chapter.

In chapter 2—along with the companion appendix D, where a string theoretic derivation is presented—
we provide a review of the AdS/CFT correspondence. This includes an investigation of the holo-
graphic principle in section 2.1 and a motivation of the correspondence based on the interpretation of
the radial AdS direction as a renormalization group scale in section 2.2. We then formulate a precise
version of the correspondence in section 2.3 and explore the holographic dictionary in sections 2.4
and 2.5. These sections review material found mainly in [11, 12, 42–46], and provides a foothold in
holography.

We conclude in section 2.6 with a brief discussion of Witten diagrams and provide a concrete
computation of a three-point function, following the approach of [47].

In chapter 3, we provide a detailed survey of holographic renormalization for AdS space-times. In
the supplementary appendix F, we—following mainly the review [48]—review the original Fefferman-
Graham (FG) approach, which, although conceptually straightforward, is computationally forbidding.
We also provide a survey of the de Boer-Verlinde-Verlinde (dBVV) method following [49], which re-
lies on an ansatz and a bilinear operation that we have named the deWitt bracket1. We then show
in section 3.1 how holographic renormalization can be understood in terms of Hamilton-Jacobi (HJ)
theory, and discuss how the solution of the HJ equation conveniently involves the introduction of a
suitably chosen operator � in terms of which the (bare) on-shell action and other relevant quantities
can be expanded in eigen-modes. The discussion is based on [50, 51]. In section 3.2, we discuss the
renormalization of the free Einstein-Maxwell-Dilaton model (EMD)—which we will call the electro-
magnetic uplift in chapter 6—and derive a set of counterterms, which has not previously appeared in
the literature. We also construct novel FG expansions and determine the new Ward identities satisfied
by the VEVs. Finally, in section 3.3, we discuss renormalization of p-form fields based on our results
for the Maxwell field and provide a conjecture. These results do not exist in the literature, but are
under investigation by other people, and will be the subject of an upcoming paper2 [52]. We conclude
with the observation that for d = 2, we can renormalize an EMD model by hodge dualization, and we
generalize this observation to an easy way of obtaining the counterterm action for free p-form fields
in AdSp+2. To our knowledge, this has not appeared in the literature previously.

In chapter 4, we tell the tale of Newton-Cartan geometry from the perspective of gauging algebras.
We start in section 4.1 with an introductory calculation that shows how Riemannian geometry—the
arena of general relativity—is obtained by gauging the Poincaré group in a process analogous how
one obtains gauge theories from a quantum field theory perspective. This section is based on appendix
A in [53] and [54, 55], but is significantly more detailed. In section 4.2, we then discuss generalities
of non-relativistic space-times and their relation Newton-Cartan geometry, before showing in section
4.2.2 that the gauging procedure applied to the Galilei and Bargmann algebras precisely gives TNC
geometry. These sections are based on [34, 53, 56] and summarize the results therein. In section 4.3,
we showcase how TNC geometry can be obtained from Lorentzian geometry via null reduction, and
in the following section 4.4, we explore how non-relativistic field theories couple to TNC geometry
from the perspective of null reduction. Both the preceding sections are based mainly on [57].

1 This object, seemingly, did not have a name. Since it involves the deWitt metric with parameter d − 1, we have named this
operation the deWitt bracket.

2 I thank Kostas Skenderis for telling me about this.
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In chapter 5, we investigate Lifshitz holography as developed by Hartong, Kiritsis and Obers in [29,
32] for generic values of the critical exponent z. We begin by a lighting review of Lifshitz field theory in
section 5.1, before we turning to the actual holographic analysis in section 5.2. The bulk consists of an
Einstein-Proca-Dilaton (EPD) model, which is shown to support Lifshitz solutions for generic values
of z. We then identify the sources as the leading parts of the bulk fields in a vielbein formalism and
see that they transform under the Schrödinger algebra, and we discuss how the boundary geometry
becomes TNC in section 5.2.4. We identify the general properties of the VEVs by assuming holographic
renormalizabiltiy in section 5.3, which also allows us to determine the TNC covariant Ward identities.
The analysis of this chapter is a much more detailed version of [29].

We end the thesis in chapter 6, where we develop charged Lifshitz holography for z = 2 by general-
izing the results of [23, 24, 57]. In section 6.1, we begin with a discussion of Galilean Electrodynamics
(GED) coupled to TNC geometries, which was recently developed in [58]. We then provide a review
of pure z = 2 Lifshitz holography and relate it to the uplift (see also appendix H), after which we
Scherk-Schwarz reduce the electromagnetic uplift that we renormalized in chapter 3, which gives rise
to a new reduced EPD-Maxwell-scalar model acting as the bulk theory for charged Lifshitz hologra-
phy. In section 6.3, we show that this allows for a complete identification of the sources of charged
Lifshitz holography, and we show that the new sources transform as the fields of GED under local
transformations. This novel result is one the main contributions of this thesis. We then demonstrate
explicitly that the reduction employed becomes null on the boundary, which is also discussed in [23,
24, 57]. This means that the results of chapter 4 directly leads us to conclude that the boundary geom-
etry becomes TNC. In section 6.4.2, we, following [34], explore how the boundary geometry emerges
from from gauging the z = 2 Schrödinger algebra. In section 6.5, we show that the integrated dimen-
sionally reduced Weyl anomaly takes the form of an action for Hořava-Lifshitz (HL) gravity coupled
to GED on TNC geometry, which is also a new result. We then consider in section 6.6 how the higher-
dimensional FG expansions that we generated in chapter 3 lead to expansions for the Lifshitz bulk
fields, which will allow us to see the source structure of section 6.3 appear explicitly, which is a
new analysis. We then work out all the new VEVs corresponding to the sources and determine novel
Ward identities. Finally, we provide a conjecture for general-z charged Lifshitz holography based on
a dimensional analysis of GED coupled to anisotropic backgrounds.



2 A S P E C T S O F T H E A D S / C F T C O R R E S P O N D E N C E

In this chapter, we provide background in the AdS/CFT correspondence which will be useful for the
understanding of Lifshitz holography. This material contained here is based on a motley collection of
sources, chiefly [11, 42–45].

We begin by reviewing the holographic principle in section 2.1, which, in its most general sense,
roughly states that a volume of spacetime is equivalently described by the codimension one boundary
of the volume, as argued by ’t Hooft and Susskind, and we briefly mention a generalization known
as the covariant entropy bound. This section is a review of the discussions in [2, 3, 46].

Based on [12], we then motivate the AdS/CFT correspondence in section 2.2 by interpreting the
radial AdS direction as a renormalization scale, which naturally leads to AdS geometry.

Next, in section 2.3, we provide an overview of the AdS/CFT correspondence and discuss the rela-
tion to string theory and various supersymmetric field theories. This analysis follows mainly [42–44].
In the companion appendix D, we present a fairly detailed “stringy” derivation of the correspondence
from D3 branes, which are considered from the point of view of both open and closed strings, which,
when unified, give the correspondence.

We then proceed to consider the holographic dictionary in its various manifestations, starting with
the field-operator correspondence in section 2.4 and culminating with the GKPW rule in section 2.5
as well as a somewhat detailed summary of the dictionary in table 2.3. These analyses are based
primarily on [11, 43]

We end the chapter in section 2.6 with a small discussion of Witten diagrams and showcase the
computation of a concrete three-point diagram. The calculation follows [47].

2.1 the holographic principle

The idea of holography originates with ’t Hooft’s exposition in [2]: given some quantum theory, we
can—invoking an analogue of the third law of thermodynamics—relate the entropy S to the total
number of degrees of freedom; in particular, if1 N is the dimension of the Hilbert space (i.e. the
number of states), the following relation holds

eS = N . (2.1.1)

By the the covariant entropy bound, or simply the Bekenstein bound2, the entropy of some system
cannot exceed that of a black hole which is given by the Bekenstein-Hawking relation [60]

S ≤ SBH =
A

4G
, (2.1.2)

where A is the area of the black hole and G is Newton’s constant. Combining the spherical entropy
bound with the relation between entropy and degrees of freedom (2.1.1) leads us to conclude that
the number of states is bounded by N ≤ e

A
4G .The ideas put forward by ’t Hooft inspired Susskind to

write the iconic article The World as a Hologram [3], where he proffers the following bit of reasoning:
supposing that the world—which we can take to be d-dimensional—is a lattice of binary quantum
degrees of freedom (i.e. “spin-like”) and assume that the lattice spacing is the Planck length, `p,
since smaller distances cannot be resolved in quantum gravity. Thus, the number of quantum states
in a volume V is N (V) = 2n, where n = V

`d
p

denotes the number of lattice sites in V, which—in

contradistinction to what we found above—implies the following entropy bound:

S ≤ logN (V) =
V
`d

p
log 2. (2.1.3)

Rather than being bounded by the area A, the largest possible entropy scales as the volume V! As
long as the system is larger than the Planck scale, it holds that V ≥ A—and so this “field-theoretic”
derivation predicts a larger entropy bound.

1 Although standard in this context, it is unfortunate that the dimensionality of the Hilbert space is denoted by N—a symbol
usually reserved to denote to the number of supercharges in a given theory. We hope this does not cause confusion.

2 This bound relies on certain assumptions [59]: the system must be of constant, finite size and have limited self-gravity—that is,
gravity must be weak compared to the other forces acting in the system.
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To see this, we invoke a basic principle of quantum mechanics: unitarity. Suppose that the field-
theoretic entropy estimate holds. Then by the bound (2.1.1), the dimensionality of the Hilbert space
describing the region is N ∼ eV for V the volume. But, supposing that the region was converted into
a black hole, the Bekenstein-Hawking entropy relation implies that the region is now described by a
Hilbert space of dimension eA/4G: the number of states has decreased and the Hilbert spaces are no
longer isomorphic, violating unitarity. Insisting on unitary quantum mechanical evolution, we are let
to conclude that the Hilbert space must have had dimensionality eA/4G to start with. This observation
leads to a preliminary version of the holographic principle:

Susskind–’t Hooft Holographic Principle: A region of spacetime with boundary of area A is fully de-
scribed by at most A/4G degrees of freedom.

The spherical entropy bound, however, turns out to be violated in some instances—the simplest of
which is the following: consider a system in the midst of a gravitational collapse. Before the system is
destroyed on the black hole singularity, its surface area becomes arbitrarily small, and since entropy
cannot decrease, the bound is violated. This spurred the discovery of a more universal3 entropy bound:
the covariant entropy bound, put forward by Bousso in [59]. It is worth noting, however, that no known
fundamental derivation of the covariant entropy bound exists; if it holds true it must eventually be
explained by a theory unifying gravity and quantum mechanics.

Since its proposal, several circumstances under which the bound holds has been uncovered by
Flanagan et al. in [62], and further proof of its validity for free matter fields in the limit of weak
gravitational back-reaction was given in [63]. Also, the covariant entropy bound has been shown [64]
to reduce to other entropy bounds, which were observed to hold in some settings—in particular the
spherical entropy bound. For more details, we refer the reader to [46, 63, 64].

Taking the holographic principle at face value, then, we are lead to conclude that if we have a
theory of quantum gravity on some manifold M, the theory will be entirely determined by some
other theory living on the boundary ∂M, and the theories are said to be dual.

2.2 motivation of the correspondence : geometrization of renormalization group

flow

Although the AdS/CFT has its origins in string theory—as we demonstrate in appendix D—it is pos-
sible to motivate the correspondence without explicit reference to string theory. The following line of
reasoning was put forth by Horowitz and Polchinski in [65] (see also [11, 12, 66]): since any quantum
theory of gravity contains a massless spin-two graviton4, one could theorize that the graviton some-
how arises as a composite of two spin-one gauge bosons5. A priori, this seems to be excluded by the
Weinberg-Witten theorem [68], which states that

Theorem (Weinberg-Witten) A quantum field theory with a Poincaré covariant and conserved energy-
momentum tensor Tµν forbids massless particles of spin j > 1 which carry momentum6.

General relativity circumvents this theorem by having either a vanishing energy-momentum tensor7

or by having a reparametrization non-invariant matter stress tensor when additional fields are present.
However, the crucial assumption made in the Weinberg-Witten theorem is that the graviton moves

in the same spacetime as the gauge boson, so by making the graviton live in a higher dimensional
space, for example, we can again circumvent the theorem. As we saw above, the holographic principle
constrains the entropy of any system to be at most that of a black hole occupying the space of the
system, implying that the theory of quantum gravity lives in one dimension higher than the gauge
theory. The extra dimension in the quantum gravity, as we now demonstrate, has a nice interpretation

3 Although a recent paper [61] suggests speculative scenarios in which this new bound might be broken.
4 The usual way of realizing this is by linearizing Einsteins equations, gauge fixing and then noting that the resulting polarization

tensor for the perturbation (which we think of as the graviton) is a spin-two representation.
5 Interestingly, in perturbative quantum gravity, this composite behavior is actually observed at the amplitude-level: so-called

KLT (Kawai, Lewellen, Tye) relations relate gravity amplitudes to products of Yang-Mills amplitudes; this double-copy structure
has led to the paradigm (Gravity) = (Yang-Mills)2; see e.g. [67] for details.

6 This momentum would then be given by Pµ =
∫

ddx T0µ.
7 By the metric equation of motion, 0 = δS

δgµν
∼ Tµν.
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in terms of the Wilsonian renormalization energy scale u of the gauge theory. In particular, the RG
equations for a generic coupling constant λ are local,

u∂uλ(u) = β(λ(u)), (2.2.1)

where ∂u = ∂
∂u and β is the beta-function which encodes the energy-scale dependency of the coupling

(see e.g. [69, 70]). Furthermore, if we want gravity from pure Yang-Mills, we must require that it
be strongly coupled so that quantum effects are dominant which are not well understood—classical
Yang-Mills and general relativity are certainly not the same thing. To simplify our considerations,
we take the simplest possible RG flow of vanishing β-function, leading to a conformal field theory.
This implies that—in a Lorentz-invariant theory, which we tacitly assume to be dealing with—the
scale transformation xµ → λxµ, with µ = 1, . . . , d and λ ∈ R, is a symmetry, and, if u is an energy
scale, it must behave under scale transformations as u → u/λ by dimensional analysis, giving rise
to a SO(1, 1) symmetry. Writing down a (d + 1)-dimensional metric with u as the extra direction,
which is Poincaré invariant and respects SO(1, 1) symmetry, we are invariably led to the result ds2 =
u2

L2 ηµνdxµdxν + L2

u2 du2, which, on making the change of coordinates z := L2/u takes the form

ds2 =
L2

z2

(
ηµνdxµdxν + dz2

)
, (2.2.2)

for L the AdS radius, which we recognize as the metric (of the Poincaré patch) of AdSd+1 (see Ap-
pendix A). This beautiful relation between the renormalization group (RG) equations and geometry
(i.e. general relativity (GR)) is occasionally stylized as

RG = GR. (2.2.3)

Figure 2.1: The left figure is an illustration of how the extra “radial” direction of the bulk acts as the resolution
scale of the field theory. This course-graining naturally leads to AdS space in the Poincaré patch, as
shown on the right, which has boundary Rd−1,1.

The metric (2.2.2) is a solution to a large class of dynamical theories fulfilling the “Landau crite-
rion” of being invariant under diffeomorphisms while at the same time having a minimal number of
derivatives; these have the schematic Einstein-Hilbert form

S =
1

16πG

∫
dd+1x

√
−g [R − 2Λ + . . . ] , (2.2.4)

where 2Λ = −d(d − 1)/L2 in order for the AdS metric (2.2.2) to be a solution. The AdS length scale
L represents the radius of curvature, i.e. R ∼ L−2, implying that the gravity theory is classical (and in
particular “weakly coupled”) in the regime L � `p. As we shall see, the dual CFT is precisely strongly
coupled in this limit. We now turn to a more formal discussion of the AdS/CFT correspondence.

2.3 the ads5 /cft4 correspondence

While there are in fact various incarnations of the AdS/CFT correspondence8, we focus our exposi-
tion on the vanilla version: AdS5/CFT4, which relates the dynamics of (3 + 1)-dimensional N = 4

8 For example, AdS7/CFT6, which involves a horizon limit of M5 branes, where the CFT is a 6d (2, 0)-superconformal field
theory; see [42] for a review. This field theory has extremely interesting ties to the geometric Langlands duality, see [71].
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super Yang-Mills theory (SYM)—see appendix C for a short review—to type IIB superstring theory
on AdS5 × S5. The derivation for this correspondence—which is, admittedly, somewhat heuristic9—is
considered in appendix D and involves two perspectives of D3 branes. We state the correspondence
below:

The AdS5/CFT4 Conjecture: N = 4 SYM with gauge group SU(N) and coupling gYM is dynamically
equivalent to type IIB superstring theory with string length ls =

√
α′ and string coupling gs on AdS5 × S5

with AdS radius L and N units of F(5) flux on S5. The parameters of each side of the correspondence are mapped
to each other via

g2
YM = 4πgs, and 2g2

YMN =
L4

(α′)2 . (2.3.1)

In particular, the results of appendix D allow us identify three versions of the conjecture (see also e.g.
[43]):

Table 2.1: Incarnations of the AdS5/CFT4 Correspondence. Here, λ = g2
YMN is the t’Hooft coupling (cf. appen-

dices C and D).

N = 4 SYM IIB on AdS5 × S5

Strongest form any N and λ Quantum string theory, gs 6= 0, α′/L2 6= 0

Strong form N → ∞, λ fixed but arbitrary Classical string theory, gs → 0, α′/L2 6= 0

Weak form N → ∞, λ large Classical supergravity, gs → 0, α′/L2 → 0

The derivation found in appendix D presents a heuristic derivation of the weakest form of the
conjecture as described above.

2.3.1 Counting Degrees of Freedom and the UV/IR Connection

To furnish a realization of the holographic principle, the Bekenstein-Hawking relation (2.1.2) should
be satisfied, that is; the area of the boundary A should equal the number of degrees of freedom Nd,
or, in other words, the maximum entropy, which we schematically write as

A
4G

= Nd. (2.3.2)

Naïvely, both sides of the above equality are infinite: on the boundary N = 4 SYM, the entropy
is infinite since the theory is conformal, which means that it has degrees of freedom at arbitrarily
small scales, while the boundary area of AdS has infinite area. To verify (2.3.2), we therefore require
regularization, which, following [12, 73], is achieved for the boundary by replacing it with a sphere
just inside the boundary at z = δ, the resulting area of which is given by A ∼ L3/δ3. The total number
of cells making up the sphere is ∼ δ−3, while the number of field degrees of freedom for SU(N)
N = 4 SYM is ∼ N2, implying that (up to numerical factors)

Nd ∼ N2

δ3 ∼ AN2

L3 ∼ AL5

(α′)2g2
s
∼ A/G5, (2.3.3)

where we have used (D.1.26) and identified the five-dimensional Newton constant G5 = (α′)2g2
s L−5.

This is precisely the desired result.
Now, from the discussion in section 2.2, we immediately infer what has become known as the

UV/IR connection: when the energy scale u is small—corresponding to the IR of the field theory—the
corresponding AdS space has a large value of z, i.e. we are in the deep interior; the UV—and vice versa.
This is precisely the UV/IR connection of [73] (see also [72, 74]), where they argue for it by using the
behaviours of certain correlators in supergravity and Yang-Mills theory.

2.4 the holographic dictionary for ads/cft i : the field/operator map

The AdS/CFT correspondence provides a map between operators of N = 4 SYM in certain repre-
sentations of PSU(2, 2|4) and supergravity fields showing up in the Kaluza-Klein tower of type IIB

9 But the correspondence has so far passed all tests; many of which have been very non-trivial [43, 72].
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SUGRA on AdS5 reduced on S5. The principal10 field theory operators involved in the mapping are
gauge invariant11

1/2 BPS primary operators O∆i of conformal weight ∆i, i.e. the operators satisfy
[D,O∆i (0)] = −i∆iO∆i (0), [Kµ,O∆i (0)] = 0, as well as [Saα,O∆} = 0 = [S̄a

α̇,O∆} for all a = 1, . . . ,N
and all α, α̇ = 1, 2, as well as [Qa

α,O} = 0 for at least one of the Poincaré supercharges (see also
appendix B). The 1/2 BPS operators of conformal weight ∆ = k all have the form12 [43]

O∆(x) = Str
[
φ{i1 · · · φik}

]
, (2.4.1)

where the φi are the scalar fields of N = 4. Operators of this form are dual to the single particle
(elementary) fields of type IIB SUGRA on AdS5 × S5, while higher trace operators are dual to bound
states of one-particle states. A concrete mapping can be found in [45]. In particular, to actually derive
the mapping, type IIB SUGRA is Kalaza-Klein compactified on S5, leading to an expansion of the
SUGRA fields in spherical harmonics Y∆ on the sphere, which are labelled by the rank ∆ of the totally
symmetric traceless representations of so(6) ' su(4). Taking y to be the coordinates on S5, we get

ϕ(x, y) =
∞

∑
∆=0

ϕ∆(z)Y∆(y). (2.4.2)

The reduced fields may acquire mass from the compactification process, and an involved calculation
shows that the conformal dimension of the field theory operator O∆ is mapped to the mass as depicted
in the table below (generalized to the AdSd+1/CFTd correspondence) [43].

Table 2.2: Relation between mass and conformal dimension for various fields.

Type of field Relation between m and ∆

Scalars, massive spin-2 fields m2L2 = ∆(∆ − d)

Massless spin-2 fields ∆ = d,

p-form fields m2L2 = (∆ − p)(∆ + p − d)

Spin-1/2, spin-3/2 |m| L = ∆ − d/2

Rank s symmetric traceless tensor m2L2 = (∆ + s − 2)(∆ − s + 2 − d)

Unprotected non-BPS operators, such as the Konishi operator [75], are believed to be dual to massive
type IIB string modes not present in the low energy SUGRA description.

2.4.1 Boundary Asymptotics

Our considerations above were motivated by symmetry arguments alone. We can, however, be more
explicit by examining the boundary behaviour of the SUGRA fields [12, 76]. For simplicity, we consider
a toy model consisting of a massive scalar ϕ in the bulk

S = −1
2

∫
AdS

dzddx
√
−g
[

gmn∂m ϕ∂m ϕ + m2 ϕ2
]

. (2.4.3)

The scalar equation of motion becomes the usual Klein-Gordon equation,(
�g − m2

)
ϕ = 0, (2.4.4)

where the Laplacian reads

�g ϕ =
1√−g

∂m
(√

−ggmn∂n ϕ
)

, (2.4.5)

10 The single trace 1/2 BPS operators are the principal fields in the sense that higher trace operators may be constructed in terms
of them using the OPE [45].

11 There is no gauge group on the SUGRA side of the correspondence, so the operators on the field theory side must be gauge
invariant.

12 Gauge invariance and the requirement of superconformal primarity constrains the single trace 1/2 BPS operators to involve
only scalars, see [45] for details.
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with gmn the AdSd+1 metric in Poincaré coordinates, ds2 = gmndxmdxn = L2

z2

(
dz2 + ηµνdxµdxν

)
, so

that

�g =
zd+1

Ld+1 ∂m

(
Ld+1

zd+1 gmn∂n

)
=

zd+1

Ld+1 ∂z

(
Ld−1

zd−1 ∂z +
Ld−1

zd−1 ∂2

)
(2.4.6)

=
z2

L2

(
∂2

z − (d − 1)z−1∂z + ∂2
)

, (2.4.7)

where ∂2 = ηµν∂µ∂ν. Employing a plane wave ansatz ϕ(z, x) = eipµxµ
ϕp(z), the Klein-Gordon equation

becomes a Bessel-like ODE,

z2∂2
z ϕp(z)− (d − 1)z∂z ϕp(z)− (m2L2 + p2z2)ϕp(z) = 0, (2.4.8)

which can be solved with e.g. Mathematica—the solution is a superposition of two Bessel functions
(each of which corresponds to a solution itself), which gives rise to the z → 0 boundary expansion (to
lowest order in z)

ϕ(z, x) ∼ ϕ(0)(x)z∆− + ϕ(+)(x)z∆+ , (2.4.9)

where ∆± = d
2 ± 1

2

√
d2 + 4m2L2, and where the fields ϕ(0) and ϕ(+) live on the boundary—i.e. they

are a function only of the boundary coordinates. The solution that goes as ∼ z∆+ is known as the nor-
malizable solution, while the solution that behaves as ∼ z∆− is called the non-normalizable solution13.
Requiring the quantity in the square root to be positive in order to avoid imaginary fields, we get the
Breitenholmer-Freedman bound [77],

m2L2 ≥ −d2

4
, (2.4.10)

which implies that AdS is stable in the presence of negative mass-squared scalars as long as the bound
above is not violated14. Note further that ∆+ ≥ ∆− as well as ∆− = d − ∆+, which implies that under
boundary conformal rescalings x → x′ = λx, the boundary field ϕ(0)(x) transforms as (defining
z′ = λz)

ϕ′
(0)(λx) = lim

z′→0

(
z′
)−∆− ϕ′(z′, x′) = λ−∆− lim

z→0
z−∆− ϕ(z, x) = λd−∆+φ(0)(x), (2.4.11)

where we have used invariance of the bulk field ϕ(z, x) under the AdS isometry (z, x) → (z′, x′) =
(λz, λx), i.e. ϕ′(z′, x′) = ϕ(z, x). From this we infer that ϕ(0) transforms as a source for a conformal
primary operator with dimension ∆+, leading us to identify the boundary field ϕ(0) as a source for
a dual field theory operator O∆+ ; and a similar analysis reveals that ϕ(+) is the vacuum expectation
value (VEV) of O∆+ .

A careful analysis reveals, however, that this identification of source and VEV is only true for the
mass range −d2/4 ≤ m2L2 < 0 with ∆ < d. For (d − 2)/2 ≤ ∆ < d/2, it turns out that we have to
identify the conformal dimension of the field with ∆−, so on the overlap −d2/4 < m2L2 ≤ −d2/4+ 1,
the identification of VEV and source of the field theory operator can be interchanged (see [43] for
details.)

For completeness, we bring a version of the AdS/CFT dictionary:

13 This nomenclature comes from the fact that the action evaluated on the normalizable solution is finite, while the action evalu-
ated on the other is not.

14 In fact, violating this bound will give rise to tachyons, just as m2 < 0 in ordinary field theory. Such violations allow us to
encode spontaneous symmetry breaking in the boundary field theory from a bulk perspective [11].
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Table 2.3: The basic dictionary for the AdS/CFT correspondence. Adapted from [11].
Boundary:

Field theory
Bulk:

Supergravity

Scalar operator/order parameter O Scalar field

Source of operator
Boundary value of field

(leading coefficient of non-normalizable solution)

VEV of operator
Boundary value of radial momentum of the field
(leading coefficient of the normalizable solution;

sub-leading to the non-normalizable solution)

Conformal dimension of operator Mass of field (see table 2.2)

spin/charge of operator Spin/charge of field

Energy momentum tensor Tµν Metric field gmn

Global internal symmetry current Jµ Maxwell field Am

Fermionic operator Oψ Dirac field ψ

RG flow Evolution in the radial AdS direction

No. of degrees of freedom Radius L of AdS space

Global spacetime symmetry Local isometry

Global internal symmetry local gauge symmetry

Finite temperature
Black hole Hawking temperature

(or radius of compact Euclidean time circle)

Chemical potential/charge density
Boundary values of electrostatic potential At

(time component)

Free energy On-shell value of action

Phase transition Instability of black holes

Wilson line along C String worldsheet with endpoints on C
Entanglement entropy of area A Minimal surface Σ with boundary ∂Σ = A
Quantum anomalies Chern-Simons terms

2.5 the holographic dictionary for ads/cft ii : the gkpw rule

The GKPW rule—named after Gubser, Klebanov, Polyakov and Witten, who discovered it in 1998 [78,
79]—links the partition functions of the two sides of the AdS/CFT correspondence. On the field theory
side, the ϕ(0) acts as a source for the operator O∆—as we argued above—so the partition function (in
Euclidean signature) for the CFT takes the form

ZCFT[ϕ(0)] = e−W[ϕ(0) ] =

〈
exp

(∫
ddx ϕ(0)(x)O∆

)〉
CFT

. (2.5.1)

On the AdS side—for the weak form of the conjecture15—the partition function is given in terms
of Son-shell

SUGRA[ϕ], where ϕ are fields (with possible indices suppressed) on AdS5 reduced on S5. The Ad-
S/CFT correspondence, then, translates into the following statement relating the generating functional
W[ϕ(0)] of connected diagrams to the SUGRA action

W[ϕ(0)] = Son-shell
SUGRA[ϕ]

∣∣∣
lim
z→0

z∆−d ϕ(z,x)=ϕ(0)(x)
. (2.5.3)

However, the on-shell value of the SUGRA action is fraught with IR divergences due to the infinite
volume of AdS, while the field theory action will contain UV divergences. The method of holographic

15 For the strongest form of the conjecture, the correspondence relates the partition function of the CFT to the partition function
of the full (type IIB) string theory. Letting the generalized quantities (i.e. not necessarily scalars) O∆ and ϕ be dual to each
other in the usual sense, the strongest form can be expressed as〈

exp
(∫

ddx ϕ(0)(x)O∆

)〉
CFT

= ZIIB String
∣∣

lim
z→0

z∆−d ϕ(z,x)=ϕ(0)(x) . (2.5.2)

The string partition function is not known. The weak form of the correspondence, which we expound on presently, amounts to
a saddle point approximation of the string partition function.
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renormalization (see chapter 3) can then be applied to subtract divergences from the bulk action,
which, by the AdS/CFT correspondence, simultaneously renormalizes the field theory. When this
process has been carried out, we can compute n-point correlation functions as follows,

〈
O∆1(x1) . . .O∆n(xn)

〉
Connected = (−1)n

δSon-shell,ren
SUGRA [ϕ∆i ]|lim

z→0
z∆−d ϕ∆i

(z,x)=ϕ(0)∆i
(x)

δϕ(0)∆1
(x1) · · · δϕ(0)∆n(xn)

∣∣∣∣∣∣∣
ϕ(0)∆i

=0

.

(2.5.4)

Remarkably, holographic renormalization is not required for the two-point function for a massless
scalar16 [44]; so without having to deal with the hassle that is holographic renormalization just yet,
we may apply the formalism above to compute the two-point function for a massless scalar in the CFT.
Using Euclidean AdSd+1 (Lobachevski space) with metric ds2 = L2

z2

(
dz2 + δµνdxµdxν

)
, it is now conve-

nient to introduce the bulk-to-boundary propagator, K∆, which relates the bulk field ϕ∆(z, x)—subject
to the boundary condition ϕ(z, x) ∼ ϕ(0),∆(x)zd−∆ for z → 0—to the boundary field ϕ(0),∆(x),

ϕ∆(z, x) =
∮

∂AdS
ddy K∆(z, x; y)ϕ(0),∆(y). (2.5.5)

In order to actually determine the bulk-to-boundary propagator, we first identify the bulk-to-bulk
propagator G∆(z, x; w, y). Now, the Klein-Gordon equation for a massless scalar with a source reads
�g ϕ∆(z, x) = J(z, x), the solution to which can be written as

ϕ∆(z, x) =
∫

AdS
dwddy

√
gG∆(z, x; w, y)J(w, y), (2.5.6)

implying that the bulk-to-bulk propagator satisfies,

�gG∆(z, x; w, y) =
δ(z − w)δd(x − y)

√
g

. (2.5.7)

The solution to this differential equation is given by a hypergeometric function in the chordal distance
ξ of the geodesic connecting the points (z, x) and (w, y) [45]. From G∆(z, x; w, y), we can get the bulk-
to-boundary propagator by taking the limit w → 0 in an appropriate way17; the result is18

K∆(z, x; y) =
Γ(d)

πd/2Γ(d/2)︸ ︷︷ ︸
=:Cd

(
z

z2 + (x − y)2

)d
. (2.5.9)

On the boundary, z → 0, the Lorentzian form of the propagator implies that

lim
z→0

K∆(z, x; y) =

General case for massive scalar︷ ︸︸ ︷
z∆−dδd(x − y) = δd(x − y) (2.5.10)

Equipped with the bulk-to-boundary propagator, and its boundary behavior, we’re ready to calculate
the massless two-point function. The on-shell (Euclidean) action reads

Son-shell = −1
2

∫
AdS

dzddx
√

ggmn∂m ϕ∂m ϕ (2.5.11)

=
1
2

∫
AdS

dzddx
√

gϕ�g ϕ︸ ︷︷ ︸
=0

+
1
2

∮
∂AdS

ddx
√

hϕ∂̂ϕ (2.5.12)

=
1
2

∮
∂AdS

ddx
√

hϕ∂̂ϕ, (2.5.13)

16 By table 2.2, masslessness implies that ∆ = d.
17 An illuminating way of deriving the precise relation between K∆ and G∆ involves Green’s second identity,∫

M
dd+1x

√
−g
(

φ(�− m2)ψ − (φ ↔ ψ)
)
=
∫

∂M
ddx

√
−γ (φn · ∂ψ − (φ ↔ ψ)) ,

where n is the normal to ∂M and then setting φ = G∆ and ψ = K∆; see e.g. [43] for details.
18 For a massive scalar with conformal dimension ∆, the result reads

K∆(z, x; y) =
Γ(∆)

πd/2Γ(∆ − d/2)︸ ︷︷ ︸
=:C∆

(
z

z2 + (x − y)2

)∆

. (2.5.8)
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where hµν is the induced metric on the boundary, z → 0, which gives hµν = L2

z2 ηµνdxµdxν, and where
∂̂ = nm∂m is the normal derivative outward directed from the boundary, which thus clearly points in
the z direction, nm = (n, 0, . . . , 0) while normality dictates that 1 = gmnnmnn = n2 L2

z2 , so n = z
L . Hence,

since the leading behavior as z → 0 of the field is ϕ(z, x) ∼ zd−∆ ϕ(0)(x) = ϕ(0)(x),

√
hϕ(z, x)∂̂ϕ(z, x) =

(
L
z

)d−1
ϕ(z, x)∂z ϕ(z, x) =

(
L
z

)d−1
ϕ(z, x)∂z

∮
∂AdS

ddy K∆(z, x; y)ϕ(0)(y)

(2.5.14)

=
∮

∂AdS
ddy Cd

(
L
z

)d−1
ϕ(z, x)

d
(
(x − y)2 − z2) zd−1

((x − y)2 + z2)
d+1 ϕ(0)(y) (2.5.15)

z→0−→ CddLd−1
∮

∂AdS
ddy

ϕ(0)(x)ϕ(0)(y)

(x − y)2d , (2.5.16)

which means that the on-shell action takes the form,

Son-shell =
CddLd−1

2

∮
∂AdS

∮
∂AdS

ddxddy
ϕ(0)(x)ϕ(0)(y)

(x − y)2d . (2.5.17)

With this, the two-point function for scalar conformal operators Od of dimension ∆ = d can be
determined using the GKPW rule (2.5.4):

〈Od(x1)Od(x2)〉 =
δSon-shell

δϕ(0)(x1)δϕ(0)(x2)

∣∣∣∣∣
ϕ(0)=0

=
CddLd−1

(x1 − x2)2d , (2.5.18)

in agreement with the conformal result (B.1.16). For a massive scalar dual to operators of weight ∆
(the operators need to have the same conformal dimension, otherwise the two-point function vanishes
identically, see appendix B), the result is [43]

〈O∆(x1)O∆(x2)〉 = Ld−1C∆
2∆ − d

(x1 − x2)2∆ , (2.5.19)

which reduces to our result for ∆ = d. Naïvely, the procedure for the massless scalar should work
for the massive scalar case as well, but it does not give the correct prefactor: in that case, we have to
regulate the bulk-to-boundary propagator using holographic renormalization, which will be the topic
of chapter 3.

2.6 witten diagrams

Introduced by Witten in [79], Witten diagrams are pictorial representations of the GKPW relation
(2.5.1) and (2.5.4)—i.e. a way to obtain CFT correlation functions from diagrams in AdS. In the super-
gravity approximation, (2.5.3)—corresponding to the large-N limit of the CFT—only tree diagrams
contribute, with loop diagrams inducing 1/N corrections to the boundary correlators. Pictorially, we
may represent AdS as a sphere and draw the supergravity fields in a manner similar to the one em-
ployed when drawing Feynman diagrams (see e.g. [69, 70] for standard references), but with external
lines connecting to the boundary. For concreteness, consider a scalar operator of dimension ∆, which
is dual to the bulk field ϕ with interaction

Sint =
∫

dd+1x
√
−g
(
− λ

3!
ϕ3
)

. (2.6.1)

The Feynman rules for Witten diagrams are summarized in table 2.4 below.

Table 2.4: Feynman rules for Witten Diagrams.

Internal line Bulk-to-bulk propagator G∆(z, x; w, y) (see (2.5.7))

Vertex
∫

dzddx
√−gλ, i.e. we integrate over all of AdS

External line (i.e. connected to b’dary) A bulk-to-boundary propagator K∆(z, x; y) (see (2.5.8))
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Since their introduction, many exciting developments involving Witten diagrams have taken place.
For example, in [80] (see also [81]), it is proposed that the holographic dual of conformal blocks are
so-called geodesic Witten diagrams, that is, Witten diagrams where vertices are integrated—not over
all of AdS—but rather over geodesics connecting each pair of boundary points. Other interesting
developments (see e.g. [82, 83]) include the use of the Mellin transform to deduce a more useful
set of Feynman rules in “Mellin space”—leading to the concept of Mellin amplitudes—as well as an
implementation of BCFW-like (see fig. C.1) recursive techniques applicable for Witten diagrams [84].

2.6.0.1 Holographic Computation of the CFT Three-Point Correlator

Figure 2.2: Witten diagram for 〈O∆O∆O∆〉 due to the interaction (2.6.1).

To showcase the power of the formalism, we now proceed to calculate the three-point function using
Witten diagrams (see also [47, 85]). We already know the result: it is given by (B.1.17). Taking the
interaction for simplicity to be (2.6.1), where ϕ is dual to an operator O∆ of dimension ∆, the leading
order contribution to the correlation function 〈O∆O∆O∆〉 is given by the single diagram of figure 2.2.
By use of the Feynman rules of table 2.4, the value of this diagram is readily obtained19:

〈O(x1)∆O∆(x2)O∆(x3)〉 =
∫

AdS
dzddx

√
−gλ

3

∏
i=1

K∆(z, x; xi). (2.6.2)

To tackle this integral, we—following [47]—use Feynman parametrization, allowing us to perform the
integral over AdS to obtain20

〈· · ·〉 = C3
∆λ

πd/2Γ (3∆/2 − d/2) Γ (3∆/2)

2Γ (∆)3

∫ ∞

0

(
∏

i
dαi

)
δ

(
∑

j
αj − 1

)
∏k α∆−1

k[
∑`<q α`αqx2

`q

] , (2.6.3)

where we have defined xij = xi − xj. Changing integration variables to βi defined via α1 = β1 and
αi = β1βi for i ∈ {2, 3}, the integral over the βi takes the form

〈· · ·〉 = C3
∆λ

πd/2Γ (3∆/2 − d/2) Γ (3∆/2)

2Γ (∆)3

∫ ∞

0

(
∏
i>1

dβi

)
∏k>1 β∆−1

k[
∑`>1 β`

(
x2

1` + ∑q>` βqx2
`q

)] (2.6.4)

= −λΓ ((3∆ − d)/2)
2πd

(
Γ(∆/2)

Γ (∆ − d/2)

)3 1
(x12x13x23)∆ , (2.6.5)

in agreement with the result obtained from conformal field theory, cf. (B.1.17).

2.7 outlook

The AdS/CFT correspondence remains a veritable cornucopia for new, interesting physics and is an
extremely active area of research. Although still not fully understood, significant progress has been
achieved in the years following Maldacena’s foundational work, and many formal aspects are now
quite well understood.

19 Note in particular that there is no contribution from the kinetic term, see e.g. [72] for details.
20 The standard method to compute the three-point function exploits inversion symmetry to constrain the spatial dependence,

see e.g. [43, 45].
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It has been successfully applied to explain the low viscosity of the quark gluon plasma (see [9]),
and a whole program exploring the application of holography in strongly coupled QCD—known as
AdS/QCD—has since flourished.

It has also been applied to strongly coupled field theories that arise in condensed matter theories
(this endeavour is known as AdS/CMT, see [11] for a recent review), notably holographic supercon-
ductors [5, 6] (these are the subject of appendix E).

The AdS/CFT correspondence has been likened to the “hydrogen atom of holography”: as a spe-
cific realization of the holographic principle, it may well serve as a stepping stone to a much grander
array of holographic correspondences, and, in particular, as the most promising route towards an un-
derstanding of quantum gravity. Already many other holographic dualities have been proposed, and
many of these are independent of string theory. The main topic of this thesis is one such realization
of the holographic principle: Lifshitz holography.



3H O L O G R A P H I C R E N O R M A L I Z AT I O N

This chapter—along with the supplementary appendix F—explores many facets of holographic renor-
malization. This procedure is required to remove the divergences due to the infinite volume of AdS
space—corresponding to UV divergences in the dual field theory (recall our interpretation of the
radial direction as an energy scale in section 2.3.1).

There are many approaches to this endeavour, and in section F.1 of the the supplementary appendix
F, we review the original approach: the Fefferman-Graham (FG) approach, developed by de Haro et al.
in [86], which relies on the FG theorem of differential geometry [87]. This theorem roughly states
that the metric for certain classes of geometries has a certain universal expansion in an appropriate
radial coordinate. We introduce the method and provide a detailed exposition of the renormalization
of pure gravity in five-dimensional asymptotically locally AdS in section F.1.1. Since the FG approach
is computationally involved, we will occasionally make use of the symbolic differential geometry
package xAct for Mathematica [88].

In section F.2 in the same appendix, we review the de Boer-Verline-Verlinde (dBVV) ansatz method,
where one writes down an ansatz for the counterterm. This approach involves a bilinear and symmet-
ric operation that we have named the deWitt bracket, which allows for a recursive determination of
the unknown coefficients in the counterterm ansatz. This analysis is based on [49, 89].

We start this chapter with a brief review (following [90–92]) of Hamilton-Jacobi (HJ) theory in sec-
tion 3.1.1, serving as an appetizer to the HJ approach to holographic renormalization presented in
section 3.1.2, which is based on [50, 51, 93]. This method requires us to determine the Hamiltonian
of the model we consider, and to this end we employ a radial ADM formalism and illustrate the
principles using a generic model consisting of a scalar φ with some potential V(φ) coupled to gravity.
The HJ equation implies a set of constraints, which can be solved recursively which allows the identi-
fication of the divergent parts of the action. In order to solve the constraints order by order, we need
a good way to define what we mean by “order”: to that end, we introduce an operator �—which is
conveniently (for our purposes) chosen to be the dilatation operator δD—that we use to sort various
quantities such as the action and the Hamiltonian in eigenmodes.

In section 3.2, we present the main new result of this chapter: using the HJ approach, we calculate
a novel counterterm for a five-dimensional free Einstein-Maxwell-Dilaton (EMD) model—which we
call the electromagnetic uplift due to its rôle as an upliftable model for charged Lifshitz holography
in chapter 6. We also work out the novel Ward identities satisfied by the VEVs and construct the
new FG expansions, which is achieved via the so-called flow equations; a natural ingredient in the HJ
approach.

We also comment on a new subtlety regarding the renormalization of p-form fields. This has gone
unnoticed in the literature, and will be the topic of an upcoming article by Skenderis and Papadim-
itriou [52]. Based on insights from our renormalization of the electromagnetic uplift, which contains
a one-form, we provide a conjecture for the general p-form case: in particular we present four new
regions of parameter space, where holographic renormalization works differently depending on the
values of d and p.

Finally, in section 3.3, we illustrate a manifestation of this subtlety by considering hodge dualization
of a biscalar theory to an EMD model in d = 2 and generalize the approach to a simple way of
determining the counterterm action for a massless p-form in AdSp+2. This has, to our knowledge, not
appeared in the literature previously.

3.1 holographic renormalization as hamilton-jacobi theory

In this section, we describe a method originally devised by Papadimitriou and Skenderis in [94, 95]
and further refined in [50, 51]. This method was used by Ross in [27] (see also [96]) to renormalize a
particular Einstein-Proca model which supports Lifshitz solutions; this we review in appendix G. For
expositional reasons, we consider free scalars coupled to gravity, while our final application of the
procedure concerns the electromagnetic uplift, the renormalization of which is new.

15
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3.1.1 Hamilton-Jacobi Theory in a Nutshell

We begin with a review of Hamilton-Jacobi theory as it appears in classical mechanics. Our presenta-
tion is based on [90–92].

Consider a mechanical system described by the action functional,

S =
∫

γ
dt′ L(q, q̇; t′), (3.1.1)

where q̇i = ∂tqi and γ is a curve connecting the initial and final positions, (q0, t0) and (q1, t1), in
the configuration space V, which is an n-dimensional manifold. The coordinates on V are the gen-
eralized coordinates qi, and to each generalized coordinate qi corresponds a canonical momentum,
given by pi = dL

dq̇i . The pi and the qi are independent variables and are the natural coordinates of
the Hamiltonian formalism, where we trade the Lagrangian for the Hamiltonian via the Legendre
transformation,

H(q, p; t) = pi q̇i(q, p)− L(p, q; t), (3.1.2)

which dictates the time evolution through Hamilton’s equations,

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi . (3.1.3)

Note that these imply an additional “Hamilton equation” for explicitly time dependent systems: since
Ḣ = ∂H

∂pi
ṗi +

∂H
∂qi q̇i + ∂H

∂t = ∂H
∂t , we infer that −H is the canonical momentum conjugate to t.

When H(p, q) does not explicitly depend on time, the set {pi, qi} combine to form the 2n-dimensional
phase space of our system, which is isomorphic to the cotangent bundle of the configuration space, T∗V.

If the Hamiltonian does depend explicitly on time, we must include time as a generalized coordinate,
and our extended configuration space V = V ×R becomes (n+ 1)-dimensional, with a corresponding
extended phase space T∗V. Note that the Hamiltonian is a mapping giving some real number for each
point (pi, qi) in phase space, i.e. H : T∗V → R. The (extended) cotangent bundle is naturally endowed
with a symplectic structure (see [97] for a review on symplectic geometry), i.e. a closed two-form ω2

given by

ω2 = dpi ∧ dqi − dH ∧ dt, (3.1.4)

which, due to closure, is locally expressible as

ω2 = dλ, (3.1.5)

where λ = pidqi − Hdt is the presymplectic one-form1. We remark that the presymplectic form is
equal to the exterior derivative of the action (3.1.1) considered as a function of final position (i.e, with
the initial position fixed) [92]. Consider now a diffeomorphism on T∗V defining a set of new coor-
dinates {Pi(qi, pi; t), QI(qi, pi; t)} (leaving t untouched). By demanding that the Lagrangian changes
only up to a total derivative2,

pi q̇i − H(p, q; t) = PiQ̇i − H̃(P, Q; t) +
d
dt

F(q, Q; t), (3.1.6)

we can ensure that the principle of stationary action again produces Hamilton’s equations (3.1.3) in
the new coordinates,

Q̇i =
∂H̃
∂Pi

, Ṗi = − ∂H̃
∂Qi . (3.1.7)

A diffeomorphism satisfying the above is called canonical. Now, observe that d
dt F(q, Q; t) = ∂F

∂qi q̇i +

∂F
∂Qi Q̇i + ∂F

∂t , which we can plug into the requirement (3.1.6) to obtain(
pi −

∂F
∂qi

)
q̇i − H(p, q; t) =

(
Pi +

∂F
∂Qi

)
Q̇i − H̃(P, Q; t) +

∂F
∂t

. (3.1.8)

1 The presymplectic form is also known as the Liouville form, and, occasionally, as the tautological form [97].
2 Note that we have a lot of freedom in choosing the variables occurring in F. In [91], the functions are numbered according to

their dependence; for example our F here is called F1.
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Now, the old and the new coordinates are independent, implying that the identity above is true
identically only if the coefficients of q̇i and Q̇i each vanish, leaving us with

pi =
∂

∂qi F(q, Q; t), Pi =
∂

∂Qi F(q, Q; t), H̃(P, Q; t) = H(p, q; t) +
∂

∂t
F(q, Q; t). (3.1.9)

In particular, we see that any such F generates some canonical function—consequently it is referred
to as the generating function. Now, write

F(q, Q; t) = −PiQi +S. (3.1.10)

By taking the exterior derivative of F, which is a section of T∗V, it is easy to show that S =
S(q, P; t)—that is, the rewriting (3.1.10) is nothing but a Legendre transformation from the set of
coordinates (q, Q; t) to (q, P; t)— and that

pi =
∂S
∂qi , Qi =

∂S
∂Pi

,
∂S
∂t

=
∂F
∂t

. (3.1.11)

As before, any Sgenerates some canonical transformation, and we choose S such that H̃ is identically
zero, which means that Q̇i = 0 = Ṗi, i.e. they are constants of motion, and we write Pi = αi and
Qi = βi. The condition H̃ = 0 is can now be recast in the form

H
(

∂S
∂q

, q; t
)
+

∂S
∂t

= 0, (3.1.12)

where we have used the third relation of (3.1.9) as well as the expression for pi in (3.1.11). This is the
Hamilton-Jacobi equation. It is a first-order partial differential equation for S, known as Hamilton’s
principal function. Now, note that we can write S= S(q, α) as well inverting F to obtain qi = qi(α, β; t),
which is solution to the mechanical problem in the original coordinates and thus leads to a trajectory
γ along which the action is stationary. Along γ, where Pi = αi, we can compute the time derivative of
S:

dS
dt

=
∂S
∂qi q̇i +

∂S
∂t

= pi q̇i − H = L, (3.1.13)

where we have used the relation for pi in (3.1.11) and the Hamilton-Jacobi equation (3.1.12), implying
that

S(t) = S(q(t), α, t) =
∫

γ(t0,t)
dt′ L(t′) +S(t0), (3.1.14)

where γ(t0, t) is the part of the trajectory γ starting at t0 and ending at t. Thus, we conclude that
Hamilton’s principal function is the on-shell action. This insight is the crucial ingredient in the Hamilton-
Jacobi approach to holographic renormalization.

3.1.2 Hamiltonian Gravity and the Hamilton-Jacobi Equation

In this section, we set up a HJ description of holographic renormalization, where r plays the rôle
of time. Consider gravity coupled to (possibly massive) free scalars in a (d + 1)-dimensional non-
compact manifold M, which is described by the action3

S = −
∫
M

dd+1x
√

g
(

R(g) − 1
2

∂µ∂µφ + V(φ)

)
+
∫

∂M
ddx

√
γ 2K. (3.1.15)

The next ingredient is the identification of a radial coordinate r such that r → ∞ corresponds to
the boundary ∂M of M, which we require only to cover an open chart Mε in the vicinity of ∂M.
There are additional subtleties involved if the boundary ∂M consists of several disconnected pieces;
in that case, a different radial coordinate will have to be used for each component [50]. When such
complications have been dealt with, we apply a radial ADM formalism (for a review of the ADM

3 Note that we’ll work in Euclidean signature, but it is straightforward to generalize this to Lorentzian signature [48]; in particular,
we can interchange the two with no complications, so we will not be particularly careful about this.
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formalism, see [98]), where the metric is parametrized in terms of the lapse N, the shift Ni and the
induced metric γij on radial leaves Σr (i.e. hypersurfaces of constant r),

ds2 = (N2 + Ni Ni)dr2 + 2Nidrdxi + γijdxidxj, (3.1.16)

implying that the metric gµν is equivalently described by the triplet {N, Ni, γij}. The curvatures per-
taining to gµν are then expressible in terms of the curvatures on Σr and the extrinsic curvature Kij,
which is given by

Kij =
1
2

£ngij =
1

2N
(
γ̇ij − Di Nj − DjNi

)
, (3.1.17)

where γ̇ij = ∂rγij, £n is the Lie derivative in the direction of the normal vector n, and Di is the
covariant derivative with respect to the induced metric γij. The unit normal vector nµ to Σr is given
by

nµ =
(

1/N,−Ni/N
)

. (3.1.18)

Following [50], we now consider some useful identities in the radial ADM formalism that we are
employing. Note first that

g =

(
N2 + Ni Ni Ni

Ni γij

)
, g−1 =

(
1/N2 −Ni/N2

−Ni/N2 γij + Ni N j/N2

)
, (3.1.19)

which means that
√

g = N
√

γ, (3.1.20)

which follows from the useful identity

det

(
A B
C D

)
= det (D)det

(
A − BD−1C

)
. (3.1.21)

From the metric (3.1.19), we get the following Christoffel symbols,

Γr
rr = N−1

(
Ṅ + Ni∂i N − Ni N jKij

)
, (3.1.22)

Γr
ri = N−1

(
∂i N − N jKij

)
, (3.1.23)

Γr
ij = N−1Kij, (3.1.24)

Γi
rr = −N−1Ni Ṅ − NDi N − N−1Ni N j∂jN + Ṅi + N jDjNi + 2NN jKi

j + N−1Ni Nk NlKkl ,
(3.1.25)

Γi
rj = −N−1Ni∂jN + DjNi + N−1Ni NkKkj + NKi

j, (3.1.26)

Γk
ij = Γ(γ)k

ij + N−1NkKij. (3.1.27)

In terms of the ADM variables, the Ricci scalar of g is decomposed in the following manner,

R(g) = R(γ) + K2 − KijKij +∇µζµ, (3.1.28)

where ζµ = −2Knµ + 2nρ∇ρnµ, which implies that

ζr = −2Knr + 2nρ∇ρnr = −2K/N + 2nρ
(

∂ρnr + Γr
ρλnλ

)
(3.1.29)

= −2K/N +

=0︷ ︸︸ ︷
2nr (∂ρnr + Γr

rrnr)+ 2ni
(

∂inr + Γr
irnr + Γr

ijn
j
)

(3.1.30)

= −2K/N, (3.1.31)

which means that the Gibbons-Hawking term precisely cancels the total derivative of the Ricci scalar
(3.1.28); see also [99]. The total action is then expressible as

S =
∫

dr L, (3.1.32)
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where

L =
∫

Σr
ddx

√
γN

(
R(γ) + K2 − KijKij − 1

2N2

(
φ̇ − Ni∂iφ

)2
− 1

2
γij∂iφ∂jφ − V(φ)

)
, (3.1.33)

where we have used the metric (3.1.19) to write

1
2

∂µφ∂µφ =
1
2

gµν∂µφ∂νφ =
1
2

γij∂iφ∂jφ +
1

2N2

(
φ̇ − Ni∂iφ

)2
. (3.1.34)

From the Lagrangian (3.1.33), we can read off—using the extrinsic curvature (3.1.17)—the conjugate
momenta to the induced metric and the scalar,

πij =
1√
γ

δL
δγ̇ij

= Kij − Kγij, (3.1.35)

πφ =
1√
γ

δL
φ̇

= N−1
(

φ̇ − Ni∂iφ
)

, (3.1.36)

so we can apply the Legendre transform to our Lagrangian (3.1.33) to obtain the Hamiltonian on the
radial hypersurface Σr,

H =
∫

Σr
ddx

√
γ
(

πijγ̇ij + πφφ̇
)
− L =

∫
Σr

ddx
√

γ
(

NH+ NiHi
)

, (3.1.37)

where

H = πijπ
ij − 1

d − 1
π2 +

1
2

π2
φ + R(γ) − 1

2
∂iφ∂iφ − V(φ), (3.1.38)

Hi = −2Djπ
ij + πφ∂iφ, (3.1.39)

where we have used the extrinsic curvature (3.1.17) and the momenta (3.1.35)–(3.1.36) to get H,
whereas we have integrated (covariantly) by parts to get Hi. From the Hamiltonian (3.1.37), the equa-
tions of motion for the Lagrange multiplier fields N and Ni immediately give the constraints

H = 0, Hi = 0, (3.1.40)

known as the Hamiltonian and momentum constraint, respectively. The constraints (3.1.40) imply that
the Hamiltonian (3.1.37) vanishes on the constraint surface; this is a consequence of diffeomorphism
invariance and is, as we shall see, closely related to the Hamilton-Jacobi equation. The constraints
of (3.1.40) are so-called first-class constraints4 [100], which generate diffeomorphisms along the radial
direction and along Σr, respectively, via the Poisson bracket. Locally, we can use diffeomorphism
invariance to gauge fix the shift and lapse in the following manner [89],

N = 1, Ni = 0. (3.1.41)

Henceforth, we will adopt the gauge choice of (3.1.41). Now, from the Hamiltonian densities (3.1.38)
and (3.1.39), it is clear the Hamiltonian (3.1.37) has no explicit radial dependence, so the radial
Hamilton-Jacobi equation assumes the form

H = 0, (3.1.42)

which is the same as the constraints (3.1.40); crucially, however, the canonical momenta are here
determined in terms of Hamilton’s principal function S (compare with the expressions in (3.1.11)),

πij =
1√
γ

δS
δγij

, πφ =
1√
γ

δS
δφ

. (3.1.43)

The prescription (3.1.43) then implies that the constraints (3.1.40) become functional differential equa-
tions for S, and the Hamiltonian constraint thus reads[

γikγjl −
1

d − 1
γijγkl

]
1
γ

δS
δγij

δS
δγkl

+
1

2γ

(
δS
δφ

)2

+ R(γ) − 1
2

∂iφ∂iφ − V(φ) = 0, (3.1.44)

4 In the sense that their Poisson brackets with the constraints (3.1.40) vanishes weakly, for details see [100].
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which is the starting point of the dBVV-DeWitt5 approach to holographic renormalization, which we
review in appendix F. As we saw in section (3.1.1), a solution Sto the HJ equation provides a solution
to Hamilton’s equations—in fact, it is be to identified with the on-shell action—and thus it also solves
the second order equations of motion (i.e. the Euler-Lagrange equations); in particular, Hamilton’s
first equation q̇ = δH

δp leads to the first order flow equations

γ̇ij = 2
(

γikγjl −
1

d − 1
γijγkl

)
1√
γ

δS
δγkl

, (3.1.45)

φ̇ =
1√
γ

δS
δφ

. (3.1.46)

Equivalently, the equations above may be obtained by inserting the momenta (3.1.43) into their repre-
sentations (3.1.35) and (3.1.36) with the gauge choice (3.1.41); this is straightforward for φ̇, but γ̇ij is
related to the extrinsic curvature as detailed in (3.1.17), which implies that 1

2 γ̇ij = Kij, and thus the
relation for πij (3.1.35) leads to γ̇ij = 2πij − 2

1−d π, which is the same as (3.1.45).
In asymptotically locally AdS (AlAdS) geometries (see appendix A) in particular6, these flow equa-

tions allow one to reconstruct the Fefferman–Graham expansions of the fields under scrutiny, which
we pursue in section 3.2.3.

The application of Hamilton-Jacobi theory in holographic renormalization hinges on the fact that
Hamilton’s principal function on Σr is equivalent to the on-shell action S on Σr, as we showed in
section 3.1.1. More explicitly, the regularized action, i.e. the on-shell action evaluated on Σr, which is
given by

Sreg[γ(r, x), φ(r, x)] =
∫ r

dr′ Los, (3.1.47)

satisfies the HJ equation and may thus be identified with S. So, if we can determine the principal
function, we can identify the divergences of the on-shell action and thus construct the appropriate
counterterm; denoting the divergent part of the principal function Sloc, which is a local functional of
the data on Σr, the counterterm takes the form

Sct = −Sloc. (3.1.48)

It is worth noting that it is possible to add finite local terms to the bulk action7, corresponding to
choosing a specific renormalization scheme, i.e.

Sct = −
(
Sloc +Sscheme

)
. (3.1.49)

In the present work, we exclusively use minimal subtraction, i.e. we subtract only the divergences of
the bare action. Once the counterterm has been obtained, the renormalized action on-shell on Σr is
given by

Sren = Sreg + Sct =
∫

ddx
√

γ
(

γijΠij + φΠφ

)
, (3.1.50)

where the renormalized canonical momenta Πij and Πφ are closely related to the renormalized one-
point functions of the operators dual to the fields.

3.1.3 Recursive Solution of the HJ Equation

In order to provide a general algorithm for determining the principal function S, we write S as an
expansion of some functional operator �, i.e.

S= S(α0)
+S(α1)

+S(α2)
+ · · · , (3.1.51)

5 The quantity in square brackets in (3.1.44) bears a striking resemblance to the standard Wheeler-DeWitt metric [101]; in fact, it
is the deWitt metric with parameter d − 1 (see [102]).

6 It is also possible for more general backgrounds to generate analogues of the FG expansions using this method, but then one
has to solve the differential equations. For AlAdS boundary conditions, the FG theorem provides a highly useful ansatz.

7 This corresponds to a special choice of integration constants in the complete integral of the HJ equation.
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with

�S(αk)
= λkS(αk)

, (3.1.52)

that is, every term in the expansion (3.1.51) is an eigenfunction of � with eigenvalue λk, where all the
λk’s are distinct. It is now convenient to introduce a density L such that the principal function reads

S=
∫

Σr
ddx

√
γL, (3.1.53)

where we require that
√

γ be an eigenfunction of our operator � with eigenvalue λγ; this is a constraint
on the possible form of �. This implies that we have an expansion of the form

L= L(α0)
+L(α1)

+L(α2)
+ · · · , (3.1.54)

where

S(αk)
=
∫

Σr
ddx

√
γL(αk)

, (3.1.55)

implying that the
√

γL(αk)
are only defined up to a total divergence, which is not generically an

eigenfunction of �. To remedy this, we note first that for arbitrary variations of the on-shell action, the
momentum relations (3.1.43) imply that

πijδγij + πφδφ =
1√
γ

δ
(√

γL
)
+

1√
γ

∂ivi(δγ, δφ), (3.1.56)

for some vector field vi(δγ, δφ). Applying this for �, we find that

π
ij
(αk)

�γij + πφ(αk)
�φ =

1√
γ

�
(√

γL(αk)

)
+

1√
γ

∂i ṽi(�γ, �φ) (3.1.57)

= (λγ + λk)L(αk)
+

1√
γ

∂i ṽi(�γ, �φ), (3.1.58)

where we have used the Leibniz property of �, and where ṽi
(αk)

is in general different from vi
(αk)

, since

� acting on
√

γL may involve a total derivative. However, since we are ultimately interested in the
action, these total derivatives are mere “artefacts”, and we may choose—without loss of generality—
the total derivative such that the following extremely useful relation holds:

π
ij
(αk)

�γij + πφ(αk)
�φ = (λγ − λk)L(αk)

, (3.1.59)

which is crucial since it allows us to relate the Hamiltonian constraint (3.1.44) directly to the on-shell
action via the L(αk)

. We now proceed to discuss two concrete realizations of the operator �.

3.1.4 The Induced Metric Expansion

Used in [51] to renormalize general dilaton-axion gravity, this approach relies on choosing � to be

δγ =
∫

Σr
ddx 2γij

δ

δγij
, (3.1.60)

which satisfies both the Leibniz property and has
√

γ as an eigenfunction, since

δγ
√

γ = γijγ
ij√γ = d

√
γ, (3.1.61)

i.e. λγ = d. The expansion in eigenmodes of δγ treats the scalar field non-perturbatively, so we do
not need to specify the potential explicitly, which makes this method quite general—in particular, this
method applies also to asymptotically non-AdS backgrounds, e.g. non–conformal branes [103]. For
the gravity-scalar system we consider, the resulting expansion is a derivative expansion8, and each
factor of the metric is associated with two derivatives, i.e. in terms of the form ∂iφ∂iφ, and therefore

8 This is no longer the case if we include a Maxwell field Ai , since then we have terms of the schematic form γij Ai Aj.—we will
explore this scenario in section 3.2.1.
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we choose the label αk = 2k to count derivatives. The statement corresponding to (3.1.58) with � given
by (3.1.60) thus takes the form

2πi
i(2k) = (d − 2k)L(2k). (3.1.62)

Now, the zeroth order contribution contains no derivatives and is therefore solely expressed in terms
of φ. We define the superpotential U(φ) := L(0), so that

S(0) =
∫

Σr
ddx

√
γU(φ). (3.1.63)

Plugging the above into the functional Hamiltonian constraint of (3.1.44) and collecting terms with no
derivatives, we get

2(U′(φ))2 − d
(d − 1)

U(φ)2 − 4V(φ) = 0, (3.1.64)

where we have used that
δS(0)
δγij

= 1
2
√

γγijU(φ). It is important to note that we need only solve this

equation near the boundary, which simplifies the analysis substantially. Given U(φ), we can insert
the δγ–eigenmode expansion of the principal function into (3.1.44) to obtain the following first order
linear inhomogeneous recursive functional differential equations

2U′(φ)
1√
γ

δ

δφ

∫
Σr

ddx
√

γL(2n) −
d − 2n
d − 1

U(φ)L(2n) = R(2n), n > 0, (3.1.65)

where

R(2) =
1
2

∂iφ∂iφ − R(γ), (3.1.66)

R(2n) = −
n−1

∑
m=1

(
π

ij
(2m)

π(2(n−m))ij −
1

d − 1
π(2m)π(2(n−m)) +

1
2

πφ(2m)πφ(2(n−m))

)
. (3.1.67)

Solving these equations is, however, tricky, and it is often advantageous to choose � to be the dilatation
operator (which, as we shall see, occasionally coincides with δγ), which, in this context, is written as
δD, since in many cases it reduces the functional differential equations to algebraic equations which
are much easier to solve. We explore the consequences of this choice in the section below.

3.2 the δD expansion & holographic renormalization of the electromagnetic up-
lift

In this section, we perform a novel renormalization of an EMD model where the dilaton does not
couple to the electromagnetic field nor the cosmological constant: we refer to this model as the elec-
tromagnetic uplift. We need the renormalized action of this model when considering charged Lifshitz
holography via Sherk-Schwarz reduction, which will be the topic of chapter 6. As remarked above,
choosing � to be the dilatation operator δD is often a good choice, and one we will make in this sec-
tion. The addition of a free Maxwell field leads to an extra constraint encoding gauge invariance of
the action in addition to those encountered in (3.1.40). This constraint is not trivially satisfied even
after fixing the gauge to an axial gauge Ar = 0 (which supplements the ADM gauge (3.1.41)), since
this choice leaves residual gauge transformations, under which we must also require invariance.

Some aspects of holographic renormalization for EMD models has been explored in previous liter-
ature: it was considered in a restricted setting in [104], while the general principles were laid down in
[93].

Holography including renormalization for a different class of EMD models from the perspective of
dimensional reduction was considered [105]; this approach somewhat reminiscent of the structure we
will discuss in chapter 6.

3.2.1 Holographic Renormalization of the Electromagnetic Uplift

The model we consider is

S =
1

2κ2

∫
M

dd+1x
√
−g
(

R(g) + d(d − 1)− 1
2

∂µφ∂µφ − 1
4

FµνFµν

)
+ SGH, (3.2.1)
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where SGH is the Gibbons-Hawking boundary term, and where the field strength is defined in the
usual manner Fij = 2∂(i Aj). Since we will eventually set d = 4, we will assume that d is even. The
equations of motion for this action read

Gµν =
1
2

(
∂µφ∂νφ − 1

2
(∂φ)2gµν

)
+

d(d − 1)
2

+
1
2

(
FµρFν

ρ − 1
4

F2gµν

)
, (3.2.2)

0 =
1√−g

∂µ

(√
−g∂µφ

)
,

1√−g
∂µ

(√
−gFµν

)
= 0, (3.2.3)

where Gµν is the Einstein tensor. Performing an ADM-decomposition of the metric,

ds2 = gµνdxµdxν = N2dr2 + γij

(
dxi + Nidr

) (
dxj + N jdr

)
, (3.2.4)

and using the results of section 3.1.2, the total action may be written as

S =
∫

dr L, (3.2.5)

where [28]

L =
1

2κ2

∫
Σr

ddx
√
−γN

(
K2 − KijKij −

1
2N2

(
φ̇ − Ni∂iφ

)2
− 1

2N2

(
Fri − NkFki

) (
Fr

i − Nl Fl
i
)
(3.2.6)

+ R(γ) − 1
2

∂iφ∂iφ − 1
4

FijFij + d(d − 1)

)
, (3.2.7)

where we note that Ar is not dynamical, i.e. it acts as a Lagrange multiplier. From the Lagrangian
(3.2.7), we may immediately determine the canonical momenta

πij =
1√
−γ

δL
δγ̇ij

=
1

2κ2

(
Kγij − Kij

)
, (3.2.8)

πi =
1√
−γ

δL
δȦi

= − 1
2κ2 N−1

(
Fr

i − NkFk
i
)

, (3.2.9)

πφ =
1

2κ2 N−1
(

φ̇ − Ni∂iφ
)

. (3.2.10)

These can be inverted to obtain expressions for the generalized velocities in terms of the momenta;
this produces the flow equations that we encountered in (3.1.45)–(3.1.46),

γ̇ij = −4κ2N
(

πij −
1

d − 1
πγij

)
+ Di Nj + DjNi, (3.2.11)

Ȧi = −2κ2Nπi + ∂i Ar + NkFki, (3.2.12)

φ̇ = −2κ2Nπφ + Ni∂iφ, (3.2.13)

which allow us to determine the Hamiltonian via the Legendre transform,

H =
∫

Σr
ddx

√
−γ

(
γ̇ijπ

ij + Ȧiπ
i + φ̇πφ

)
− L =

∫
Σr

ddx
√
−γ

(
NH+ NiHi + ArF

)
,

(3.2.14)

with the densities in front of the Lagrange multipliers {N, Ni, Ar} are given by

H = −2κ2
(

πijπij −
1

d − 1
π2 +

1
2

π2
φ +

1
2

πiπi

)
+

1
2κ2

(
−R(γ) +

1
2

∂iφ∂iφ +
1
4

FijFij − d(d − 1)
)

,

(3.2.15)

Hi = −2Djπ
ji + Fijπj + πφ∂iφ, (3.2.16)

F = −Diπ
i. (3.2.17)

The equations of motion for the Lagrange multipliers {N, Ni, Ar} impose the following first-class
constraints,

H = 0, Hi = 0, F = 0. (3.2.18)
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These are equivalent to the Hamilton-Jacobi equation H = 0, where the canonical momenta in H
are expressed in the usual way as functional derivatives of Hamilton’s principal function S[γ, A, φ],
leading to a functional differential equation. However, the momentum constraint Hi = 0 simply
requires S to be diffeomorphism invariant on constant-r leaves Σr, whereas F = 0 amounts to the
statement that S is gauge invariant—something we will explicitly see later. In order to proceed, we
adopt the gauge choice

N = 1, Ni = 0, Ar = 0, (3.2.19)

which simplifies the analysis substantially. On AlAdS backgrounds, the equations of motion (3.2.2)–(3.2.3)
imply that the fields involved in our model have the following asymptotic behaviour9

γij ' e2rg(0)ij(x), φ ' φ(0)(x), Ai ' A(0)i(x), (3.2.20)

where we use domain-wall coordinates (cf. (A.1.9)). The radial derivative, given by

δr =
∫

Σr
ddx

(
γ̇ij

δ

δγij
+ φ̇

δ

δφ
+ Ȧi

δ

δAi

)
, (3.2.21)

asymptotes—since by (3.2.20) γ̇ij ' 2γij, φ̇ ' 0 and Ȧi ' 0—the dilatation operator,

δr '
∫

Σr
ddx 2γij

δ

δγij
= δD. (3.2.22)

Note that for this model, the dilatation operator in fact coincides with the induced metric operator δγ

of (3.1.60) to lowest order. The next step is to express the principal function as

S=
∫

Σr
ddx

√
−γL, (3.2.23)

where L is expanded in eigenmodes of δD in the following manner, where, due to the fact that d is
even, we have anticipated logarithmic terms in accordance with the general FG scheme applicable for
AlAdS boundary conditions,

L= · · ·+L(−1) +L(0) +L(1) +L(2) + · · ·+ L̃(d) log e−2r +L(d) + · · · , (3.2.24)

where

δDL(w) = −wL(w), w < d, (3.2.25)

δDL̃(d) = −dL̃(d), (3.2.26)

δDL(d) = −dL(d) − 2L̃(d). (3.2.27)

The transformation (3.2.27) is not entirely obvious, so let us derive it. Due to diffeomorphism invari-
ance, the on-shell action does not—as we have seen—depend explicitly on the cut-off r, so the only
dependence enters via the fields. This implies that the radial derivative of the bare on-shell action
is given by δr, as given in (3.2.21), which to leading order is equivalent to the dilatation operator as
demonstrated in (3.2.22). Thus, we find that

δr

(
L̃(d) log e−2r +L(d)

)
= δr

(
L̃(d)

)
log e−2r − 2L̃(d) + δrL(d), (3.2.28)

which, when set equal to log e−2rδDL̃(d) + δDL(d), produces the transformation property (3.2.27). The
expansion of L in (3.2.24) leads to the following expansions of the momenta,

πij =
1√
−γ

δ

δγij

∫
Σr

ddx
√
−γL= · · ·+ π

ij
(1) + π

ij
(2) + π

ij
(3) + π

ij
(4) + · · ·+ π̃

ij
d+2 log e−2r + π

ij
(d+2) + · · · ,

(3.2.29)

πφ =
1√
−γ

δ

δφ

∫
Σr

ddx
√
−γL= · · ·+ πφ(−1) + πφ(0) + πφ(1) + · · · π̃φ(d) log e−2r + πφ(d) + · · · ,

(3.2.30)

πi =
1√
−γ

δ

δAi

∫
Σr

ddx
√
−γL= · · ·+ πi

(−1) + πi
(0) + · · · π̃i

(d) log e−2r + πi
(d) + · · · . (3.2.31)

9 This statement is only valid for d ≥ 2, which has interesting consequences that we will explore in sections 3.2.2 and 3.2.3 and
in particular in section 3.3. We will also briefly comment on the generalization for p-forms.
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Applying the dilatation operator (3.2.22) to the principal function (3.2.23), we get the following useful
relation for w < d: [

2γijπ
ij
]
(w)

= (d − w)L(w), w < d (3.2.32)

⇒ 2γijπ
ij
(w+2) = 2π(w) = (d − w)L(w), w < d, (3.2.33)

where [XY](w) means the piece in the δD expansion of XY with dilatation weight w, i.e. δD[XY](w) =

−w[XY](w), and where π(w) = γijπ
ij
(w+2) is the trace of the momentum, which, due to the asymptotic

behaviour of the fields (3.2.20), has scaling weight w. For w = d, we find, by use of the scaling relations
for the eigenmodes (3.2.26) and (3.2.27), the following relation,

2π(d) =
1√
−γ

δD

∫
Σr

ddx
√
−γ

(
L̃(d) log e−2r +L(d)

)
(3.2.34)

= −2L̃(d), (3.2.35)

which is closely related to the conformal anomaly. Note in particular, we don’t need to care about
w > d, since these terms will vanish as r → ∞. Now let’s rewrite the Hamiltonian

H = −2κ2
(

πijπij −
1

d − 1
π2 +

1
2

π2
φ +

1
2

πiπi

)
+

1
2κ2

(
−R(γ) +

1
2

∂iφ∂iφ +
1
4

FijFij − d(d − 1)
)

(3.2.36)

= Kijπ
ij − 2κ2

(
1
2

π2
φ +

1
2

πiπi

)
+

1
2κ2

(
−R(γ) +

1
2

∂iφ∂iφ +
1
4

FijFij − d(d − 1)
)

, (3.2.37)

where we have used our expression for πij (3.2.8) to rewrite the gravitational kinetic term. We can
also expand this in dilatation weights,

H = ∑
w
H(w), δDH(w) = −wH(w), (3.2.38)

and we then impose the Hamiltonian constraint H = 0, which, due to unitarity of δD implies that
each H(w) vanishes individually,

H(w) = 0, ∀w. (3.2.39)

The next step is to introduce vielbeine10, γij = ea
i eb

j ηab. This is advantageous since quantities with
flat indices retain their scaling weight when indices are raised and lowered—in contrast to quantities
carrying curved indices. This does, however, change the scaling weights of quantities with indices (but
does so once and for all). Clearly, ea

i has scaling weight −1, while ei
a has scaling weight 1, so Aa = Aiei

a
also has scaling weight 1. The expansions of the momenta (3.2.29) and (3.2.31) in flat indices become
(the expansion for πφ carries no indices and is unchanged)

πab = ea
i eb

j πij = · · ·+ πab
(−1) + πab

(0) + πab
(1) + πab

(2) + · · ·+ π̃ab
(d) log e−2r + πab

(d) + · · · , (3.2.40)

πa = ea
i πi = · · ·+ πa

(−2) + πa
(−1) + · · · π̃a

(d−1) log e−2r + πa
(d−1) + · · · (3.2.41)

The asymptotic behaviours of the fields (3.2.20) determine—via the momentum relations (3.2.8)–(3.2.10)—the
scaling weight at which the asymptotic expansions (3.2.29)–(3.2.31) begin, which in turn, through the
useful relation (3.2.33), determines the scaling weight at which the expansion (3.2.24) of L begins.
Similarly, they determine where the expansion (3.2.38) of H begins. We find that the asymptotic iden-
tification ∂r ' δD implies

πij =
1

2κ2

(
Kγij − Kij

)
=

1
2κ2

(
1
2

γ̇lkγlkγij − 1
2

γ̇lkγliγkj
)

(3.2.42)

∂r'δD' d − 1
2κ2 γij, (3.2.43)

so the expansion of πij starts at scaling weight two, which in turn means that πab starts at scaling
weight zero. Similarly, we find for π(φ) that the lowest term has the same scaling weight as φ itself

10 This is not necessary and is mainly an “aesthetic choice” in the sense that we find it to make the analysis conceptually cleaner;
in the approaches taken in [28, 50, 51, 106] this is not done.
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and is proportional to that scaling weight, which means that πφ(0) = 0, and the eigenmode expansion
consequently begins at scaling weight one. Similarly, for the gauge field momentum, we find that

πi = − 1
2κ2 Frjγ

ji = − 1
2κ2 Ȧjγ

ji ∂r'δD' 0, (3.2.44)

i.e. the expansion for πi starts at scaling weight one, implying that the expansion for πa starts at
scaling weight zero. Combining our results, we find that the expansions (3.2.30), (3.2.40) and (3.2.41)
take the form

πφ = πφ(1) + · · · π̃φ(d) log e−2r + πφ(d) + · · · , (3.2.45)

πab = πab
(0) + πab

(1) + πab
(2) + · · ·+ π̃ab

(d) log e−2r + πab
(d) + · · · , (3.2.46)

πa = πa
(0) + · · · π̃a

(d−1) log e−2r + πa
(d−1) + · · · , (3.2.47)

where, explicitly (compare (3.2.43))

πab
(0) =

d − 1
2κ2 ηab, (3.2.48)

whereas πa
−1 and πφ(0) were determined to be zero by the same analysis. Since the trace of πab

(w)
is

related to the principal function density L(w) via (3.2.33), this in turn means that the expansion for L
(3.2.24) starts at scaling weight zero: using (3.2.48) the expression for L(0) can be read off immediately,

dL(0) = 2ηabπab
(0) =

d(d − 1)
κ2 ⇒ L(0) =

d − 1
κ2 . (3.2.49)

In general, we find the L(w)’s by relating the expressions for these in terms of the momenta traces
π(w) (3.2.33) to the constraints H(w) = 0. This is achieved by noting that the Hamiltonian constraint
(3.2.39) can be recast in the form

H(w) =

[
Kabπab − 2κ2

(
1
2

π2
φ +

1
2

πaπa

)
+

1
2κ2

(
−R(γ) +

1
2

∂iφ∂iφ +
1
4

FabFab − d(d − 1)
)]

(w)
= 0,

(3.2.50)

for all w, which, using the flat index momenta (3.2.45)–(3.2.47), means that11

H(0) = K(0)abπab
(0) − κ2πa

(0)π(0)a −
d(d − 1)

2κ2 , (3.2.51)

H(1) = 2K(0)abπab
(1) − 2κ2πa

(1)π(0)a (3.2.52)

H(2) = 2K(0)abπab
(2) + K(1)abπab

(1) − κ2π2
φ(1) − κ2πa

(1)π(1)a − 2κ2πa
(2)π(0)a +

1
2κ2

(
1
2

∂iφ∂iφ − R(γ)

)
,

(3.2.53)

H(3) =
3

∑
n=0

K(n)abπab
(3−n) − 2κ2πφ(1)πφ(2) − 2κ2πa

(2)π(1)a, (3.2.54)

H(4) =
3

∑
n=0

K(n)abπab
(4−n) − 2κ2

(
πφ(1)πφ(3) +

1
2

π2
φ(2) +

1
2

πa
(2)π(2)a + πa

(1)π(3)a + πa
(0)π(4)a

)
+

1
8κ2 FabFab,

(3.2.55)

H(w) =
w

∑
n=0

K(n)abπab
(w−n) − 2κ2

[
1
2

π2
φ +

1
2

πaπa

]
(w)

, 4 < w ≤ d. (3.2.56)

Note that πa
(w)

is the flat version of πi
(w+1), implying that πa

(0), for example, comes from S(1). We also
remark that due to the fact that both φ and Ai have scaling weight zero (cf. the asymptotic behaviour
(3.2.20)), the scaling weight of various quantities such as H(w) will vanish for odd values of w, i.e.
H(2n+1) = 0 for n ∈ Z, something we will also find below.

11 Note that R(γ) has scaling weight two, since the variation with respect to the metric γij reads δR(γ) = −R(γ)ijδγij, implying
that δD R(γ) = −2R(γ), i.e. R(γ) has scaling weight two.
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In order to simplify the constraints (3.2.51)–(3.2.56), we have made use of the fact that K(n)abπab
(m)

=

K(m)abπab
(n), which follows from the expression for πij in (3.2.8), since

K(n)abπab
(m) =

1
2κ2 k(n)ab

(
K(m)η

ab − Kab
(m)

)
(3.2.57)

=
1

2κ2

(
K(n)K(m) − K(n)abKab

(m)

)
, (3.2.58)

which is clearly symmetric under the interchange n ↔ m. We then observe that the leading behaviour
Kab is determined by the asymptotic identification ∂r ' δD, which gives us

Kij ' γij ⇒ K(0)ab = ηab. (3.2.59)

This allows us to express the relation (3.2.33) in the following manner

2K(0)abπab
(w) = (d − w)L(w), (3.2.60)

2K(0)abπab
(d) = −2L̃(d). (3.2.61)

We note that the combination 2K(0)abπab
(w)

is ubiquitous in the constraints (3.2.51)–(3.2.56). The way

we obtain L(w) is then by imposing H(w) = 0 and recognizing the expression for L(w) as given in
(3.2.60); i.e. the constraint H(0) translates into the following expression by use of (3.2.60):

0 = H(0) =
d
2
L(0) − κ2πa

(0)π(0)a −
d(d − 1)

2κ2 ⇒ L(0) =
d − 1

κ2 +
2
d

κ2πa
(0)π(0)a. (3.2.62)

However, since L(0) is given by (3.2.49), it follows that

πa
(0) = 0, (3.2.63)

i.e. L(1) does not depend on Ai. The level one constraint H(1) = 0 simplifies by use of (3.2.63) to
2π(1) = 0, that is, by the relation (3.2.33), (d − 1)L(1) = 0, so that

L(1) = 0 ∴ πφ(1) = 0 = πab
(1). (3.2.64)

Combining the results (3.2.63) and (3.2.64) implies that the level two constraint H(2) = 0 now reads

0 = H(2) = 2π(2) − κ2πa
(1)π(1)a +

1
2κ2

(
1
2

∂iφ∂iφ − R(γ)

)
(3.2.65)

= (d − 2)L(2) − κ2πa
(1)π(1)a +

1
2κ2

(
1
2

∂iφ∂iφ − R(γ)

)
. (3.2.66)

Now, since πa
(1) = ea

i πi
(2) = 1√

−γ
ea

i
δS(2)
δAi

, the above turns, in principle, into a functional differential

equation for L(2). However, we can use the U(1) constraint F = 0 (cf. (3.2.18)) to determine πi
(2).

This constraint can be recast in the form

Diπ
i
(w) = Di

[
δS(w)

δAi

]
= 0, ∀w. (3.2.67)

Now, the most general expression involving A that can appear in the action at scaling weight two has
the form

S(2) ⊃ ∑
n1

φn1 c(1)n1 ∂i Ai + ∑
n2

φn1 c(2)n2 Ai Ai + ∑
n3

φn3 c(3)n3 Ai∂iφ + ∑
n4

φn4 c(4)n4 Di Ai, (3.2.68)

but, crucially, none of these terms—by themselves or in any combination—are in compliance with
the requirement (3.2.67), i.e. all the c(m)’s above vanish. Equivalently, we note that the gauge choice12

Ar = 0 does not completely fix the gauge, as we now show: under a general gauge transformation,
the gauge field transforms as

Aµ → A′
µ = Aµ + ∂µλ, (3.2.69)

12 This is an example of an axial gauge, i.e. a gauge of the form nµ Aµ = 0 for some normal vector nµ; for details see e.g. [69].
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for some function λ. The condition Ar = 0 is easily realised by choosing λ to be of the form

λ = −
∫

dr Ar + f (x, t, y), (3.2.70)

where f represents the residual gauge symmetry. Requiring our on-shell action to be invariant under
residual gauge transformations, we recover the same result as from the F = 0 constraint that S(2)
cannot involve Ai, that is

πi
(2) = 0, or in flat indices πa

(1) = 0, (3.2.71)

leading us to conclude that

L(2) =
1

2(d − 2)κ2

(
R(γ) − 1

2
∂iφ∂iφ

)
. (3.2.72)

The level three constraint vanishes—using πab
(1) = 0 = πa

(1), cf. (3.2.64), (3.2.71), as well as the useful

relation for the L(w)’s (3.2.33)—identically

L(3) = 0. (3.2.73)

We now specialize to d = 4. We have already computed the first two L’s; in d = 4, they take the form

L(0) =
3
κ2 , (3.2.74)

L(2) =
1

4κ2

(
R(γ) − 1

2
∂iφ∂iφ

)
. (3.2.75)

At level four, the constraint reads—after taking into account all our findings:

0 = H(4) = 2K(0)abπab
(4) + K(2)abπab

(2) − κ2π2
φ(2) +

1
8κ2 FabFab (3.2.76)

= −2L̃(4) + K(2)abπab
(2) − κ2π2

φ(2) +
1

8κ2 FabFab, (3.2.77)

implying that

L̃(4) =
1
2

K(2)abπab
(2) −

κ2

2
π2

φ(2) +
1

8κ2 FabFab. (3.2.78)

This involves only quantities that can be determined from L(2) (cf. (3.2.72)). First note that the level
two constraint H(2) = 0 implies that for d = 4, we get πa

(2)a = L(2), and so

πa
(2)a = π(2) =

1
4κ2

(
R(γ) − 1

2
∂iφ∂iφ

)
. (3.2.79)

Then, observe that

πab =
1

2κ2

(
Kηab − Kab

)
∴ K(2) =

2κ2

3
π(2), (3.2.80)

implying that K(2) becomes

K(2) =
R(γ)

6
− 1

12
∂iφ∂iφ. (3.2.81)

Now we can determine π(2)ab from our knowledge of L(2); since S(2) =
∫

Σr
d4x

√
−γL(2), we see

that

π(2)ab = ei
aej

b
1√
−γ

δS(2)

δγij (3.2.82)

= ei
aej

b
1√
−γ

δ

δγij
1

2κ2

∫
Σr

d4x
√
−γ

(
R(γ)

2
− 1

4
∂iφ∂iφ

)
(3.2.83)

=
1

2κ2

(
1
8

ηab∂iφ∂iφ − 1
4

R(γ)ηab −
1
4

∂aφ∂bφ +
1
2

R(γ)
ab

)
. (3.2.84)
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Our expression for the momentum above allows us to find the scaling weight two extrinsic curvature,

π(2)ab =
1

2κ2

(
K(2)ηab − K(2)ab

)
, (3.2.85)

and so, using the trace of K(2) (3.2.81) and our expression for π(2)ab (3.2.84), we get

K(2)ab =
1
24

ηab∂iφ∂iφ − 1
12

ηabR(γ) − 1
4

∂aφ∂bφ +
1
2

R(γ)
ab . (3.2.86)

We are now in a position to work out the combination K(2)abπab
(2) appearing in the anomaly (3.2.78):

K(2)abπab
(2) = − 1

2κ2

(
1

24

(
∂iφ∂iφ

)2
+

1
12

R(γ)∂iφ∂iφ − 1
12

R(γ)2
− 1

4
R(γ)

ij ∂iφ∂jφ +
1
4

R(γ)
ij R(γ)ij

)
,

(3.2.87)

The final piece is a Laplacian term, coming from

πψ(2) =
1√
−γ

δS(2)

δφ
= − 1

4κ2�
(γ)φ, (3.2.88)

where we have used that �(γ)φ = 1√
−γ

∂i
(√

−γ∂iφ
)
. Combining everything, the anomaly (3.2.78)

takes the form

L̃(4) =
1

8κ2 FijFij (3.2.89)

− 1
4κ2

(
1

24

(
∂iφ∂iφ

)2
+

1
12

R(γ)∂iφ∂iφ − 1
12

R(γ)2
− 1

4
R(γ)

ij ∂iφ∂jφ +
1
4

R(γ)
ij R(γ)ij

)
(3.2.90)

− 1
32κ2

(
�(γ)φ

)2
. (3.2.91)

Note that we have log e−2r, so when rewriting to Poincaré coordinates (for details, see appendix
A), there will be an additional factor of two. Combining all our findings, the counterterm becomes
(including a minus, since we need to subtract the divergences)

Sct =
1
κ2

∫
Σr

d4x
√
−γ

(
−1

4

(
R(γ) + 12 − 1

2
∂iφ∂iφ

)
− 1

4
A log e−2r

)
, (3.2.92)

where the anomaly can be rewritten as

A = −1
4

(
QijQij − 1

3
Q2 − 2FijFij +

1
2

(
�(γ)φ

)2
)

, (3.2.93)

where

Qij = R(γ)
ij − 1

2
∂iφ∂jφ. (3.2.94)

In order to obtain the actually renormalized action on the boundary, we take the limit r → ∞, i.e.

Ŝren := lim
r→∞

Sren = lim
r→∞

∫
Σr

ddx
√
−γL(d) (3.2.95)

=
1

2κ2

∫
M

d5x
√
−g
(

R(g) + 12 − 1
2

∂µφ∂µφ − 1
4

FµνFµν

)
+ ŜGH + Ŝct, (3.2.96)

where we have used that L(d) is the first term that does not produce a divergence, while all higher
order terms will simply vanish, and where quantities with hats have had the limit r → ∞ applied to
them.

Removing the field strength from the counterterm (3.2.92), our result agrees with previous results
for Einstein-Dilaton theory, which was considered in [51, 57, 107]. While at a first glance it may seem
surprising that for d = 4, the only modification to the counterterm action due to the addition of a
Maxwell field occurs in the anomaly, this is in hindsight obvious: there is simply no gauge invariant
combination with scaling weight 2. If we take d = 6, the situation changes, and, roughly speaking,

what was L̃(4) in d = 4 becomes L(4) in d = 6 (with some coefficients changed).
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3.2.2 Renormalized Ward Identities & One-Point Functions

In this section, we derive the Ward identities of the EMD model of (3.2.1), which are essentially the
boundary versions of the first-class constraints (3.2.18). Varying the renormalized on-shell action on
M with ∂M = Σr, we get

δSren =
1

2κ2

∫
M

d5x
√
−g
(
Eµνδgµν + Eφδφ + EµδAµ

)
(3.2.97)

+
1

2κ2

∫
Σr

d4x
√
−γ

(
1
2
〈Tij〉ren δγij + 〈Oφ〉ren δφ + 〈Ji〉ren δAi +Aδr

)
, (3.2.98)

where Eµν, Eφ and Eµ are the equations of motion for the respective fields (3.2.2)–(3.2.3), and where
the renormalized responses are given in terms of dilatation operator expansion eigenmodes via the
form of the on-shell renormalized action (3.2.95)

〈Tij〉ren =
4κ2
√
−γ

δSren

δγij
= 4κ2π

ij
(6), (3.2.99)

〈Oφ〉ren =
2κ2
√
−γ

δSren

δφ
= 2κ2πφ(4), (3.2.100)

〈Ji〉ren =
2κ2
√
−γ

δSren

δAi
= 2κ2πi

(4). (3.2.101)

These expressions are all evaluated at the regularized hypersurface Σr. Using the asymptotic be-
haviours

γij ' e2rγ(0)ij, φ ' φ(0), Ai ' A(0)i,
√
−γ ' e4r

√
−γ(0), (3.2.102)

it follows that, since Sren approaches the finite quantity Ŝren as r → ∞, we must multiply the responses
with a suitably chosen factor in order to obtain finite values—i.e. the actual VEVs—in the limit r → ∞,
i.e.

〈T̂ij〉ren := lim
r→∞

e6r 〈Tij〉ren =
4κ2√−γ(0)

δSren

δγ(0)ij
= 4κ2π̂

ij
(6) (3.2.103)

〈Ôφ〉ren := lim
r→∞

e4r 〈Oφ〉ren =
2κ2√−γ(0)

δSren

δφ(0)
= 2κ2π̂φ(4), (3.2.104)

〈 Ĵi〉ren := lim
r→∞

e4r 〈Ji〉ren =
2κ2√−γ(0)

δSren

δA(0)i
= 2κ2π̂i

(4). (3.2.105)

Now, consider the momentum constraint Hi = 0,

−2Djπ
j
i + Fijπ

j + πφ∂iφ = 0, (3.2.106)

the weight four part of which reads13

−2Djπ
j
(4)i + Fijπ

j
(4) + πφ(4)∂iφ = 0, (3.2.107)

which, using the explicit VEVs (3.2.99)–(3.2.101), becomes

−Dj 〈T j
i〉ren + Fij 〈J j〉ren + 〈Oφ〉ren ∂iφ = 0, (3.2.108)

which we can multiply with e4r and take the limit r → ∞ to obtain the diffeomorphism Ward identity,

−D(0)j 〈T̂
j
i 〉ren + F(0)ij 〈 Ĵ j〉ren + 〈Ôφ〉ren ∂iφ(0) = 0. (3.2.109)

We now proceed to derive the trace Ward identity. Using the relation (3.2.61), which states that

2πi
(4)i = −2L̃(4), (3.2.110)

13 Note that when lowering the i-index on π
ij
(4), we get π

j
(4)i due to the fact that the metric has weight −2; also note that Fij has

weight zero.
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we immediately obtain the trace Ward identity—again after multiplying by e4r and taking the limit
r → ∞:

〈T̂i
i〉ren = Â, (3.2.111)

where

Â = −2 lim
r→∞

e4rL̃(4), (3.2.112)

is the conformal anomaly on the boundary. Finally, the constraint F with

F = −Diπ
i, (3.2.113)

turns into the U(1) gauge transformation Ward identity, since at weight 4, it reads

0 = Diπ
i
(4) = Di 〈 Ĵi〉ren , (3.2.114)

which, when multiplied with edr and the limit r → ∞ is taken produces the result

D(0)i 〈 Ĵi〉ren = 0, (3.2.115)

which is the U(1) Ward identity.

3.2.3 Generating the d = 4 Fefferman-Graham Expansions

In order to construct the FG expansions of the fields, we are going to apply the gauge-fixed first-order
flow equations (3.2.11)–(3.2.13), which for our purposes read

γ̇ij = −4κ2
(

γikγjl −
1
3

γijγkl

)(
πkl
(2) + πkl

(4) + π̃kl
(6) log e−2r + πkl

(6) + · · ·
)

(3.2.116)

= −4κ2
(

π(−2)ij −
1
3

π(0)γij + π(0)ij −
1
3

π(2)γij + log e−2r
(

π̃(2)ij −
1
3

π̃(4)γij

)
+ π(2)ij −

1
3

π(4)γij + · · ·
)

,

(3.2.117)

φ̇ = −2κ2
(

πφ(2) + π̃φ(4) log e−2r + πφ(4) + · · ·
)

, (3.2.118)

Ȧi = −2κ2
(

π̃(2)i log e−2r + π(2)i + · · ·
)

. (3.2.119)

In section 3.2.1, we found the following expressions

π
ij
(2) =

3
2κ2 γij, (3.2.120)

π
ij
(4) =

1
2κ2

(
1
8

∂kφ∂kφγij − 1
4

R(γ)γij − 1
4

∂iφ∂jφ +
1
2

R(γ)ij
)

, (3.2.121)

π̃
ij
(6) =

1√
−γ

δ

δγij

∫ √
−γL̃(4), (3.2.122)

πφ(2) = − 1
4κ2�

(γ)φ, (3.2.123)

π̃φ(4) =
1√
−γ

δ

δφ

∫ √
−γL̃(4), (3.2.124)

π̃(2)i =
1

2κ2 DjFj
i. (3.2.125)

We now introduce very general formal expansions for the fields involved,

γij = γ
(0)
ij + γ

(1)
ij + · · · , φ = φ(0) + φ(1) + · · · , Ai = A(0)

i + A(1)
i + · · · , (3.2.126)

where each order is assumed to be subleading in r to the previous, i.e. these raised labels are not
scaling weights. When inserting these into the flow equations above, we obtain a series of differential
equations which can be solved order-by-order. However, we can do better: making explicit FG ansätze
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for (3.2.126) (in these expressions, the labels in the subscripts are not scaling weights, rather they label the
respective terms in the FG expansions just as in (F.1.12)),

γij = e2r
(

h(0)ij + e−2rh(2)ij + e−4r
(

log e−2rh(4,1)ij + h(4)ij
)
+ · · ·

)
, (3.2.127)

φ = φ(0) + e−2rφ(2) + e−4r
(

log e−2rφ(4,1) + φ(4)

)
+ · · · , (3.2.128)

Ai = A(0)i + e−2r
(

log e−2r A(2,1)i + A(2)i

)
+ · · · , (3.2.129)

the differential equations become algebraic. Using the momentum (3.2.120), we find the differential
equation for the lowest order of the metric γ̇

(0)
ij = 2γ

(0)
ij , which is solved by γ(0) = e2rh(0)ij, where

h(0)ij plays the rôle of an integration constant, which is in agreement with the ansatz (3.2.127). The

same happens for the scalar and the Maxwell field, i.e. we get φ(0) = φ(0) and A(0)
i = A(0)i. At second

order, we get the differential equation for the metric

γ̇
(1)
ij = 2γ

(1)
ij + R

(h(0))
ij − 1

2
∂iφ(0)∂jφ(0) −

1
6

R(h(0))h(0)ij +
1

12
h(0)ij

(
∂φ(0)

)2
, (3.2.130)

where we have kept only the lowest order terms in the expansion. Using the FG ansatz (3.2.127), the
left-hand side above vanishes and provides us with the relation

h(2)ij = −1
2

(
R
(h(0))
ij − 1

2
∂iφ(0)∂jφ(0) −

1
6

R(h(0))h(0)ij +
1

12
h(0)ij

(
∂φ(0)

)2
)

. (3.2.131)

The second order equation for the scalar reads

φ̇(1) =
1
2
�(γ)φ =

1
2

1√
−γ

∂i

(√
−γγij∂jφ

)
, (3.2.132)

which, when using the FG ansatz becomes

2e2rφ(2) =
e2r

2
1√
−h(0)

∂i

(√
−h(0)h

ij
(0)∂jφ(0)

)
+O(e4r), (3.2.133)

so that

φ(2) =
1
4
�(0)φ(0). (3.2.134)

Moving to the next order, we find it useful to consider the the flow equation (3.2.117) in the form

γ̇ij = −4κ2
( (∗)︷ ︸︸ ︷

π(−2)ij −
1
3

π(0)γij +

(†)︷ ︸︸ ︷
π(0)ij −

1
3

π(2)γij + log e−2r

‡︷ ︸︸ ︷(
π̃(2)ij −

1
3

π̃(4)γij

)
+

(∗∗)︷ ︸︸ ︷
π(2)ij −

1
3

π(4)γij + · · ·
)

.

(3.2.135)

The differential equation at the next order consequently takes the form

γ̇
(2)
ij =

from (∗)︷ ︸︸ ︷
2γ

(2)
ij +e−2r log e−2r [lowest order terms from (‡)] + e−2r [terms from expansion of (†)]

(3.2.136)

+ e−2r [lowest order terms from (∗∗)] . (3.2.137)

Now, the Fefferman-Graham ansatz implies that γ
(2)
ij = e−2r

(
log e−2rh(4,1)ij + h(4)ij

)
, which means

that after subtracting 2γ
(2)
ij (in red) on both sides, we obtain

−4e−2r log e−2rh(4,1)ij − e−2r
(

4h(4)ij + 2h(4,1)ij

)
= appropriate terms from (∗), (†), (‡), (∗∗),

(3.2.138)
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where “appropriate terms” means terms that have the correct radial dependence when all fields are
FG expanded. In particular, we can read off the value of h(4,1)ij by computing the term involving the
logarithm on the right-hand side; this gives14

h(4,1)ij =
1
8

Dk
(0)

(
D(0)ih(2)jk + D(0)jh(2)ik − D(0)kh(2)ij

)
− 1

8
D(0)iD(0)jh

k
(2)k (3.2.139)

+
1
2

h(2)ikhk
(2)j −

1
4

∂(iφ(0)D(0)j)φ(2) − h(0)ij

(
1
8

hkl
(2)h(2)kl +

1
4

φ2
(2)

)
(3.2.140)

+
1
6

F(0)ikF(0)j
k − 1

24
h(0)ijF(0)kl F

kl
(0), (3.2.141)

where F(0)ij = 2∂(i A(0)j) and where we have used that γij = e−2rhij
(0) +O(e−4r log e−2r) (see appendix

F). Now, note that the terms contributing from (∗∗) are

(∗∗) = e−2r
[
〈T̂ij〉ren − 1

3
h(0)ij 〈T̂i

i〉ren

]
+ higher orders, (3.2.142)

where we have used the relation for the VEV (3.2.103). Combining this with with our result for h(4,1)ij,
we now find [86]

h(4)ij = Xij −
1
4
〈T̂ij〉ren , (3.2.143)

where

Xij =
1
2

h(2)ikhk
(2)j −

1
4

hk
(2)kh(2)ij +

1
8

h(0)ijÂ − 3
2

h(4,1)ij, (3.2.144)

with the boundary anomaly Â defined in (3.2.112). We could now repeat the analysis above for the
scalar, but nothing is changed from the case with no Maxwell field, so we refer to the standard
treatments [51, 86], where the full FG expansion for the scalar can be found. The result is:

φ(4,1) =− 1
8

[
�(0)φ(2) + 2φ(2)h

i
(2)i +

1
2

∂iφ(0)D(0)ih
j
(2)j − hij

(2)D(0)i∂jφ(0) − ∂iφ(0)D
j
(0)h(2)ij

]
,

(3.2.145)

〈Ôφ〉ren = 4φ(4) + φ(2)h
i
(2)i + 6φ(4,1). (3.2.146)

Now, we turn our attention to the Maxwell field. This expansion has not appeared in the literature
before to our knowledge. Looking at the FG expansion for the Maxwell field, we see that A(2)

i =

e−2r
(

log e−2r A(2,1)i + A(2)i

)
, so the flow equation (3.2.119) takes the form

Ȧ(2)
i = −2e−2r

(
A(2,1)i + A(2)i

)
− 2e−2r log e−2r A(2,1)i (3.2.147)

= −D(0)jF(0)kih
kj
(0)e

−2r log e−2r − e−2r 〈 Ĵi〉ren + higher order terms, (3.2.148)

from which we may immediately read off the component A(2,1)i:

A(2,1)i =
1
2

D(0)jF
j
(0)i, (3.2.149)

and

A(2)i =
1
2
〈 Ĵi〉ren − A(2,1)i. (3.2.150)

3.3 holographic renormalization of p-forms & the scalar-vector duality

3.3.1 From the Maxwell One-Form to p-Forms: A Conjecture

Note that the FG expansion for the Maxwell field (3.2.129) for d = 4 has its logarithmic term appear
at order O(e−2r), which follows from the flow equation (3.2.119). This is a consequence of the fact

14 We have employed xAct [88] and xTras [108] to obtain these results as well as used known results for the case without the
Maxwell field, see e.g. [51, 57, 86]. Note also the extra factor of two that comes from our convention of writing log e−2r , which
in Poincaré coordinates reads 2 log rPoin.; when we’ll use these results in chapter 6, we will multiply all logarithmic terms by
two, since we will change conventions. We hope this does not cause any confusion.
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that the Maxwell field is a one-form, since in a general (even) dimension, the associated momentum
πi admits a δD-expansion of the form15

πi = · · ·+ log e−2rπ̃i
(d) + πi

(d) + · · · , (3.3.1)

which means that πi = γijπ
j = · · ·+ log e−2rπ̃(d−2)i + π(d−2)i. Now, Ai is roughly related to πi via

the flow equations, and so we see that something peculiar happens when d = 2: the VEV part of
the expansion occurs at scaling weight zero. More explicitly, the equation of motion for Aµ (3.2.3)
on a AdS3 background in domain wall coordinates with the ansatz Aµ ' ecr A(0)µ for, say, the time
component reads

0 = e−2r∂r

(
e2re−2rFrt

)
= e(c−2)rc2 A(0), (3.3.2)

implying a double root at c = 0, in agreement with our somewhat heuristic argument above. So, both
the source and the VEV carry the same scaling weight, which is at first sight a little puzzling. It turns
out, however, that the case d = 2 can be dealt with using Hodge dualization, which we will consider
in section 3.3.2. More generally, for a Maxwell field in an AdSd+1 background, we see that the scaling
weight of the VEV—that is to say the power of e−r multiplying it—is given by

wVEV = d − 2. (3.3.3)

Repeating the calculation for d = 1, it is now no longer true that Ai has scaling weight zero, i.e. that
Ai ' A(0)i as in (3.2.20); instead we find that it has scaling weight 1 which changes the entire analysis
of section 3.2.1.

We now conjecture a generalization this to p-forms: assuming that the equations of motion for a
p-form C(p) exhibit the same structure, it is clear that the scaling weight of the VEV gets modified to

wVEV = d − 2p, (3.3.4)

which leads us to conjecture16 that, for general p, holographic renormalization works differently de-
pending on whether

(i) : d − 2p > 0 or (ii) : d − 2p < 0 or (iii) : d − 2p = 0. (3.3.5)

3.3.2 The d = 2 Scalar-Vector Duality & Its Generalization

When d = 2—i.e. when we are in case (iii) of (3.3.5) for p = 1—we saw above that both the source
and the VEV carry the same scaling weight. We now show how this situation can be taken care of by
Hodge dualization: in three dimensions, the electromagnetic part of the Wick-rotated17 action is

SA =
1
4

∫
M

?F ∧ F =
1
4

∫
M

d3x
√

gFµνFµν. (3.3.6)

The field strength two-form F is related to a dual scalar ϕ via18

Fµν = εµνρ∂ρ ϕ/
√

g, (3.3.7)

so that

SA =
1
4

∫
M

d3x
√

gεµνσεµνρ∂ρ ϕ∂σ ϕ (3.3.8)

=
1
2

∫
M

d3x
√

g∂ρ ϕ∂ρ ϕ, (3.3.9)

where we have used the identity εµνσεµνρ = 2δ
ρ
σ. In two spatial dimensions renormalizing our EMD

model is thus equivalent to renormalizing gravity coupled to two massless scalars. The action describ-
ing such a theory is given by

S =
1

2κ2

∫
d3x

√
−g
(

R(g) + 2 − 1
2

∂µφ∂µφ − 1
2

∂µ ϕ∂µ ϕ

)
. (3.3.10)

15 The first term is πi
(4) in dimensions above two.

16 I thank Kostas Skenderis for telling me about this condition. Whether the mechanism in the case of p-forms is really as simple
as the one I have described remains to be seen. The general analysis of holographic renormalization of p-forms will be the topic
of an upcoming paper by Skenderis and Papadimitriou [52].

17 We Wick rotate so that the Hodge dual is simpler.
18 With the convention ε01r = 1.
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The ADM parametrized momenta are given by

πij =
1

2κ2

(
Kγij − Kij

)
, πφ =

1
2κ2 N−1

(
φ − Ni∂iφ

)
, πϕ =

1
2κ2 N−1

(
ϕ − Ni∂i ϕ

)
. (3.3.11)

The Hamiltonian is given by

H =
∫

Σr
d2x

√
−γ

(
NH+ NiHi

)
, (3.3.12)

where

H = −2κ2
(

πijπij − π2 +
1
2

π2
φ +

1
2

π2
ϕ

)
+

1
2κ2

(
−R(γ) +

1
2

∂iφ∂iφ +
1
2

∂i ϕ∂i ϕ − 2
)

, (3.3.13)

Hi = −2Dj + πφ∂iφ + πϕ∂i ϕ. (3.3.14)

As usual, the equations of motion for the Lagrange multiplier fields impose the first class constraints,

H = 0, Hi = 0. (3.3.15)

Gauge-fixing to N = 1 and Ni = 0, we impose AlAdS boundary conditions, which read

γij ' e2rg(0)ij(x), φ ' φ(0)(x) ϕ ' ϕ(0)(x), (3.3.16)

where x represents the coordinates on Σr. Carrying out the same procedure as in section 3.2, we find
that

L(0) =
1

2κ2 , (3.3.17)

L̃(2) =
1
κ2 R(γ) − 1

2κ2

(
∂iφ∂iφ + ∂i ϕ∂i ϕ

)
. (3.3.18)

Hodge dualizing back to the vector theory, we obtain

∂i ϕ =
1
2

εµνiFµν√g, (3.3.19)

∴
1

2κ2 ∂i ϕ∂i ϕ =
1

8κ2 εµνiε
ρλiFµνFρλ =

1
8κ2

[
2εrjiε

rkiFrjFrk

]
=

1
8κ2

[
4FriFri

]
=

1
2κ2 FriFri, (3.3.20)

implying that the anomaly takes the form

L̃(2) =
1
κ2 R(γ) − 1

2κ2 ∂iφ∂iφ − 1
2κ2 FriFri. (3.3.21)

To generalize this to p-forms, we note that the field strength (p+ 1)-form F(p+1) = dC(p) of the p-form
C(p) in d = 2p, corresponding to case (iii) of (3.3.5), is dual to a p-form, which is not immediately
useful. A more fruitful observation is that in d = p + 1, the field strength F(p+1) is again dual to a
scalar in the sense of (3.3.7), which means that the methods of this section generalize to a way of easily
performing holographic renormalization of free massless p-form fields in AdSp+2, since in this case it
is equivalent to renormalizing a free massless scalar.

3.4 outlook

The results of this chapter will be important when we consider charged Lifshitz holography in chapter
6, since the renormalized electromagnetic uplift can be Scherk-Schwarz reduced to an Einstein-Proca-
dilaton-Maxwell-scalar model, which admits Lifshitz solutions that correspond to z = 0 Schrödinger
spactimes19 in the higher dimensional theory.

More generally, there are many unsolved problems in holographic renormalization. As we demon-
strated, even in the case of AlAdS spacetimes, there are subtleties regarding the renormalization of
p-form fields that are not widely known. Holographic renormalization has also been undertaken for
other geometries of holographic interest: Schrödinger space-times were considered in e.g. [109–111],
while Lifshitz spacetimes were dealt with in e.g. [25, 27, 28, 106], but there are still several outstanding

19 And these are AlAdS.
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problems. In Appendix G we provide a review of the renormalization of Lifshitz geometries using the
HJ approach developed in this chapter.

An interesting generalization of the procedure described in this chapter was introduced in [28, 106]
in the context of renormalization of EPD models with Lifshitz boundary conditions, and involves the
identification of yet another operator �′ that commutes with, say, δD (generally, whatever we choose
for �). One then performs a dual expansion in (common) eigenmodes of the two operators, which
simplifies the analysis. It would be interesting to explore if such methods are also advantageous in
the context of the models discussed in this chapter.



4N E W T O N - C A RTA N G E O M E T RY

Newton-Cartan (NC) geometry was originally developed by Cartan to provide a geometric framework
for Newtonian gravity [30, 31], and in the context of non-relativistic holography, NC geometry plays
a prominent rôle as the boundary geometry.

Specifically, it was shown in [23, 24] that the boundary geometry of asymptotically locally z =
2 Lifshitz space-times is described by an extension of NC geometry known as twistless torsional
Newton-Cartan geometry (TTNC), while for for generic values of the dynamical exponent, 1 < z ≤ 2,
the boundary geometry is described by torsional Newton-Cartan geometry (TNC) [29, 32]—this we
explore in chapters 5 and 6.

Since TNC geometry plays a vital rôle in Lifshitz holography, we devote this chapter to its descrip-
tion. However, TNC geometry is both interesting and useful to study in its own right—independent
of holography, it has, for example, recently been shown that TNC geometry provides an effective
description of the quantum Hall effect [35, 36]. Interestingly, it was shown in [53] that making TNC
dynamical corresponds to Hořava-Lifshitz (HL) gravity.

We begin the chapter in section (4.1) with a survey of how Riemannian geometry emerges from
gauging the Poincaré algebra, which will be useful when replicating the procedure in order to obtain
TNC geometry. This section is a significantly expanded analysis of appendix A of [53] and [54].

We then turn to a general description of non-relativistic space-times in section 4.2, which are the non-
relativistic analogues of the familiar Lorentzian spacetimes from general relativity. Our exposition
is based on [24, 33, 53] and involves elements of [112], although we do not use their terminology.
Geometrically, non-relativistic space-times are described with TNC geometry, and we provide a clas-
sification of these non-relativistic structures depending on the properties of the so-called clock form,
τ, which, as we will see in section 4.2.4, is intimately connected with the torsion.

In section 4.2.2, we begin with a discussion of how to obtain the Bargmann and Galilei algebras via
Inönü-Wigner contraction of a centrally extended Poincaré algebra. We then proceed to gauge both
the Galilei and the Bargmann algebras in sections 4.2.3 and 4.2.4, which will give us TNC geometry
in the same way as Riemannian geometry appears from the gauging of the Poincaré algebra. This
analysis is based mainly on [34, 53, 54, 56].

We then turn our attention to how TNC geometry can be obtained via null reduction of Lorentzian
spacetimes in section 4.3, which will be of great use in chapter 6.

Finally, in section 4.4, we explore how field theories couple to Newton-Cartan geometries from the
perspective of null reduction, which again will be a great aid to our considerations in chapter 6. These
last two sections both follow [57].

4.1 warm-up : gauging the poincaré algebra to obtain general relativity

Following [54, 55] and Appendix A of [53], we proceed to derive the framework of general relativity
from properties of the Poincaré algebra (see e.g. [113] for a nice review). The d-dimensional Poincaré
algebra iso(d − 1, 1) is generated by Pa and Jab with the following non-zero commutators,

[Jab, Pc] = ηacPb − ηbcPa, (4.1.1)

[Jab, Jcd] = ηac Jbd − ηad Jbc − ηbc Jad + ηbd Jac. (4.1.2)

Note that the tangent space indices a, b, c, . . . in this section include time, in contradistinction to the
rest of this chapter. The first step of the gauging procedure is to introduce the Lie algebra valued
connection by

Aµ = Paea
µ +

1
2

Mabω ab
µ , (4.1.3)

where antisymmetry of M means that we take ω ab
µ = −ω ba

µ . Mimicking the approach taken for Yang-
Mills theory1, we fist observe that the connection behaves under local ISO(d − 1, 1) transformations
as

Aµ → L(x)AµL−1(x)− L(x)∂µL−1(x), L(x) ∈ ISO(d − 1, 1). (4.1.4)

1 For a nice review, see e.g. the book [114].

37
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Infinitesimally, we may write L(x) = 1+ Λ(x) for Λ(x) ∈ iso(d − 1, d), and so, under infinitesimal
transformations2, the connection transforms as

δAµ = ∂µΛ + [Aµ, Λ], (4.1.5)

where, since Λ ∈ iso(d − 1, 1), we may write

Λ = Paζa(x) +
1
2

Jabσab(x). (4.1.6)

Since

δAµ = Paδea
µ +

1
2

Jabδω ab
µ , (4.1.7)

the transformation (4.1.5) with Λ given by (4.1.6) implies that

δea
µ = ∂µζa − ω ab

µ ζb +

(∗)︷ ︸︸ ︷
σa

beb
µ, (4.1.8)

δω ab
µ = ∂µσab + σ a

c ω bc
µ − σ b

c ω ac
µ . (4.1.9)

To get a feel for how these are obtained, we show how to find the term (∗). This term comes from the

commutator [Aµ, Λ] =
ea

µσbc

2 [Pa, Jbc] + . . . , where we can use the commutator relation (4.1.1) to rewrite

ea
µσbc

2
[Pa, Jbc] =

ea
µσbc

2
ηa[cPb] = ea

µσb
aPb, (4.1.10)

where we have used antisymmetry of σab. In order to make connection to local space-time diffeomor-
phisms, we introduce a new set of local (infinitesimal) transformations, denoted δ̄, where we replace
the local translation parameter ζa in Λ with a space-time vector ξµ via ζa = ξµea

µ, which makes the
emergence of diffeomorphisms manifest3, as we demonstrate. Writing

Λ = ξµAµ + Σ, where Σ =
1
2

=:λab︷ ︸︸ ︷(
σab − ξµω ab

µ

)
Jab, (4.1.11)

we are now ready to define δ̄Aµ:

δ̄Aµ = δAµ − ξνFµν, (4.1.12)

where Fµν is the curvature of Aµ, defined in the usual manner,

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν]. (4.1.13)

Writing out δ̄, we find

δ̄Aµ = ∂µΛ + [Aµ, Λ]− ξνFµν (4.1.14)

= Aν∂µξν +����ξν∂µAν + ∂µΣ +�����
ξν[Aµ,Aν] + [Aµ, Σ]−����ξν∂µAν + ξν∂νAµ −�����

ξν[Aµ,Aν]
(4.1.15)

= £ξAµ + ∂µΣ + [Aµ, Σ], (4.1.16)

where, as claimed, the transformation of Aµ under diffeomorphisms generated by ξ—that is to say, the
term £ξAµ—appears explicitly. We also note that the parameters λab now correspond to infinitesimal
local Lorentz transformations generated by Jab.

Now, going back to the curvature Fµν, we may conveniently express it in terms of curvatures
pertaining to the generators P and J,

Fµν = R a
µν (P)Pa +

1
2

R ab
µν (J)Jab. (4.1.17)

2 That is, ignoring terms of order O(Λ2, Λ∂Λ).
3 This approach first appeared in [53] and was not used in e.g. [34, 54]. We shall refer to this trick as the δ̄-method.
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The explicit expressions of the curvatures are determined by plugging the connection (4.1.3) into the
curvature (4.1.13) and using the Poincaré algebra:

Fµν = ∂[µAν] + [Aµ,Aν] (4.1.18)

= 2Pa∂[µea
ν] + Jab∂[µω ab

ν] +
1
2

ea
µω bc

ν

=−2ηa[bPc]︷ ︸︸ ︷
[Pa, Jbc] +

1
4

ω ab
µ ω cd

ν

=−4η[a[c Jd]b]︷ ︸︸ ︷
[Jab, Jcd] +

1
2

ea
νω bc

µ

2ηa[bPc]︷ ︸︸ ︷
[Jbc, Pa]

(4.1.19)

= 2Pa

(
∂[µea

ν] − ω ab
[µ eν]b

)
+ Jab

(
∂[µω ab

ν] − ω ca
[µ ων]

b
c

)
, (4.1.20)

leading us to conclude that

Rµν
a(P) = 2∂[µea

ν] − 2ω ab
[µ eν]b, Rµν

ab(J) = 2∂[µω ab
ν] − 2ω ca

[µ ων]
b

c, (4.1.21)

where the factor of two in the expression for Rµν
ab(J) comes from its definition in (4.1.17). Under δ̄-

transformations, the quantities ea
µ and ωµ

ab transform respectively as a vielbein and a spin connection:
writing out (4.1.16), we find

δ̄Aµ = Pa£ξ ea
µ +

1
2

Jab£ξ ωµ
ab +

1
2

Jab∂µλab +
1
2

λcd
(

ea
µ[Pa, Jcd] +

1
2

ωµ
ab[Jab, Jcd]

)
(4.1.22)

= Pa£ξ ea
µ +

1
2

Jab£ξ ωµ
ab +

1
2

Jab∂µλab + Paλa
beb

µ + λc
bωµ

ca Jab, (4.1.23)

and so, using δ̄Aµ = Pa δ̄ea
µ + 1

2 Jab δ̄ωµ
ab, we immediately get:

δ̄ea
µ = £ξea

µ + λa
beb

µ, (4.1.24)

δ̄ωµ
ab = £ξωµ

ab + ∂µλab + 2λ[a
cωµ

|c|b]. (4.1.25)

Thus, ea
µ does indeed transforms as a vielbein under δ̄–transformations, with λab an infinitesimal local

Lorentz transformation. Next, we introduce a space-time covariant derivative via

Dµea
ν = ∂µea

ν − Γρ
µνea

ρ − ωµ
a

beb
ν, (4.1.26)

which transforms (by requirement) covariantly under δ̄–transformations. By this, we mean that

δ̄
(
Dµea

ν

)
= £ξ

((
Dµea

ν

))
+ λa

b
(
Dµeb

ν

)
. (4.1.27)

This allows us determine the δ̄–transformation of the affine connection Γρ
µν, since

δ̄
(
Dµea

ν

)
=

=(∗)︷ ︸︸ ︷
∂µ(δ̄ea

ν)−

=(†)︷ ︸︸ ︷
δ̄
(

Γρ
µνea

ρ

)
−

=(‡)︷ ︸︸ ︷
δ̄
(

ωµ
a

beb
ν

)
. (4.1.28)

Considering each term in isolation and applying the transformation properties of the vielbein and
spin connection, (4.1.24) and (4.1.25), we find

(∗) = (∂µξρ)(∂ρea
ν) + ξρ(∂µ∂ρea

ν) + ea
ρ∂ν∂µξρ + eb

ν∂µλa
b + λa

b∂µea
ν, (4.1.29)

whereas

(†) = Γρ
µν

(
ξσ∂σea

ρ + ea
σ∂νξσ + λa

beb
ρ

)
+ δ̄Γρ

µνea
ρ, (4.1.30)

and, finally,

(‡) = eνb

(
ξρ∂ρωµ

ab + ωρ
ab∂µξρ + ∂µλab + λa

cωµ
cb −

����λb
cωµ

ca
)
+ ωµ

a
b

(
ξρ∂ρeb

ν + eb
ρ∂νξρ +���λb

cec
ν

)
.

(4.1.31)

Colour-coded terms are equal, and will cancel out when taking the combination (∗) − (†) − (‡),
leaving us with

δ̄
(
Dµea

ν

)
= (∂µξρ)(∂ρea

ν) + ξρ(∂µ∂ρea
ν) + ea

ρ(∂ν∂µξρ) + λa
b∂µea

ν − Γρ
µν

(
ξσ∂σea

ρ + ea
σ∂ρξσ + λa

beb
ρ

)
− δ̄Γρ

µνea
ρ

(4.1.32)

− eνb

(
ξρ∂ρωµ

ab + ωρ
ab∂µξρ + λa

cωµ
cb
)
− ωµ

a
b

(
ξρ∂ρeb

ν + eb
ρ∂νξρ

)
. (4.1.33)
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Now, compare this with the expression for δ̄
(
Dµea

ν

)
of (4.1.27) written out in all its glory,

δ̄
(
Dµea

ν

)
= £ξ

((
Dµea

ν

))
+ λa

b
(
Dµeb

ν

)
(4.1.34)

=ξσ(∂σ∂µea
ν)− ξσea

ρ∂σΓρ
µν − ξσΓρ

µν∂σea
ρ − ξσωµ

a
b∂σeb

ν − ξσeb
ν∂σωµ

a
b (4.1.35)

+ ∂µξσ
[
∂σea

ν − Γρ
σνea

ρ − ωσ
a

beb
ν

]
+ ∂νξσ

[
∂µea

σ − Γρ
µσea

ρ − ωµ
a

beb
σ

]
(4.1.36)

+ λa
b

(
∂µeb

ν − Γρ
µνeb

ρ − ωµ
b

cec
ν

)
. (4.1.37)

Demanding that these be equal, we see that, first off, everything to do with the spin connection
already matches, whereas a single term from the Lie derivative is amiss. The constraint that the two
δ̄-variations be equal then reduces to

ea
ρ(∂ν∂µξρ)− Γρ

µν

(
�
���ξσ∂σea

ρ + ea
σ∂ρξσ +

�
��λa
beb

ρ

)
− δ̄Γρ

µνea
ρ
(!)
= (4.1.38)

− ξσea
ρ∂σΓρ

µν −�����ξσΓρ
µν∂σea

ρ − Γρ
σνea

ρ∂µξσ − Γρ
µσea

ρ∂νξσ −�����λa
bΓρ

µνeb
ρ, (4.1.39)

leading us to conclude that

δ̄Γρ
µν = ∂µ∂νξρ + ξσ∂σΓρ

µν + Γρ
σν∂µξσ + Γρ

µσ∂νξσ − Γσ
µν∂σξρ. (4.1.40)

The next step is to relate the curvatures to the affine connection, which we do by imposing the
following vielbein postulate

Dµea
ν = 0, (4.1.41)

which allows for an identification of the affine connection Γρ
µν in terms of the spin connection ωµ

ab.
Taking the antisymmetric part of the vielbein postulate, we find

0 = ∂[µea
ν] − Γρ

[µν]
ea

ρ − ω[µ
a

beb
ν] (4.1.42)

∴ Rµν
a(P) = 2∂[µea

ν] − 2ω[µ
a

beb
ν] = 2Γρ

[µν]
ea

ρ, (4.1.43)

where we used the curvatures (4.1.21). Thus, we see that Rµν
a(P) is really the torsion. The unique

Lorentz invariant tensor we can build out of the vielbeine is the metric, gµν = ηabea
µeb

ν, implying that
the connection may be written as

Γρ
µν = eρ

a∂µea
ν − eρ

aωµ
a

beb
ν. (4.1.44)

To see what the other curvature represents, we define the “usual” covariant derivative ∇µXµ :=
∂µXν − Γρ

µνXρ, the commutator of which is related to the Riemann tensor (ix)

[∇µ,∇ν]Xρ = Rµνρ
σXσ − Γσ

[µν]∇σXρ, (4.1.45)

where, explicitly,

Rµνσ
ρ = 2∂[νΓρ

µ]σ
+ 2Γρ

[ρ|λ|Γ
λ
µ]σ, (4.1.46)

which, using the curvatures (4.1.21) and imposing the vielbein postulate (4.1.41), can be rewritten as

Rµνρ
σ = −eρaeσ

b Rµν
ab(J), (4.1.47)

implying that Rµν
ab(J) is the Riemann curvature two-form. Further, the vielbein postulate implies—

due to antisymmetry of the spin connection in the flat indices—that the metric is covariantly conserved
with respect to ∇µ, i.e.

∇ρgµν = ∂ρgµν − Γλ
ρµgλν − Γλ

ρνgλµ = 2ωρabea
(µeb

ν) = 0, (4.1.48)

where we have used the affine connection (4.1.44). This fixes the symmetric part of the connection and
makes it equal to the Levi-Civita connection, while leaving the torsion unfixed. However, imposing the
curvature constraint Rµν

a(P) = 0 then corresponds to setting the torsion equal to zero, and, in turn,
makes the spin connection entirely determined by the vielbeine in the usual manner. By imposing
Einstein’s equations, the theory can be put on-shell.
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4.2 non-relativistic space-times & newton-cartan geometry

In this section, we introduce the appropriate geometric framework for the description of non-relativistic
physics. Our exposition begins with a discussion of non-relativistic space-times and their geometric
descriptions—see also [112, 115, 116] for similar work, where a slightly different terminology is used.

We then turn to a more detailed discussion of Newton-Cartan geometry as obtained from gauging
appropriate algebras in the spirit of section 4.1. For a complementary analysis of Newton-Cartan
geometry using frame bundles, we refer the reader to [117].

4.2.1 Non-Relativistic Space-Times

A (d+ 1)-dimensional non-relativistic space-time consists of a triad (M, τ, h−1), where M is a (d+ 1)-
dimensional manifold, τ is a nowhere-vanishing one-form on M known as the clock form, and h−1

is a rank-two contravariant symmetric tensor whose kernel is spanned by τ, i.e. h−1(τ, ·) = 0, or, in
components4,

hµντν = 0. (4.2.1)

The doublet (τ, h−1) may be thought of as a degenerate metric structure, and thus is not invertible.
We may, however, define the projective inverse dyad (v, h) satisfying

vµτµ = −1, hµρhρν = δν
µ + τµvν. (4.2.2)

These are not unique [117] and can be boosted to take a different form. The fields (τ, v, h−1, h) (with a
proper choice of connection) realize a torsional Newton-Cartan (TNC) geometry, and it is often advan-
tageous to trade the h’s for vielbeine, defined through hµν = δabea

µeb
ν and hµν = δabeµ

a eν
b—something

we will make extensive use of.
Now, consider two points A, B ∈ M connected by a path γ. Parametrizing the path γ by some

parameter λ, we interpret the integral

Tγ =
∫

γ
τ =

∫
γ

τµ
dxµ

dλ
dλ, (4.2.3)

as the proper time that passes when going from A to B along γ.
Since there is no restriction on the clock form τ, we will refer to this type of space-time as a TNC

space-time. It is so far purely “metric” in nature (i.e. we have not introduced any connections, so no
notion of parallelism is involved). Depending on the properties of the clock form τ, we now proceed
to introduce two special cases of the TNC space-time, which, when introducing a connection, will be
in a one-to-one correspondence with the various forms of TNC geometry classified by the torsion of
the connection (see section 4.2.3), starting with

Definition: A TTNC space-time is a non-relativistic space-time, whose clock form satisfies the Frobenius
integrability condition, τ ∧ dτ = 0, which in component form reads τ[ρ∂µτν] = 0. This is equivalent to the
statement that τ be hypersurface orthogonal (HSO).

By Frobenius’ theorem [118], the one-form thus defines a foliation of M by a family of codimen-
sion one hypersurfaces, or leaves. Each leaf corresponds to an absolute space, in the following sense:
by Frobenius’ theorem, we may locally write the clock form as τ = f dt for some f , t ∈ C∞(M), where
f is the time unit and t is the absolute time. This absolute time is fixed on each leaf, and it is in this
sense that they are absolute spaces. Furthermore, the metric h (or rather, the pullback of h to the
appropriate leaf) is non-degenerate on these hypersurfaces since τ = dt = 0, so the completeness
relation (4.2.2) implies that hµν defines a (torsion free) Riemannian geometry on each absolute space.
Finally, the most restrictive case is characterized by a closed clock form:

Definition: An NC space-time is a non-relativistic space-time, whose clock form is exact, i.e. τ = dt, where t
is the absolute time.

This means—by Stokes theorem—that the proper time (4.2.3) between two points A, B ∈ M is in-
dependent of the path one follows, which leads to a concept of absolute time not present in the more

4 Note that h−1 = hµν∂µ ⊗ ∂ν, so hµν are the components of h−1.
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Figure 4.1: Foliation of a TTNC space-time by absolute spaces.

general TNC and TTNC space-times. In order to fully realize a NC geometry, we require a connection.
A convenient and illuminating way of obtaining NC geometry in its various incarnations is to gauge
an appropriate algebra, which we describe in the next section.

4.2.2 Newton-Cartan Geometry from Local Algebras

The most general version of Newton-Cartan geometry, known as torsional Newton-Cartan geometry
(TNC), can be obtained in several ways. The route we take involves adding torsion to the analysis of
[54], which concerns the gauging of the Bargmann algebra. TNC can also be obtained by gauging the
Schrödinger algebra which is locally scale invariant; an endeavour undertaken in [34] (see also chapter
6, where we gauge the Schrödinger algebra for z = 2). The latter approach is more computationally
involved, but reveals a richer structure which is the same as the one encounters in general-z Lifshitz
holography.

4.2.2.1 The Bargmann Algebra from Ínönü-Wigner Contraction

It is possible [54] to obtain the Bargmann algebra by extending the (d + 1)-dimensional Poincaré alge-
bra iso(d, 1) of (4.1.1) via a direct sum with a commutative subalgebra gN generated by N (occasionally
referred as the mass for reasons we will explain shortly),

iso(d, 1) → iso(d, 1)⊕ gN . (4.2.4)

To get to the Bargmann algebra, we perform the following Ínönü-Wigner contraction (see [119])

ε→0︷ ︸︸ ︷
P0 → 1

ε2 N + H, Pa →
1
ε

Pa, J0a →
1
ε

Ga, (4.2.5)

where the contraction parameter ε corresponds to the reciprocal speed of light. This choice is inspired
by the non-relativistic approximation of P0 for a free particle of mass5 m:

P0 =
√

c2PaPa + m2c4 ≈ mc2 +
PaPa

2m
. (4.2.6)

The algebra thus obtained is the Bargmann algebra barg(d, 1), and is generated by H (time transla-
tions), Pa (spatial rotations), Ga (Galilean boosts), Jab (spatial rotations) and, finally, N (mass/particle
number). The contraction produces the following non-vanishing commutators

[H, Ga] = Pa, [Jab, Gc] = 2δc[aGb], [Jab, Pc] = 2δc[aPb], [Jab, Jcd] = 4δ[a[d Jc]b], [Pa, Gb] = Nδab.
(4.2.7)

These are obtained from the commutation relations of the Poincaré algebra (4.1.1); for example, we
have that

[Pa, Gb] = [εPa, εJ0b] = ε2
( =0︷︸︸︷

η0a Pb − δab

(
1
ε2 N + H

))
→ δabN. (4.2.8)

5 Corresponding to N.
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Setting N = 0, we obtain the (d + 1)-dimensional Galilean algebra, gal(d, 1). It is interesting to note
that N is required to obtain massive representations of the Galilean algebra, for which there is a nice
argument: following [54], we can understand this by considering the action for a non-relativistic free
particle of mass m,

S =
∫

dt L =
1
2

∫
dt mẋ2, (4.2.9)

which is invariant under Gal(d, 1). However, the Lagrangian L is not invariant; rather, it transforms as
a total derivative under infinitesimal Galilean boosts, δxa = vat, since

δL = mẋaδẋa =
d
dt

(mxava) , (4.2.10)

which implies that the naïve Nöther charge Qnaïve = paδxa = mẋavat gets an additional boundary
term, so that the correct boost Nöther charge takes the form

QG = pavat − mxava. (4.2.11)

The translation Noether charge is straightforward, i.e. QP = paξa for infinitesimal translations δxa =
ξa, which means that their Poisson bracket reads

{QP,QG}PB =
∂QP
∂xa

∂QG
∂pa

− ∂QP
∂pa

∂QG
∂xa = mvaξa, (4.2.12)

which is in accord with the commutator (4.2.8).

4.2.3 Gauging Galilei

Mimicking the approach in section 4.1, we start by defining the following Lie algebra valued connec-
tion,

Aµ = Hτµ + Paea
µ + Gaωµ

a +
1
2

Jabωµ
ab. (4.2.13)

For L(x) ∈ gal(d, 1), the connection transforms as Aµ → L(x)AµL−1(x) − L(x)∂µL−1(x), and so,
taking L(x) to be infinitesimal, L(x) = 1+ Λ(x) for Λ(x) ∈ gal2(d, 1), we get

δAµ = ∂µΛ + [Aµ, Λ], (4.2.14)

i.e. Aµ transforms in the adjoint. Now, since Λ(x) ∈ gal(d, 1), we may write

Λ(x) = Hζ(x) + Paζa(x) + Gaλ̃a(x) +
1
2

Jabλ̃ab(x). (4.2.15)

Next, we make contact with local space-time diffeomorphisms via the introduction of the δ̄-transformation,
where we replace the local translation parameters ζa in Λ with a space-time vector ξµ defined via
ζa = ξµea

µ, allowing us to write

Λ = ξµAµ + Σ, (4.2.16)

which implies that

Σ = Gaλa +
1
2

Jabλab, (4.2.17)

where the un-tilded parameters of (4.2.17) are related to their tilded cousins of (4.2.15) in a manner
similar to the way local Lorentz transformations emerged in the case of the Poincaré algebra in (4.1.11).
The δ̄-transformation—compare eqs. (4.1.12) and (4.1.16)—then becomes

δ̄Aµ = δAµ − ξνFµν = £ξAµ + ∂µΣ + [Aµ, Σ], (4.2.18)

where Fµν is the Yang-Mills curvature,

Fµν = 2∂[µAν ] + [Aµ,Aν] (4.2.19)

= HRµν(H) + PaRµν
a(P) + GaRµν

a(G) +
1
2

JabRµν
ab(J). (4.2.20)
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We summarise this construction in the table below:

Table 4.1: Generators of gal(d, 1) with their associated gauge fields, local parameters and covariant curvatures.

Symmetry Generators Gauge Field Parameters Curvatures

Time translations H τµ ζ(x) Rµν(H)

Spatial translations Pa ea
µ ζa(x) Rµν

a(P)

Boosts Ga ωµ
a λa(x) Rµν

a(G)

Spatial rotations Jab ωµ
ab λab(x) Rµν

ab(J)

Writing out the expression for δ̄Aµ in (4.2.19) with the help of our expressions for Aµ and Σ—as
we did for Poincaré in (4.1.18)–(4.1.20)—we find the following curvatures:

Rµν(H) = 2∂[µτν], (4.2.21)

Rµν
a(P) = 2∂[µea

ν] − 2ω[µ
abeν]b − 2ω[µ

aτν], (4.2.22)

Rµν
ab(J) = 2∂[µων]

ab − 2ω[µ
c[aων]

b]
c, (4.2.23)

Rµν
a(G) = 2∂[µων]

a + 2ω[µ
bων]

a
b. (4.2.24)

Similarly, by writing out Aµ and Σ in (4.2.18) and identifying coefficients in front of the generators,
we find the following transformations of the gauge fields:

δ̄τµ = £ξτµ, (4.2.25)

δ̄ea
µ = £ξea

µ + λaτµ + λa
beb

µ, (4.2.26)

δ̄ωµ
ab = £ξωµ

ab + ∂µλab + 2λc[aωµ
b]

c, (4.2.27)

δ̄ωµ
a = £ξωµ

a + ∂µλa − λbωµ
a

b + λa
bωµ

b. (4.2.28)

The gauge fields τµ and ea
µ transform under spatial rotations and Galilean boosts as the Newton-

Cartan clock form and vielbeine, respectively [54], and we identify them as such. Since they are of
rank 1 and rank d, respectively, they are not invertible in a (d + 1)–dimensional spacetime, but we can
define projective inverses vµ and eµ

a , satisfying the relations

vµτµ = −1, vµea
µ = 0, τµeµ

a = 0, ea
µeµ

b = δa
b , eµ

a ea
ν = δ

µ
ν + vµτν. (4.2.29)

The projective inverses transform under δ̄-transformations in the following manner,

δ̄vµ = £ξ vµ + λaeµ
a , (4.2.30)

δ̄eµ
a = £ξ eµ

a + λa
beµ

b , (4.2.31)

which are derived by considering6 the relations 0 = δ̄
(
vµτµ

)
and δ̄

(
vµea

µ

)
and using the identities

(4.2.29). The curvatures (4.2.21)–(4.2.24) are subject to the usual Bianchi identity dDF = 0 for dD the
exterior covariant derivative, which in local coordinates reads

0 = D[µFνρ] = ∂[µFνρ] +
[
A[µ,Fνρ]

]
, (4.2.32)

where D is the gauge covariant derivative in the adjoint representation. In order to identify the struc-
ture of the covariant derivative acting on the gauge fields, we use the standard relation DµAν =
∂µAν + [Aµ,Aν], which allows us to identify additional terms in the covariant derivatives that ensure
that they transform covariantly under δ̄-transformations, (4.2.25)–(4.2.28). By taking into account all
the commutators of gal(d, 1) that are proportional to H and Pa, we find the following expressions for
the covariant derivatives,

Dµτν = ∂µτν − Γρ
µντρ, (4.2.33)

Dµea
ν = ∂µea

ν − Γρ
µνea

ρ − ωµ
a

beb
ν − ωµ

aτν, (4.2.34)

Dµvν = ∂µvν + Γν
µλvλ − ωµ

aeν
a , (4.2.35)

Dµeν
a = ∂µeν

a + Γν
µλeλ

a + ωµ
b

aeν
b . (4.2.36)

6 And, for simplicity, ignoring diffeomorphisms.
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We can explicitly check that they transform covariantly; for example, as we had for the Poincaré
algebra, Dµτν should transform only under diffeomorphisms, i.e. we require that

δ̄
(
Dµτν

)
= £ξ

(
Dµτν

)
(4.2.37)

= ξρ∂ρ

(
Dµτν

)
+ ∂µξρ

(
Dρτν

)
+ ∂νξρ

(
Dµτρ

)
(4.2.38)

= ξρ
(
∂ρ∂µτν

)
− ξρ

(
∂ρΓλ

µν

)
τλ − ξρΓλ

µν∂ρτλ (4.2.39)

+ ∂µξρ
(

∂ρτν − Γλ
ρντλ

)
+ ∂νξρ

(
∂µτρ − Γλ

µρτλ

)
. (4.2.40)

By using (4.2.25)–(4.2.28), the δ̄-variation of the covariant derivative may equivalently be expressed in
the following manner,

δ̄
(
Dµτν

)
= ∂µ δ̄τν − δ̄Γρ

µντρ − Γρ
µν δ̄τρ, (4.2.41)

which, when equated with (4.2.40), produces the same transformation property (4.1.40) for Γν
µλ that

we found in section 4.1. We now impose the vielbein postulates,

Dµτν = 0, (4.2.42)

Dµea
ν = 0. (4.2.43)

These postulates allow us to express the affine connection in terms of ωµ
a and ωµ

ab by using the
identities (4.2.29). In particular, multiplying the first postulate (4.2.42) with vλ produces the relation

vλ∂µτν = −Γλ
µν + eλ

a

(∗)︷ ︸︸ ︷
Γρ

µνea
ρ, while the second postulate (4.2.43) can be rearranged to give an expression

for (∗). This produces the result

Γλ
µν = −vλ∂µτν + eλ

a

(
∂µea

ν − ωµ
a

beb
ν − ωµ

aτν

)
. (4.2.44)

The vielbein postulates also allow for a identification of the curvatures (4.2.21) and (4.2.22) in terms
of the affine connection: the postulates (4.2.42) and (4.2.43) imply that

Rµν(H) = 2Γρ

[µν]
τρ, (4.2.45)

Rµν
a(P) = 2Γρ

[µν]
ea

ρ, (4.2.46)

so they are related to the torsion tensor in the following manner; contracting the curvature (6.4.63)
with eλ

a and using the geometric identities (4.2.29), we get

Rµν
aeλ

a = 2Γρ

[µν]
ea

ρeλ
a (4.2.47)

= 2Γρ

[µν]

(
δλ

ρ + vλτρ

)
(4.2.48)

= 2Γλ
[µν] + vλ 2Γρ

[µν]
τρ︸ ︷︷ ︸

=Rµν(H)

(4.2.49)

∴ 2Γλ
[µν] = −vλRµν(H) + eλ

a Rµν
a(P). (4.2.50)

We now introduce a new covariant derivative ∇µ involving only the affine connection Γρ
µν, which

means that writing out the first vielbein postulate (4.2.42) using the definition (4.2.33) gives us the
relation

∇µτν = 0, (4.2.51)

while antisymmetry of ωµ
ab means that, by the second vielbein postulate (4.2.43), the object hµν =

δabeµ
a eν

b satisfies

∇µhνρ = 0, , (4.2.52)

where eqs. (4.2.51) and (4.2.52) are the TNC version of metric compatibility. With this new derivative
at hand, we now turn to the identification of the other curvatures. To that end, we begin by computing
the Riemann tensor,

[∇µ,∇ν]Xρ = Rµνσ
ρXρ − 2Γρ

[µν]
∇ρXσ, (4.2.53)
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for an arbitrary one-form Xρ, where

Rµνσ
ρXρ = −∂µΓρ

νσ + ∂νΓρ
µσ − Γρ

µλΓλ
νσ + Γρ

νλΓλ
µσ, (4.2.54)

which, upon using our expression for Γρ
µν (4.2.44) as well as the curvatures (4.2.23)–(4.2.24), produces

the result

Rµνσ
ρ = eρ

aτσRµν
a(G)− eσaeρ

b Rµν
ab(J). (4.2.55)

4.2.4 Extension to Bargmann and the Affine Connection

We now extend the analysis above to the Bargmann algebra (4.2.7) and include the central element N.
We denote the associated gauge connection by mµ, so that

Aµ = Hτµ + Paea
µ + Gaωµ

a +
1
2

Jabωµ
ab + Nmµ, (4.2.56)

Σ = Gaλa +
1
2

Jabλab + Nσ, (4.2.57)

Fµν = 2∂[µAν] + [Aµ,Aν] (4.2.58)

= HRµν(H) + PaRµν
a(P) + GaRµν

a(G) +
1
2

JabRµν
ab(J) + NRµν(N). (4.2.59)

where σ is the parameter associated with the N transformation. As N is central, all the results of the
previous section are unchanged; in particular the transformations (4.2.25)–(4.2.28) are the same with
the augmentation

δ̄mµ = £ξmµ + ∂µσ + ea
µλa. (4.2.60)

To make contact with TNC geometry arising in Lifshitz holography as it appears in [23, 24, 29, 33], it
is convenient to introduce a background Stückelberg field χ transforming as

δ̄χ = £ξ χ + σ, (4.2.61)

and to define

Mµ = mµ − ∂µχ, (4.2.62)

which is invariant under local N transformations. It was shown in [34] that this has the effect of
replacing mµ with Mµ everywhere. It is convenient to define a series of Galilean boost invariant
objects,

v̂µ = vµ − hµν Mν, êa
µ = ea

µ − Mνeνaτµ, Φ̃ = −vµ Mµ +
1
2

hµν Mµ Mν, (4.2.63)

hµν = δabeµ
a eν

b , h̄µν = δabea
µeb

ν − τµ Mν − τν Mµ. (4.2.64)

These objects are invariant under local Galilean boosts (we will discuss their properties in a holo-
graphic context in section 5.2.4). The quantity Φ̃ is closely related to the Newtonian potential when
the space-time is flat [33, 34]; for this reason we shall refer to it as the Newtonian potential. We note
that it represents the component of Mµ that cannot be boosted away. Now, the next crucial observa-
tion is that the objects (êa

µ, v̂µ, τµ, eµ
a ) form an orthonormal set, i.e. they satisfy the same orthogonality

relations as in (4.2.29); for example we have that

v̂µτµ = vµτµ − δab

=0︷︸︸︷
eµ

a τµ eν
b = vµτµ = −1. (4.2.65)

The invariant objects further satisfy the following useful relations:

hνρ h̄ρµ = δν
µ + v̂ντµ, v̂µ h̄µν = 2τνΦ̃, êa

µ êνa = h̄µν + 2Φ̃τµτν, −v̂ντµ + êa
µeν

a = δν
µ. (4.2.66)

The first of these, for example, is derived in the following manner

hνρ h̄ρµ = eν
aea

µ − eaν

=0︷︸︸︷
eρ

aτρ Mµ − τµ Mρeρaeν
a (4.2.67)

= δν
µ + (vν − Mρhρν)τµ (4.2.68)

= δν
µ + v̂ντµ, (4.2.69)



4.3 tnc geometry from null reduction 47

where we have used (4.2.29). From the invariant objects we have considered so far, the most general
affine and metric compatible (in the sense of (4.2.51) and (4.2.52)) connection was constructed in [33,
53] and has the form

Γρ
µν = −vρ∂µτν +

1
2

hρλ
(
∂µhνλ + ∂νhµλ − ∂λhµν

)
+ Wρ

µν, (4.2.70)

Wρ
µν =

1
2

hρλ
(
τµKλν + τνKλµ + Lλµν

)
, (4.2.71)

Kµν = −Kνµ, Lλµν = −Lνµλ, (4.2.72)

where Kµν and Lλµν transform as tensors under diffeomorphisms. The object Wρ
µν is known as the

pseudo-contortion tensor in analogy with the object that arises in Riemannian geometry [56]. We now
see that TNC connections (4.2.70) in general have non-vanishing torsion, since for any choice of
pseudo-contortion, we have

2Γρ

[µν]
τλ = ∂µτν − ∂ντµ, (4.2.73)

which makes the connection between the clock form and torsion manifest. In summary: for Newton-
Cartan (NC) geometry, the torsion vanishes since τ is closed, dτ = 0, while in twistless torsional
Newton-Cartan (TTNC) geometry, τ obeys the Frobenius condition τ ∧ dτ = 0 implying that the twist
vanishes (see also chapter 5), hµρhνσ(∂µτν − ∂ντµ) = 0, and, finally, torsional Newton-Cartan (TNC)
geometry, where no restrictions are imposed on τ. This result is worthy of tabulation:

Table 4.2: The three Newton-Cartan geometries.

Geometry Constr. on τ Abs. time Abs. space Torsion

TNC None NO NO YES

TTNC τ ∧ dτ = 0 NO YES YES

NC dτ = 0 YES YES NO

There exists a unique TNC connection linear in Mµ given by [34, 120]

Γρ
µν = −v̂ρ∂µτν +

1
2

hρσ
(
∂µ h̄νσ + ∂ν h̄µσ − ∂σ h̄µν

)
, (4.2.74)

which, from the perspective of the Noether procedure, is the minimal TNC connection [56]. This
connection is obtained by setting

Kσρ = 2∂[σ Mρ], Lσµν = 2Mσ∂[µτν] − 2Mµ∂[ντσ] + 2Mν∂[στµ]. (4.2.75)

4.3 tnc geometry from null reduction

An alternative route to TNC geometry is through null reduction of a Lorentzian (d + 1)-dimensional
manifold [23, 24, 57, 121, 122]. Consider to this end the following null reduction ansatz for the metric

ds2 = γABdxAdxB = 2τµdxµ (du − mνdxν) + hµνdxµdxν (4.3.1)

= 2τµdxµdu + h̄µνdxµdxν, (4.3.2)

where A = (u, µ) and

hµν = δabea
µeb

ν, h̄µν = hµν − 2τ(µmν), (4.3.3)

where a = 1, · · · , d. The reduction ansatz (4.3.1) is the most general metric with γuu = 0, and we take
∂u to be a Killing vector for this metric, which thus becomes a null Killing vector of γAB. The fields
are τµ and ea

µ are the vielbeine of the d-dimensional TNC geometry. The inverse metric is taken to be

γuu = 2Φ̃, γuµ = −v̂µ, γµν = hµν, (4.3.4)

where

Φ̃ = −vρmρ +
1
2

hρσmρmσ, (4.3.5)

v̂µ = vµ − hµνmν, (4.3.6)

hµν = δabeµ
a eν

b , (4.3.7)
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where the inverse vielbeine vµ and eµ
a are defined via the usual relations (4.2.29). The following

diffeomorphisms preserve the form of the null Killing vector,

u′ = u − σ(x), (4.3.8)

x′µ = x′µ(x). (4.3.9)

Under these, the metric transforms as

γ′
AB =

∂x′C

∂xA
∂x′D

∂xB γCD, (4.3.10)

so requiring

γ′
µν = h′µν − 2τ′

(µm′
ν), (4.3.11)

the transformation (4.3.10) implies that under the diffeomorphisms (4.3.8)–(4.3.9)

γ′
µν = ∂µx′ρ∂νx′σγρσ + 2∂(µu′∂ν)x

′σγuσ (4.3.12)

= h′µν − 2∂µx′ρ∂νx′στ(ρmσ) + 2∂(µu′∂ν)x
′στσ, (4.3.13)

which, by (4.3.11), implies the transformation properties

τ′
µ =

∂x′ν

∂xµ τν, m′
µ =

∂x′ν

∂xµ mν − ∂µσ. (4.3.14)

In this sense, the mµ vector transforms as a U(1) connection under shifts of u. As we have seen,
the ansatz (4.3.1) preserves the following (infinitesimal) local tangent space transformations for the
vielbeine

δτµ = 0, (4.3.15)

δea
µ = τµλa + λa

beb
µ, (4.3.16)

δmµ = ∂µσ + λaea
µ. (4.3.17)

Similarly, the inverse vielbeine transform according to

δvµ = λaeµ
a , (4.3.18)

δeµ
a = λa

beµ
b (4.3.19)

It is occasionally useful to work with the boost invariant vielbeine (see also table 5.2) τµ, êa
µ and their

inverses v̂µ, eµ
a , where

êa
µ = ea

µ − mνeνaτµ, (4.3.20)

which does not change the orthogonality relations, i.e.

v̂µ êa
µ = 0, v̂µτµ = −1, eµ

a τµ = 0, eµ
a êb

µ = δb
a . (4.3.21)

Further, the following spatial metric will prove useful

ĥµν = δab êa
µ êb

ν = h̄µν + 2Φ̃τµτν. (4.3.22)

Note in particular that this analysis does not impose any constraints on τµ. In order to complete this
realization of TNC geometry, we need only introduce the (minimal) connection Γρ

µν of (4.2.74). We
will encounter null reduction again in chapter 6 in the context of charged Lifshitz holography.

4.4 the energy-momentum tensor and field theories on tnc backgrounds

In this section, we consider how non-relativistic field theories couple to TNC geometry. There are
multiple viable approaches, see e.g. [33, 56]; in what follows we will summarize these results and
derive them from null reduction [24, 57]. In this section, we keep the spatial dimension d of the TNC
background general. Given some action S describing a field theory coupled to TNC geometry, the
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energy-momentum tensor is defined as the response to variations with respect to the TNC fields of
(4.2.63)–(4.2.64) and (4.3.22)

δbgS =
∫

dd+1x e
[
−τνTν

µδv̂µ +
(

ĥσνv̂µTν
µ

)
τρδhρσ +

1
2

(
ĥρν ĥσλhλµTν

µ

)
δhρσ + τµTµδΦ̃

]
.

(4.4.1)

Alternatively, the variation with respect to the unhatted TNC complex can be expressed as

δbgS =
∫

dd+1x e
[
−Tµδvµ +

1
2
Tµνδhµν + Tµδmµ

]
. (4.4.2)

Using the definitions of the TNC fields (4.2.63)–(4.2.64), the relation between the two sets of responses
reads

hνρTρµ − vνTµ = Tν
µ + Tνmµ. (4.4.3)

It can be shown [24, 57] (see also chapter 6) that the null reduction relates the energy-momentum
tensor Tν

µ and the mass current Tµ to the higher dimensional energy-momentum tensor tA
B in the

following manner

tµu = 2Φ̃Tµ − v̂σTµ
σ, tµν = −v̂µTν + hµρTν

ρ. (4.4.4)

Note that tuu—i.e. the response to varying γuu—is arbitrary since γuu = 0, so we need not worry about
it. We now proceed to exploit the properties of the higher-dimensional energy-momentum tensor in
order to extract information about the reduced objects. First off, symmetry of tµν implies that t[µν] = 0,
or

−v̂µTν + hµρTν
ρ + v̂νTµ − hνρTµ

ρ = 0. (4.4.5)

From this, we obtain what turns out to be the boost and rotation Ward identities,

0 = −ĥµνTµ + τµhρσ ĥνσTµ
ρ, 0 = ĥµρ ĥνλhλσTρ

σ − (µ ↔ ν), (4.4.6)

where the first identity is obtained by contracting (4.4.5) with τν ĥσµ and renaming σ ↔ ν, while the
second is obtained by contracting (4.4.5) with ĥσν ĥλµ and renaming (σ, λ) ↔ (µ, ν) as well as dummy
indices in the resulting expression. Continuing in this manner, we now consider the implications of
diffeomorphism invariance and tracelessness, i.e. the relations ∇ATA

B = 0 = TA
A. Lowering the

indices of the energy momentum tensor of (4.4.4), one finds the expressions [57]

tu
u = 2Φ̃τµTµ − v̂ντµTµ

ν, tu
ν = 2Φ̃τµTµ

ν − v̂σ ĥνρTρ
σ + τνv̂ρv̂σtρσ, tµ

u = Tµ, tµ
ν = Tµ

ν.
(4.4.7)

as well as,

∇AtA
u = ∂µ (eTµ) , (4.4.8)

∇AtA
µ = e−1∂ν

(
eTν

µ

)
+ Tρ

ν

(
v̂ν∂µτρ − eν

a∂µ êa
ρ

)
+ τνTν∂µΦ̃, (4.4.9)

tA
A = −2v̂ντµTµ

ν + êa
µeν

a Tµ
ν + 2Φ̃τµTµ. (4.4.10)

These become the U(1), diffeomorphism and z = 2 dilatation Ward identities respectively, something
we will be explicit about in chapter 6, where we will put this analysis to good use in the context of
charged Lifshitz holography.

We briefly remark that it is possible to write the diffeomorphism Ward identity (4.4.9) in a more
TNC covariant form by introducing the Riemann-Cartan connection instead of the minimal connection
(4.2.74) [57, 121]. This connection is given by

Γ̌λ
µρ = −v̂λ∂µτρ +

1
2

hνλ
(

∂µ ĥρν + ∂ρ ĥµν − ∂ν ĥµρ

)
+ hνλτρKµν, (4.4.11)

where Kµν = 1
2 £v̂ ĥµν is the extrinsic curvature. The Riemann-Cartan connection obeys a variant of

metric compatibility, namely

∇̌µτν = 0, ∇̌µ ĥνρ = 0, ∇̌µv̂ν = 0, ∇̌µhνρ = 0, (4.4.12)

and thus the diffeomorphism Ward identity of (4.4.9) takes the form

∇AtA
µ = ∇̌µTµ

ν + 2Γ̌ρ

[µρ]
Tµ

ν − 2Γ̌µ

[νρ]
Tρ

µ + τµTµ∂νΦ̃. (4.4.13)
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4.5 outlook

In this chapter, we have described TNC geometry and observed how it arises by gauging local algebras.
There are many possible generalizations of this, and many of these have been pursued.

One possible extension involves adding supersymmetry: indeed, in [123] the N = 2 super-Poincaré
algebra is contracted to obtain the three-dimensional N = 2 super-Bargmann algebra which is then
subsequently gauged to construct supersymmetric Newton-Cartan geometry, while in [124], this anal-
ysis was extended to the super-Schrödinger algebra.

Another interesting development would be to gauge the Schrödinger-Virasoro algebra (see [125])
and see what kind of structure would emerge. There has also been some work on non-relativistic
twistor theory using TNC geometry [126–128], and it would be interesting to make a connection to
that.

Recently, TNC gravity was discussed in [129] from the perspective of Schrödinger field theories, and
it would be interesting to work out the relation to HL gravity, since, as mentioned in the introduction,
HL gravity and dynamical TNC geometry are equivalent.

In another direction, TNC geometry provides a natural geometric arena for the study of non-
relativistic phenomena in general: as mentioned in the introduction, (T)TNC geometry has been used
to model the (fractional) quantum Hall effect in [35–37].
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In this chapter, we provide a review of Lifshitz holography for d = 3 as developed in [29, 32].
To whet the reader’s appetite, we begin in section 5.1 with a brief exposition of Lifshitz field theory,

which is of relevance to condensed matter systems. The analysis follows [130].
The rest of the chapter mainly provides a detailed exposition of the results of [29], incorporating

elements from [32, 33, 57]: In section 5.2, we then proceed to develop Lifshitz holography for values of
the dynamical exponent 1 < z ≤ 2. The bulk theory consists of a class of Einstein-Proca-Dilaton (EPD)
models, described in section 5.2.1, which admit pure Lifshitz vacuum solutions, around which we then
consider perturbations and develop the notion of asymptotically locally Lifshitz (AlLif) geometries in
section 5.2.2.

This allows us to identify the sources as the leading components of the bulk fields in a near-
boundary expansion. There is a caveat to this identification; in particular, it turns out that the the
boundary gauge field Mµ, which, roughly speaking, is the source from the Proca field B, appears as
a subleading term in the near-boundary expansion of the time-like bulk vielbein E0. We also demon-
strate how the Lorentz group contracts to the Galilei group under imposition of the AlLif boundary
conditions and show how the sources transform under the contracted Lorentz group.

Having identified the sources of Lifshitz holography, we further investigate their transformation
properties in section 5.2.3 under Stückelberg gauge transformations and diffeomorphisms preserving
the radial gauge choice of section 5.2.2 (the so called Penrose-Brown-Henneaux (PBH) transforma-
tions), which will give rise to boundary diffeomorphisms and dilatations.

In section 5.2.4, we show how TNC geometry as described in chapter 4 emerges in the context of
Lifshitz holography, and discuss the relation to the Schrödinger algebra.

We then consider the VEVs and Ward identities of Lifshitz holography in section 5.3, and see
how explicit renormalization of the EPD model can be circumvented by assuming the existence of a
counterterm. This allows us to determine general properties of the VEVs and is the topic of section
5.3.1.

We remark that for z = 2, it is possible to obtain Lifshitz geometries by means of a Scherk-Schwarz
reduction of a five-dimensional z = 0 Schrödinger spacetime (which is an example of an AlAdS
spacetime), which makes it possible to study Lifshitz holography by using properties of the more
familiar AdS/CFT correspondence. This analysis is performed in [23, 24] (building on previous work
[107]), and we will have more to say about this approach in chapter 6. In particular, via the reduction
procedure, it is possible to obtain an explicit counterterm action from knowledge of the appropriate
AdS counterterm, which is hugely advantageous.

More generally, renormalization of the EPD model AlLif boundary conditions was considered in
[28]. Note that it is possible to consider Lifshitz holography starting from an Einstein-Proca model
in the bulk [27, 131], and we consider the explicit renormalization of such a model in appendix G
following [27, 96].

Note also that not much is known about the boundary theory; even in the case z = 2, where the
boundary theory is a null reduction of N = 4 SYM with a θ-term [24], explicit results are lacking.

In section 5.3.2, we define the Hollands-Ishibashi-Marolf (HIM) boundary stress tensor for our
holographic theory. In particular, since energy and mass are no longer equivalent, the analogue of the
familiar energy-momentum tensor in general relativity now consists of two distinct objects: the HIM
stress tensor and the mass current.

Finally, in section 5.3.3, we derive the Ward identities for Lifshitz holography and covariantize them.

5.1 the quantum lifshitz model

Introduced in [130], the simplest Lifshitz invariant scalar field theory in 2 + 1 dimensions is known
as the quantum Lifshitz model and is governed by the action

S =
1
2

∫
dtd2x

(
(∂t ϕ)2 − κ2(∂i∂

i ϕ)2
)

, (5.1.1)

51
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which is invariant under global Lifshitz rescalings with z = 2. The corresponding Hamiltonian is
given by

H =
1
2

∫
d2x

=:H︷ ︸︸ ︷[
Π2 + κ2

]
, (5.1.2)

where Π = ϕ̇. The Hamiltonian (5.1.2) furnishes a field theoretic description of Lifshitz points, arising
in e.g. the description smectic liquid crystals [132]. This model has an intriguing relation to regular
two-dimensional conformal field theory due to detailed balance [130, 133]. This is essentially due to the
fact that the Hamiltonian (5.1.2) can be written in the form

H = Q†Q, Q =
1√
2

(
κ∂i∂i ϕ − iΠ

)
, (5.1.3)

where Π is the momentum operator conjugate to ϕ, which in the Schrödinger picture is the functional
derivative Π = −i δ

δϕ . Hamiltonians1 satisfying detailed balance (i.e. a condition of the form (5.1.3))
have eigenvalues satisfying E ≥ 0, implying that if we can find a state |0〉 annihilated by Q(x) for all
x, then it is necessarily a ground state; that is to say, the corresponding ground state wave functional
Ψ0[ϕ] = 〈[ϕ]|0〉 satisfies QΨ0 = 0 for all x, which is nothing but a first-order functional differential

equation,
(

δ
δϕ + κ∂i∂

i ϕ
)

Ψ0[ϕ] = 0, which is solved by

Ψ0[ϕ] =
1√
Z

exp
[
−κ

2

∫
d2x ∂i ϕ∂i ϕ

]
, Z =

∫
D[ϕ] exp

[
−κ

∫
d2x ∂i ϕ∂i ϕ

]
. (5.1.4)

The probability of finding the ground state in the field configuration |[ϕ]〉 is given by the absolute
square of the overlap,

|Ψ0[ϕ]|2 =
1
Z exp

[
−κ

∫
d2x ∂i ϕ∂i ϕ

]
, (5.1.5)

from which it follows that VEVs of local operators O[ϕ(x)] are given by

〈0|O[ϕ(x1)] . . .O[ϕ(xn)]|0〉 =
1
Z

∫
D[ϕ]O[ϕ(x1)] . . .O[ϕ(xn)] exp

[
−κ

∫
d2x ∂i ϕ∂i ϕ

]
,

(5.1.6)

and so we infer that the quantum Lifshitz model is in fact equivalent to a two-dimensional theory of
a free scalar, which is a CFT. This intriguing connection has been used in [135] to compute the ground
state entanglement entropy of the quantum Lifshitz model (see also [136] for more recent results in
that direction). Interestingly, supersymmetric Lifshitz field theories have also been studied, see [137].

5.2 lifshitz holography

In this section, we describe general-z Lifshitz holography as developed in [29, 32, 33, 57].

5.2.1 The EPD Model

The bulk theory of our holographic setup is comprised by the Einstein-Proca-dilaton (EPD) model2,
which is a fully relativistic theory. The class of four-dimensional EPD theories are described by the
following family of actions,

S =
∫

d4x
√
−g
(

R − 1
4

Z(Φ)F2 − 1
2

W(Φ)B2 − k
2
(∂Φ)2 − V(Φ)

)
, (5.2.1)

where k is a convenient parameter (it has value three for the model we consider in chapter 6, for
example), and F = dB for the Proca field BM, where capital Roman indices M = (r, µ) are used
for four-dimensional bulk, and Greek indices µ for the boundary. The functions Z(Φ) and W(Φ) are

1 An example of another Hamiltonian of this form is the Rokshar-Kivelson Hamiltonian for the quantum dimer model, see [134].
2 For the Einstein-Proca models that we consider in appendix G, black brane solutions are not known analytically—these were

instead studied numerically in [138, 139].
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arbitrary positive functions, while the dilatonic potential is negative close to a Lifshitz solution. The
equations of motion take the form:

GMN =
k
2

(
∂MΦ∂NΦ − 1

2
(∂Φ)2gMN

)
− 1

2
V(Φ)gMN (5.2.2)

+
1
2

Z(Φ)

(
FMPF P

N − 1
4

F2gMN

)
+

1
2

W(Φ)

(
BMBN − 1

2
B2gMN

)
,

(5.2.3)
k√−g

∂M

(√
−g∂MΦ

)
=

1
4

dZ
dΦ

F2 +
1
2

dW
dΦ

B2 +
dV
dΦ

, (5.2.4)

k√−g
∂M

(√
−gZ(Φ)FMN

)
= W(Φ)BN . (5.2.5)

To determine the first equation of motion, it is most convenient to vary the action using δ
√−g =

− 1
2
√−ggMNδgMN and δ (

√−gR) = GMNδgMN , while the other two equations of motion are conve-
niently obtained by using the Euler-Lagrange equations , e.g. for the scalar,

∂L
∂Φ

=
√
−g
(

1
4

dZ
dΦ

F2 +
1
2

dW
dΦ

B2 +
dV
dΦ

)
= ∂M

∂L
∂ (∂MΦ)

= k∂M

(√
−g∂MΦ

)
, (5.2.6)

which, upon division by
√−g gives the postulated equation of motion. The model (5.2.1) has a broken

U(1) symmetry due to the mass term—this, however, can be remedied by making the following
Stückelberg decomposition (see [140] for a review of the formalism) of the massive vector,

BM = AM − ∂MΞ. (5.2.7)

Note that Ξ has dimensions of length, while all other fields are dimensionless. The EPD model admits
Lifshitz solutions for z > 1; these take the form

ds2 = − 1
r2z dt2 +

1
r2

(
dr2 + dx2 + dy2

)
, (5.2.8)

B =
A0

rz dt, (5.2.9)

Φ = Φ? (Φ? const.), (5.2.10)

as long as

A2
0 =

2(z − 1)
zZ0

,
W0

Z0
= 2z, V0 = −(z2 + z + 4), V1 = (za + 2b)(z − 1), (5.2.11)

where

a =
Z1

Z0
, b =

W1

W0
, (5.2.12)

where we have defined

V0 := V(Φ?), V1 := V′(Φ?), V2 := V′′(Φ?). (5.2.13)

Note that the last equation in (5.2.11) is a condition on the potential making sure that Lifshitz is a
solution to the family of actions (5.2.1). For the details of this analysis, we refer to [32].

5.2.2 AlLif Boundary Conditions & the Sources

The spatial anisotropy makes the use of vielbeine convenient [27], so we define asymptotically lo-
cally Lifshitz (AlLif) space-times by specifying boundary conditions for the vielbeine. Defining a
holographic radial coordinate r by requiring the metric to be asymptotically (conformally) radial, i.e.

ds2 =
dr2

Rr2 − E0E0 + δabEaEb, (5.2.14)

where E0
r = 0 = Ea

r , and where the function R is analogous to a radial lapse, which is sometimes [27]
set to one—this is known as radial gauge. The benefit of leaving R unfixed was realized in [23]. The
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boundary is located at r = 0. The vielbeine are related to the induced metric γµν on slices of constant
r via

γµνdxµdxν = −E0E0 + δabEaEb, (5.2.15)

and the boundary conditions for AlLif read

R = O(1), E0
µ = O(r−z), Ea

µ = O(r−1), (z > 1). (5.2.16)

These boundary conditions imply that √
−g = O(r−z−3). (5.2.17)

For the Proca field, B = Brdr + Bµdxµ, we have that (as was the case for the pure Lifshitz solution)

Bµ = O(r−z), (5.2.18)

which can be obtained from an asymptotic analysis of the equations of motion. Now, due to antisym-
metry of the field strength tensor, the equation of motion for the Proca field (5.2.5) implies that

0 = ∂N

(√
−gW(Φ)BN

)
= ∂r

(√
−gW(Φ)Br)+ ∂µ

(√
−gW(Φ)Bµ

)
, (5.2.19)

which is a differential equation for Br in terms of Bµ—using Br = grrBr = Rr2Br, it takes the form

0 = ∂r

(√
−gW(Φ)Rr2Br

)
+ ∂µ

(√
−gW(Φ)Bµ

)
, (5.2.20)

which we can readily integrate to obtain (remembering our freedom to add an r-independent function
− f (x)),

0 =
√
−gW(Φ)Rr2Br − f (x) +

∫ r

0
dr′∂µ

(√
−gW(Φ)Bµ

)
(5.2.21)

∴ Br =
f (x)√−gW(Φ)Rr2 − 1√−gW(Φ)Rr2

∫ r

0
dr′∂µ

(√
−gW(Φ)Bµ

)
. (5.2.22)

In particular, the extra term becomes important in a radial expansion at order rz+1, and thus it does
not affect the leading behaviour. We may express the boundary conditions for Bµ and E0

µ—eqs. (5.2.18)
and (5.2.16), respectively—by inferring the existence of a function α(x, r) such that,

Bµ − αE0
µ = o(r−z), (5.2.23)

with α = O(1) near r = 0, and where the Landau symbol o(r−z) means3 that whatever is on the
LHS grows strictly slower than r−z. The rôle of the function α will be made clear later. The boundary
condition on the dilaton reads

Φ ' r∆φ, ∆ ≥ 0, (5.2.24)

where ' refers to the leading order term in the near-boundary expansion, and φ(x) is the boundary
value of the dilaton. In particular, in order to find ∆, we need to solve the equations of motion
(specifically, by considering radial perturbations around the Lifshitz solution (5.2.8)), which requires
us to expand the dilation around Φ = Φ?, and this depends on whether ∆ > 0 or ∆ = 0. Without
loss of generality, we can shift Φ and set Φ? = 0, which we will do in what follows. In terms of the
quantities introduced above, we impose the following boundary conditions for the vielbeine,

E0
µ ' r−zα1/3

(0) τµ, Ea
µ ' r−1α−1/3

(0) ea
µ, R ' R(0), (5.2.25)

where α(0) and R(0) are the leading terms of α and R, respectively, which are fixed by the equations
of motion as long as we are in the range 1 < z ≤ 2 (see [32] for details), so from now on we specialize
to this case. Note also that we do not demand (by hand) that τµ be hypersurface orthogonal (HSO)4,

3 More precisely, f (x) = o(g(x)) means that for all ε > 0 there exists an x0 ∈ R such that f (x) < εg(x) for all x > x0. Similarly,
if f (x) = O(g(x)) means that there exists a ε > 0 for which you can find an x0 ∈ R such that f (x) ≤ g(x) for all x > x0. Since
both o(g(x)) and O(g(x)) are more appropriately viewed as sets, we should strictly speaking write e.g. f (x) ∈ o(g(x)), but
we’ll stick with the notation f (x) = o(g(x)).

4 That is, orthogonal to leaves of constant time.
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τ ∧ dτ = 0; rather we let the equations of motion determine it. It turns out that for z > 2, τµ is always
HSO [29]. In particular, this the HSO condition be rewritten as the vanishing of the twist of τ, v2 = 0,
where

v2 =
1
2
(
εµνρτµ∂ντρ

)2 . (5.2.26)

In general, one finds that the solution splits up into four branches (details will be given in [32]),
namely

(i) : 1 < z < 2 and ∆ > 0, (ii) : 1 < z < 2 and ∆ = 0, (5.2.27)

(iii) : z = 2 and ∆ > 0, (iv) : z = 2 and ∆ = 0. (5.2.28)

It turns out that case (iv) splits up into two additional branches: either τ is HSO, in which case W =
4Z2/3. If this is not satisfied, the twist (5.2.26) must instead be given by v2 = −2(Z(φ))2/3 + 1

2 W(φ),
which becomes a constraint on the source φ.

We will take α and R to depend on Φ, so in particular, the leading terms will depend on ∆. Inverting
(5.2.25), the inverse vielbeine are subject to the boundary conditions,

Eµ
0 ' −rzα−1/3

(0) vµ, Eµ
a ' rα1/3

(0) eµ
a , (5.2.29)

but since

1 = δ0
0 = Eµ

0 E0
µ = −vµτµ, 0 = δa

0 = Eµ
0 Ea

µ = −rz−1α−2/3
(0) vµea

µ, (5.2.30)

0 = δ0
a = Eµ

a E0
µ = r1−zα2/3

(0) eµ
a τµ, δa

b = Eµ
b Ea

µ = eµ
b ea

µ, (5.2.31)

we obtain the orthogonality relations,

vµτµ = −1, vµea
µ = 0, eµ

a τµ = 0, eµ
b ea

µ = δa
b . (5.2.32)

Further, the relation

δ
µ
ν = E0

νEµ
0 + Ea

νEµ
a = −vµτν + eµ

a ea
ν, (5.2.33)

implies the important completeness relation

eµ
a ea

ν = δ
µ
ν + vµτν. (5.2.34)

Following the arguments given in [24], we now scrutinize the behaviour of the boundary vielbeine
under local Lorentz transformations (LLTs). Since z > 1, the boundary conditions (5.2.16) imply that
the time-like vielbein diverges faster than the space-like vielbeine, which means that the local light
cones flatten out, and so the Lorentz group contracts to the Galilei group; in other words: r → ∞
corresponds to sending the speed of light to infinity, which, as we have seen, contracts the Lorentz
group to the Galilean group. To this end, we start by considering the transformation properties of
the bulk vielbeine under LLTs; specifically we consider SO(2, 1) transformations leaving the radial
direction invariant. For such transformations, we may write

E0
µ = Λ0

0′E
0′
µ + Λ0

a′E
a′
µ , (5.2.35)

Ea
µ = Λa

0′E
0′
µ + Λa

a′E
a′
µ . (5.2.36)

Now, for generic frame indices (a, b, c, d)—which includes time—the defining property for Lorentz
transformations, ηabΛa

cΛb
d = ηcd, leads to

−Λ0
0′Λ

0
0′ + δabΛa

0′Λ
b

0′ = −1, (5.2.37)

−Λ0
0′Λ

0
a′ + δabΛa

0′Λ
b

a′ = 0, (5.2.38)

−Λ0
a′Λ

0
b′ + δabΛa

a′Λ
b

b′ = δa′b′ . (5.2.39)

The Lorentz transformed boundary conditions take the form,

E0′
µ ' r−zα1/3

(0) τ′
µ, Ea′

µ ' r−1α−1/3
(0) ea′

µ , (5.2.40)
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since neither r nor α(0) transforms. By comparing powers of r, the above together with the transfor-
mations (5.2.35)–(5.2.36) imply that

Λ0
0′ ' Λ0

(0)0′ , Λ0
a′ ' r1−zα2/3

(0) Λ0
(0)a′ , Λa

0′ ' rz−1α−2/3
(0) Λa

(0)0′ , Λa
a′ ' Λa

(0)a′ , (5.2.41)

but the constraints (5.2.37)–(5.2.39) imply that, for example

−Λ0
(0)0′Λ

0
(0)0′ + δabr2(z−1)Λa

(0)0′Λ
b
(0)0′ = −1. (5.2.42)

Since z > 1, we can discard the second term altogether, which makes Λa
(0)0′ a set of two free

parameters—implying that

Λ0
(0)0′Λ

0
(0)0′ = 1, (5.2.43)

prompting us to choose

Λ0
(0)0′ = 1, (5.2.44)

so that we may recover the identity. Similar considerations lead us to conclude that

Λ0
(0)a′ = 0, (5.2.45)

δabΛa
(0)a′Λ

b
(0)b′ = δa′b′ . (5.2.46)

These findings agree with those obtained in [24] when setting z = 2. This, in conjunction with the
transformation of the time-like bulk vielbein (5.2.35), means that

τµ = τ′
µ, (5.2.47)

while the transformation of the spatial bulk vielbein (5.2.36) implies that

ea
µ = Λa

(0)0′ e
0′
µ + Λa

(0)a′ e
a′
µ . (5.2.48)

The transformations Λa
(0)0′ and Λa

(0)b correspond to local Galilean boosts and local rotations, respec-
tively (and will collectively be denoted as local Galilean transformations: LGTs). In order to obtain the
infinitesimal versions of these local tangent space transformations, we define

Λa
(0)0′ = ελa +O(ε2), (5.2.49)

Λa
(0)b = δa

b + ελa
b +O(ε2). (5.2.50)

With these, we can summarize our findings above as

δτµ = 0, (5.2.51)

δea
µ = λaτµ + λa

beb
µ. (5.2.52)

where we have used τµ = τ′
µ in the second line. To determine the transformation properties of the

inverse vielbeine, we use the orthogonality relations (5.2.32), i.e.

0 = δ(vµea
µ) = ea

µδvµ + vµδea
µ = ea

µδvµ + λa

=−1︷︸︸︷
vµτµ +λa

b

=0︷︸︸︷
vµeb

µ, (5.2.53)

i.e.5 δvµ = λaeµ
a , since eµ

b ea
µ = δa

b—which we will now vary to get

0 = δ(eµ
b ea

µ) = ea
µδeµ

b + eµ
b δea

µ = ea
µδeµ

b + λa

=0︷︸︸︷
eµ

b τµ +

=λa
b︷ ︸︸ ︷

eµ
b ea

µλa
b, (5.2.54)

which, by the same reasoning, means that δeµ
a = −λb

aeµ
b = λb

aeµ
b , where we used antisymmetry of the

infinitesimal SO(2) rotations. To sum up our findings:

δvµ = λaeµ
a , (5.2.55)

δeµ
a = λ b

a eµ
b . (5.2.56)

5 Note that this is compatible with 0 = δ(vµτµ) = τµδvµ since τµeµ
a = 0.
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Now, all terms in the near-boundary expansion of the metric (5.2.14) should be invariant under
Galilean transformations when expressed in terms of the boundary vielbeine; in particular, at order
r−2, we get

O(r−2) : α−2/3
(0) δabea

νeb
µ + · · · , (5.2.57)

with the dots denoting the contributions from the expansion of E0
µE0

ν. Galilean invariance of the whole
expression implies Galilean invariance of each order in r, but the first term of (5.2.57) is not invariant,
since by the transformation (5.2.52)

δ
(

ea
µeb

ν

)
= λaτµea

ν + λaτνea
µ. (5.2.58)

From this we infer the existence of a term coming from E0
µE0

ν, the rôle of which is to make the whole
expression invariant—we can engineer such a term by demanding

E0
µ = r−zα1/3

(0) + · · ·+ rz−2α−1
(0)Xµ, (5.2.59)

and so the complete term at order r−2 is

O(r−2) : α−2/3
(0)

(
δabea

µeb
µ − τµXν − τνXµ

)
, (5.2.60)

where invariance implies that under local Galilean transformations, Xµ transforms as

δXµ = ea
µλa. (5.2.61)

Now, since such an object6 cannot be constructed from the boundary vielbein sources τµ and ea
µ, there

must exist a boundary vector field Mµ such that

Xµ = Mµ + Iµ, (5.2.62)

where Iµ is invariant under LGTs, and we assume without loss of generality7 that Iµ = Iτµ for I a
scalar. For the time-like bulk vielbein we may consequently write

E0
µ = r−zα1/3

(0) τµ + · · ·+ rz−2α−1
(0)

(
Mµ + Iτµ

)
. (5.2.63)

For the massive vector, which is Galilean boost invariant at each order of r, we may write (the choice
of coefficients harks back to the relation for the Proca field (5.2.23) and will be justified shortly)

Bµ = r−zα4/3
(0) τµ + · · ·+ rz−2 Ĩτµ + . . . , (5.2.64)

where Ĩ is another scalar. We are now ready to make more explicit the relation (5.2.23): for a function
α of the form

α = α(0) + r2z−2α(0)
(

Ĩ − I
)
+ . . . , (5.2.65)

we get an explicit version of (5.2.23)

Bµ − α(Φ)E0
µ ' −rz−2Mµ. (5.2.66)

Contracting with the bulk vielbeine, we find that the following leading behaviour of the frame com-
ponents of the Proca field,

B0 = Eµ
0 Bµ = O(1), Ba = EµBµ = O(rz−1), (5.2.67)

where we have used (5.2.66) as well as the boundary conditions (5.2.16). Combining these results, we
find for the Proca field

Bµ = Eµ
0 B0 + Eµ

a Ba = O(rz), (5.2.68)

6 That is, an object transforming as in (5.2.61).
7 That is, without affecting the properties of the new source Mµ.
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and thus, by the relation for Br (5.2.22), since 1
r2√−g = O(rz+1) and

∫ r
0 dr′∂µ (

√−gW(Φ)Bµ) = O(r−2),
we get

Br = O(rz−1). (5.2.69)

Now, returning the Stückelberg decomposition of Bµ, (5.2.7), the expression (5.2.66) allows us to do
the same for Mµ,

Mµ = m̃µ − ∂µχ, (5.2.70)

provided that

∂µΞ ' −rz−2∂µχ, or Ξ ' −rz−2χ. (5.2.71)

This can always be done since the Stückelberg scalar is unphysical and thus we can impose any
boundary condition we like. For the radial component of the Proca field, (5.2.69) implies

Br = Ar − ∂rΞ = O(rz−1), (5.2.72)

but the scaling of the Stückelberg scalar Ξ (5.2.71) implies that ∂rΞ ' −(z − 2)rz−3χ, so the only way
the leading behaviour of Br can be O(rz−1) is if

Ar ' −(z − 2)rz−3χ, (5.2.73)

such that it cancels in (5.2.71). For the other components of A, the definition of the source Mµ (5.2.66)
gives us

Aµ −
�
�∂µΞ − α(Φ)E0

µ ' −rz−2 (m̃µ −
�
�∂µχ
)

, (5.2.74)

∴ Aµ − α(Φ)E0
µ ' −rz−2m̃µ, (5.2.75)

where we have used the scaling of the Stückelberg field (5.2.71).

5.2.3 More Local Transformations of the Sources

So far, we have seen how the sources behave under local Galilean boosts and rotations. Another local
transformation arises as a consequence of working with the Stückelberg field Ξ: this results in a local
U(1) symmetry, which acts on AM and Ξ as

δAM = ∂MΛ, δΞ = Λ, (5.2.76)

but in order to preserve the boundary conditions (5.2.73) and (5.2.71), we take

Λ ' −rz−2σ. (5.2.77)

In turn, by the definitions of χ and m̃µ in (5.2.71) and (5.2.75), respectively, this implies that under
local U(1) transformations, the sources m̃µ and χ transform as

δm̃µ = ∂µσ, δχ = σ. (5.2.78)

There is another class of local symmetries, namely bulk diffeomorphisms preserving the conformally
radial gauge choice of (5.2.14). These are the PBH transformations, which we now describe. Requiring
that RgMN remains in radial gauge after acting on with a diffeomorphism amounts to the statement

δ (Rgrr) = 0, (5.2.79)

where

δ (RgMN) = £ζ (RgMN) , (5.2.80)

where ζ is the bulk vector generating PBH transformations. The condition (5.2.79) implies that

£ζ (RgMN) = ζM∂Mgrr + 2∂rζMgMr (5.2.81)

= −2ζr 1
r3 +

2
r2 ∂rζr = 0, (5.2.82)
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so solving the resulting differential equation ζr = r∂rζr gives us ζr = −rΛD for some arbitrary func-
tion8 ΛD(x) of the boundary coordinates9. It can be shown [33] that the general behaviour of the
generator of PBH transformations ζµ is ζµ = ξµ +O(r2) by considering non-constant ΛD. Summariz-
ing our results, we have found that

ζr = −rΛD, ζµ = ξµ +O(r2). (5.2.83)

The PBH diffeomorphisms generated by ζM act on all bulk fields, and by applying the result (5.2.83),
we are able to obtain the transformation properties of the sources. Acting on E0

µ, for example, with
PBH diffeomorphisms gives us

£ζ E0
µ = ζM∂ME0

µ + E0
ν∂µζν = ζr∂rE0

µ + £ξ E0
µ (5.2.84)

= −rΛD∂rE0
µ + £ξ E0

µ (5.2.85)

= zΛDE0
µ + £ξ E0

µ, (5.2.86)

where we note how the sign and the factor of r works out nicely in the last equality and makes
explicit how ΛD corresponds to dilatations. The complete behaviour of τµ under local transformations
consequently works out to be:

δτµ = £ξ τµ + zΛDτµ. (5.2.87)

Repeating this exercise for all the other sources, we obtain

δea
µ = £ξea

µ + λaτµ + λa
beb

µ + ΛDea
µ. (5.2.88)

δMµ = £ξ Mµ + ea
µλa + (2 − z)ΛD Mµ, (5.2.89)

δχ = £ξχ + σ + (2 − z)ΛDχ, (5.2.90)

δvµ = £ξvµ + λaeµ
a − zΛDvµ, (5.2.91)

δeµ
a = £ξeµ

a + λ b
a eµ

b − ΛD, (5.2.92)

δMa = £ξ Ma + λ b
a Mb + λa + (1 − z)ΛD Ma, (5.2.93)

δφ = £ξφ − ∆ΛDφ, (5.2.94)

where Ma = eµ
a Mµ. In the above, λa corresponds to Galilean boosts (occasionally known as Milne

boosts, see e.g. [141]) (G), λ b
a to spatial rotations (J), ΛD to dilatations (D) and σ, at last, corre-

sponds to Stückelberg gauge transformations (N). The transformations (6.3.29)–(6.3.34) are similar to
(4.2.25)–(4.2.26) and (4.2.60), (4.2.61), except they have some additional structure. This is due to the fact
that G, J, D, N realize a Schrödinger algebra (see [34]), which is a conformal extension the Bargmann
algebra that we discussed in chapter 4. The transformation of m̃µ will also be required and is found
by using the definition m̃µ = Mµ + ∂µχ:

δm̃µ = δMµ + ∂µδχ (5.2.95)

= £ξ(m̃µ −
�
�∂µχ) + ea

µλa + (2 − z)ΛD(m̃µ −
�
�∂µχ) +����∂µ

(
£ξ χ

)
+ ∂µσ + (2 − z)

[
����ΛD∂µχ + χ∂µΛD

]
(5.2.96)

= £ξ m̃µ + ea
µλa + (z − 2)ΛDm̃µ + ∂µσ + (2 − z)χ∂µΛD. (5.2.97)

We can collect our findings regarding sources and their scaling dimensions (dilatation weights w,
which—due to the sign in (5.2.83)—is defined via ΛDX = −wX) in the table below:

Table 5.1: Sources and their scaling dimensions. Note that the sets (τµ, ea
µ) and (vµ, eµ

a ) are not independent, one
must choose to work with one of them.

source φ τµ ea
µ vµ eµ

a m̃0 m̃a χ

scaling dim. ∆ −z −1 z 1 2z − 2 z − 1 z − 2

When counting the number of components of the sources, we must choose to work with either
(τµ, ea

µ) or (vµ, eµ
a ). Choosing one of these, we count a total of 14 components10. The local transfor-

mations of the sources provide additional constraints reducing the number of free sources. The total

8 Which we will later identify to correspond to dilatations.
9 Note that the sign in the identification ζr = −rΛD is arbitrary. Refs. [29, 33] use—as we do—the convention of (5.2.83), while

ref. [32] uses a plus. It does of course not change anything.
10 The specific counting is φ : 1, τµ : 3, ea

µ : 6, m̃0 : 1, m̃a : 2, χ : 1, which adds up to 14.



60 (pure) lifshitz holography

number of symmetry parameters is11
8, resulting in a total of 14 − 8 = 6 free sources; at least as long

as we’re in the range 1 < z < 2. For z = 2, there is an additional constraint (as described just below
(5.2.28)), which consequently reduces the number of free sources to 5. Before turning to the identifica-
tion of the VEVs corresponding to the sources of table 5.1, we discuss the boundary geometry of our
holographic setup.

5.2.4 Emergence of TNC Geometry & Schrödinger Symmetry

In this section, we demonstrate the emergence of TNC geometry of chapter 4 as the boundary geom-
etry, following [29, 33, 34].

From the sources we derived in section 5.2.2, we can construct a series of boost invariant objects12,

v̂µ = vµ − hµν Mν, êa
µ = ea

µ − Mνeνaτµ, Φ̃ = −vµ Mµ +
1
2

hµν Mµ Mν, (5.2.98)

hµν = δabeµ
a eν

b , h̄µν = δabea
µeb

ν − τµ Mν − τν Mµ. (5.2.99)

These are entirely equivalent to (4.2.63)–(4.2.64). These objects are all invariant under (G, N) and
nearly all of them are also invariant under J; for example, the (G, J, N)-transformation13 of v̂µ reads,

δv̂µ = δvµ − δab
(

Mbδeµ
a + eµ

a δMb

)
(5.2.101)

= λaeµ
a − δab

(
Mbλ c

a eµ
c + eµ

a (λ
c

b Mc + λb)
)

(5.2.102)

= Maλ c
a eµ

c + eµ
a λac Mc (5.2.103)

= Maλaceµ
c + eµ

a λac Mc (5.2.104)

= 0, (5.2.105)

where we have used that infinitesimal rotations are anti-symmetric14,

λab = −λba. (5.2.106)

By these invariant objects, we mean quantities of specific dilatation weight invariant under certain
symmetries.

Table 5.2: Newton-Cartan complexes and associated invariance. If a quantity is invariant under e.g. G transfor-
mations, this will be marked with a “X” in the corresponding column, while a quantity not invariant
under a given transformation will have a “X” in the corresponding column.

Inv. Obj. G J N Scaling Dim.

v̂µ X X X z
êa

µ X X X −1

Φ̃ X X X 2z − 2

τµ X X X −z
hµν X X X 2

hµν X X X 2

hµν X X X −2

11 This time, the explicit counting is ξµ : 3, λa : 2, λab : 1, ΛD : 1, σ : 1, which adds up to 8. Note that antisymmetry of rotations
implies that it only has a single free parameter.

12 Note that in contradistinction to chapter 6, the N-invariant objects in (5.2.98)–(5.2.99) will not have a subscript (χ) indicating
invariance in this chapter. We hope that this inter-chapter change of notation will not confuse the reader.

13 In our calculations, we use that the (G, J, N)-transformations of the fields involved are as follows:

δvµ = λaeµ
a , δMa = λ b

a Mb + λa, δeµ
a = λ b

a eµ
b . (5.2.100)

14 This follows from the defining property, RT R = 1. An infinitesimal rotation R = 1+ω then satisfies 1+ωT +ω = 1, implying,
as claimed, that ωT = −ω.
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We now explicitly verify the statements made in table 5.2.

δGJN êa
µ = δGJNea

µ −
=0︷ ︸︸ ︷

δGJNτµ Ma − τµδGJN Ma (5.2.107)

=���λaτµ + λa
beb

µ − τµ

(
λab Mb +��λa

)
. (5.2.108)

Similarly,

δGJNΦ̃ = −MµδGJNvµ − vµδGJN Mµ − MaδGJN Ma (5.2.109)

=����−λa Ma −
=0︷︸︸︷

vµea
µ λa + Ma

(
λ b

a Mb +��λa

)
(5.2.110)

= λab Ma Mb
eq.(5.2.106)

= 0. (5.2.111)

And

δGJNhµν = eν
bλbceµ

c + eµ
a λaceν

c = 0, (5.2.112)

where we have used the property (5.2.106). Finally, we have

δGJN h̄µν = δab

(
ea

µδGJNeb
ν + eb

νδGJNea
µ

)
− τµδGJN Mν − τνδGJN Mµ (5.2.113)

=
����τνea

µλa +����ea
µλacec

ν +��
��

τµeb
νλb +�

���eb
νλbcec

µ −
�
���τνeb

µλa −����τµea
νλa = 0. (5.2.114)

Further, we have already shown in the geometric relations (5.2.32) and (5.2.34) that these objects
share the properties of the TNC fields (cf. (4.2.29)). From the sources, we can again build the (minimal)
affine connection of (4.2.74), providing a full realization of TNC geometry on the boundary.

Note that for z > 2, and for many cases with z = 2 (case (iv) of (5.2.28) with τµ HSO), the boundary
is described by TTNC geometry. In this case, we can apply a local dilatation to make τ closed, turning
TTNC into a local NC geometry. The TTNC torsion can thus be ascribed to the dilatation invariance.

Now, the sources of table 5.1 transform under schz(2, 1), i.e. the (2 + 1)-dimensional Schrödinger
algebra with critical exponent z, as we already remarked in section 5.2.3. This is entirely analogous
to the Galilean and Bargmannn structures considered in section 4.2.2; in particular, mimicking the
approach taken when gauging the Galilean group in section 4.2.3, we can write the transformations
of the sources (6.3.29)–(6.3.34) under H, P, G, J, N, D as

δ̄Aµ = £ξAµ + ∂µΣ + [Aµ, Σ], (5.2.115)

where Aµ, Σ ∈ schz(2, 1) with the expressions

Aµ = Hτµ + Paea
µ + Gaωµ

a +
1
2

Jabωµ
ab + Nmµ + Dbµ, (5.2.116)

Σ = Gaλa +
1
2

Jabλab + Nσ + DΛD, (5.2.117)

which differs from the Bargmann algebra only in the addition of dilatations D with corresponding
connection bµ. The commutation relations of schz(2, 1) read

[D, H] = −zH, [D, Pa] = −Pa, [D, Ga] = (z − 1)Ga, [D, N] = (z − 2)N, [H, Ga] = Pa,
(5.2.118)

[Pa, Gb] = δabN, [Jab, Gc] = 2δc[aGb], [Jab, Pc] = 2δc[aPb], [Jab, Jcd] = 4δ[a[d Jc]b]. (5.2.119)

Note that m̃µ = mµ − (z − 2)χbµ, where χ is the Stückelberg field. Thus, the boundary geometry for
arbitrary z can be obtained by gauging schz(2, 1) (with the inclusion of the Stückelberg field χ, just
like in section 4.2.4). This is done by following the gauging procedure that we described in chapter
4, and was considered in15 [34]. Finally, we remark that when z = 2, and the boundary geometry
is TTNC, there is an additional special conformal transformation K contained in sch2(2, 1) that we
need to take into account when writing down the gauge connection (5.2.116) [34]—see also chapter 6,
where we carry out this procedure explicitly.

15 The approach of [34] differs slightly from the approach we follow in this work. In [34], the behaviour under H, P transformations
is inferred via the imposition of curvature constraints rather than by introducing the δ̄-transformation.
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5.2.5 Bulk Metric AlLif Boundary Conditions Revisited

The analyses of the preceding sections allow us to recast the boundary conditions of section 5.2.2 in
terms of the metric and the Proca field. Using (5.2.14) with (5.2.25) and (5.2.63), we find that

ds2 =
dr2

Rr2 −

from E0E0︷ ︸︸ ︷
α2/3
(0) r−2zτµτνdxµdxν + · · · − r−2α−2/3

(0)

[
2τ(µ Mν) + Iτµτν

]
dxµdxν + . . .+

from EaEa︷ ︸︸ ︷
r−2α−2/3

(0) ea
µeaνdxµdxν + . . .

(5.2.120)

=
dr2

Rr2 − α2/3
(0) r−2zτµτνdxµdxν + · · ·+ α−2/3

(0) r−2 (h̄µν + Iτµτν

)
dxµdxν + . . . , (5.2.121)

while for the Proca field, a similar computation reveals that

B = Brdr + α4/3
(0) r−zτµdxµ + · · ·+ rz−2 Ĩτµdxµ + · · · . (5.2.122)

5.3 vevs and covariant ward identities in lifshitz holography

In this section, we continue our investigation of Lifshitz holography focussing on the VEVs and their
Ward identities. The analysis is based on [29], but contains more details.

5.3.1 VEVs & Circumvention of Renormalization

We now want to consider the vevs associated with our sources. In principle, we really need the
renormalized on-shell action, which would require us to holographically renormalize the EPD model
with the Lifshitz solution. However, we can apply general arguments to find the leading behaviour
of the VEVs. In particular, as was our modus operandi when doing holographic renormalization in
chapter 2, we know that the on-shell action on a radial hypersurface can be written as

S =
∫

Σr
d3x

√
−γL, (5.3.1)

where
√
−γ ' α−1/3

(0) r−z−2e. (5.3.2)

and L is a function of the bulk data, which will become the sources on the boundary. This bulk data
(cf. section 5.2.3) we take to be

χ = {Eµ
0 , Eµ

a , Φ, Aa, Ξ, ϕ}, (5.3.3)

where we have defined ϕ = Eµ
0

(
Aµ − α(Φ)E0

µ

)
, which is intimately connected with the new source

m̃µ. We note that

ϕ = O(r2z−2). (5.3.4)

Now, write
√
−γL= ∑

w
eL(w)r

w−z−2, (5.3.5)

where e = det
(

τµ, ea
µ

)
=

√
−γ. The holographic renormalization procedure, as we have seen, removes

all divergent terms16, that is, terms ∼ r# for # < 0. On the other hand, terms with r$ where $ > 0
can be ignored, since they will play no rôle on the boundary. Thus, the term with scaling weight
w = z + 2 is precisely what determines the renormalized on-shell action. By the same token, varying
the on-shell action, we get

δSren =
∫

Σr
d3x e

[
Vδχ −A δr

r

]
, (5.3.6)

16 As r → 0.
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where we have included the α−1/3
(0) r−z−2-dependence (coming from

√
−γ, cf. (5.3.2)) in the “VEV com-

plex” V ; we will have to take this into account later when determining the near-boundary behaviour
of the VEVs. The VEV complex consists of the responses

V = {S0
µ,S a

µ, TΦ, T a, TΞ, Tϕ}, (5.3.7)

which arise when varying with respect to the bulk data (5.3.3), e.g. S0
µ = 1

e
δSRen
δEµ

0
. Since the variation of

the action (5.3.6) is finite by construction, we must demand that, for example, the combination

S0
µδEµ

0 (5.3.8)

does not depend on r, so including the α−1/3
(0) r−z−2–dependence from the metric determinant in the

response and using the relation for the near-boundary behaviour of the bulk fields (5.2.29), we find
that the combination

α−2/3
(0) r−z−2+zS0

µ (5.3.9)

should not depend on r and α(0); that is,

S0
µ ' r2α2/3

(0) S0
µ, (5.3.10)

where S0
µ is the VEV corresponding to eµ

0 . Repeating this analysis for Eµ
a and again using (5.2.29), we

find that

r−z−2+1S0
µ (5.3.11)

should be independent of r, and so

S a
µ ' rz+1Sa

µ, (5.3.12)

where rz+1Sa
µ is the vev corresponding to eµ

a . Continuing this process, we reproduce the results of [29]:

Tϕ ' r4−zα2/3
(0) T0, T a ' r3Ta, TΞ ' r4α1/3

(0) 〈Oχ〉 , TΦ ' rz+2−∆α1/3
(0) 〈Oφ〉 , A ' rz+2α1/3

(0) A(0).

(5.3.13)

This means that we can write the variation of the on-shell action as (on the boundary, i.e. on Σ0 = ∂M)

δSren =
∫

∂M
d3x e

(
−S0

µδvµ + Sa
µδeµ

a + T0δm̃0 + Taδm̃a + 〈Oχ〉 δχ + 〈Õφ〉 δφ −A(0)
δr
r

)
.

(5.3.14)

Since the responses were explicitly constructed such that all factors of r and α(0) drop out, the expres-
sion for δSren in (5.3.14) follows immediately—except for the terms involving m̃. We now show how
they come about: by (5.2.75), we have

Tϕδϕ ' T0eµ
0 δm̃µ = T0δm̃0. (5.3.15)

Also by (5.2.75), E0
µEµ

a = 0 implies Aa ' −rz−2m̃a, and so

T aδAa ' Taδm̃a. (5.3.16)

Finally, the vev corresponding to φ requires additional terms when ∆ = 0 (we indicate this by a tilde
on the VEV)

〈Õφ〉 = 〈Oφ〉+ δ∆,0

[
1
3

vµ
(

S0
µ + T0m̃µ

)
+

1
3

eµ
a

(
Sa

µ + Tam̃µ

)] d log α(0)

dφ
. (5.3.17)

where the extra contributions for ∆ = 0 come from factors of α(0)(φ) in the leading behaviour of the
sources. Also note that for τµ HSO (i.e. for TTNC), it can be shown that 〈Õφ〉 = 0; this is due to the
presence of an extra constraint, and in the upliftable case (see [23, 24] and chapter 6) can be traced
back to the FG expansion in the higher-dimensional theory.
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We now turn our attention to the behaviour of the VEVs under local transformations: being ten-
sors defined on the boundary, we infer that they transform under the PBH transformations that we
considered in section 5.2.3. The radial PBH transformation—corresponding to dilatations—implies a
dilatation weight of the vevs corresponding to the power of r in the near-horizon expansions of the
corresponding responses of (5.3.13). All in all, one finds17 [29, 32]

δS0
µ = −T0∂µσ − 2ΛDS0

µ + . . . , δSa
µ = λaS0

µ + λa
bSb

µ − Ta∂µσ − (z + 1)ΛDSa
µ + . . . ,

(5.3.18)

δT0 = (z − 4)ΛDT0 + . . . , δTa = λaT0 + λa
bTb − 3ΛDTa + . . . , (5.3.19)

δ 〈Oχ〉 = −4ΛD 〈Oχ〉+ . . . , δ 〈Oφ〉 = δ∆,0
d log α(0)

dφ
λaTa − (z + 2 − ∆)ΛD 〈Oφ〉+ . . . ,

(5.3.20)

where dots denote Lie derivatives along ξµ and possibly derivatives of ΛD. We note that the VEVs
also transform under the Schrödinger group, just like the sources.

5.3.2 Boundary Energy-Momentum Tensor and Mass Current

The HIM stress-tensor, which was introduced in [142], is relevant when additional non-scalar fields
are present in the bulk model. Following [142], we proceed to define

eT̃µ
ν = eµ

a
δSRen

δeν
a

+ vµ δSRen

δvν
0

(5.3.21)

= e
(

Sa
νeµ

a − S0
νvµ
)

. (5.3.22)

However, under local Stückelberg gauge transformations (N), this is not invariant, since

δN T̃µ
ν = eµ

a δNSa
ν + Sa

ν

=0︷︸︸︷
δNeµ

a −vµδNS0
ν − S0

ν

=0︷ ︸︸ ︷
δNvµ (5.3.23)

= Ta∂νσeµ
a − vµT0∂µσ. (5.3.24)

However, we can define an “improved” HIM tensor which is invariant under the full Schrödinger
group by noting that δNχ = σ, implying that the gauge invariant extension of (5.3.24) is

Tµ
ν = (Sa

ν + Ta∂νχ) eµ
a −

(
S0

ν + T0∂νχ
)

vµ. (5.3.25)

Being built of e.g. Sa
ν and vµ, we infer that Tµ

ν has scaling dimension z + 2, making it marginal
for two spatial dimensions. The vielbein projections of Tµ

ν become the energy density (Tµ
ντµvν),

momentum flux (Tµ
ντµeν

a), energy flux Tµ
νea

µvν as well as stress (Tµ
νea

µeν
b); the mass density is given

by T0 = Tµτµ, while the mass flux is Ta = Tµea
µ. These quantities appear also in e.g. [26, 27]. We

summarize our findings in table 5.3 below.

Table 5.3: Tangent space projections of Tµ
ν and Tµ with associated scaling weights. Quantities in parentheses

denote the corresponding symbol in [26].

VEV Tµ
ντµvν (E) Tµ

ντµeν
a (Pa) Tµ

νea
µvν (E a) Tµ

νea
µeν

b (Πa
b) Tµτµ (ρ) Tµea

µ (ρa)

scaling dim. z + 2 3 2z + 1 z + 2 4 − z 3

5.3.3 Ward Identities

The Ward identities are obtained by demanding invariance of (5.3.14) under the transformations
(6.3.29)-(6.3.34). The derivation of the Ward identities will, it turns out, depend on which of the four
cases of (5.2.28) we consider, but the final result will not change [29, 32].

The boost Ward identity, for example, is obtained by replacing the variations in (5.3.14) by their
corresponding transformations under Galilean boosts. The only sources transforming under boosts
are vµ, m̃a and m̃a, where the boost transformation properties of the two last follow from (5.2.97), i.e.

δGm̃a = δG(m̃µeµ
a ) = m̃µ

=0︷︸︸︷
δGeµ

a +eµ
a

=λbeµb︷ ︸︸ ︷
δGm̃µ = λa, (5.3.26)

17 Note the typo in [29] where all δN transformations, i.e. those involving σ, of the VEVs have the wrong sign.
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as well as

δGm̃0 = δG(−vµm̃µ) = −m̃µ

=λaeµ
a︷︸︸︷

δGvµ −vµ

=0, since vµeµb=0︷ ︸︸ ︷
λbeµb = −λam̃a, (5.3.27)

which means that

0 = δGSren =
∫

d3x e
[
−S0

µeµ
a − T0m̃a + δabTb

]
λa, (5.3.28)

that is to say, the boost Ward identity is

−S0
µeµ

a − T0m̃a + δabTb = 0. (5.3.29)

Now, this result can be covariantized, by which we mean a rewriting of the result above involving the
boost invariant quantities of (5.2.98)–(5.2.99). First, observe that

êa
µTµ =

(
ea

µ − (m̃ν − ∂νχ)eνaτµ

) (
−T0vµ + Tbeµ

b

)
(5.3.30)

= −T0(m̃ν − ∂νχ)eνa + Ta, (5.3.31)

where we have used the orthogonality property τµeµ
a . Next, note that

−τνeµaTν
µ = −τνeµa

[
−(S0

µ + T0∂µχ)vν + (Sa
µ + Ta∂µχ)eν

a

]
(5.3.32)

= −S0
µ − T0∂µχ, (5.3.33)

and thus the boost Ward identity (5.3.29) can be expressed covariantly in the form

êa
µTµ = τµeνaTµ

ν. (5.3.34)

Repeating the procedure, we see that that the rotation Ward identity—appropriately antisymmetrized
(due to antisymmetry of λab)—reads

Sa
µeµb + Tam̃b − (a ↔ b) = 0. (5.3.35)

Multiplying with m̃b and antisymmetrizing, we get the relation

S0
µeµ[am̃b] = T[am̃b], (5.3.36)

which means that the naïve rotation Ward identity (5.3.35) can be recast in the form

S[a
µ eµb] + S0

µeµ[am̃b] = 0. (5.3.37)

Now, consider the combination

êa
νebµTν

µ =
(
ea

ν − Mρeρaτν

)
ebµ
(
−(S0

µ + T0∂µχ)vν + (Sc
µ + Tc∂µχ)eν

c

)
(5.3.38)

= eµbSa
µ + eµbTa∂µχ − m̃ρeρaeµbS0

µ − m̃ρeρaeµbT0∂µχ − ∂ρχeρaeµbT0∂µχ + ∂ρχeρaeµbS0
µ,

(5.3.39)

where we immediately note that the next-to-last term (in red) is symmetric and so vanishes upon
antisymmetrization, and hence

ê[aν eb]µTν
µ = eµ[bSa]

µ − m̃[aeµb]S0
µ + ∂µχ

(
eµbTa − m̃aeµbT0 + eµaeρbS0

ρ

)
(5.3.40)

− ∂µχ
(

eµaTb − m̃beµaT0 + eµbeρaS0
ρ

)
(5.3.41)

= eµ[bSa]
µ − m̃[aeµb]S0

µ + ∂µχ
(

eµbTa − m̃aeµbT0 − eµbeρaS0
ρ

)
(5.3.42)

− ∂µχ
(

eµaTb − m̃beµaT0 − eµaeρbS0
ρ

)
(5.3.43)

= eµ[bSa]
µ − m̃[aeµb]S0

µ + ∂µχeµb
(

Ta − m̃aT0 − eρaS0
ρ

)
(5.3.44)

− ∂µχeµa
(

Tb − m̃bT0 − eρbS0
ρ

)
(5.3.45)

= eµ[bSa]
µ − m̃[aeµb]S0

µ (5.3.46)

= eµ[bSa]
µ + m̃[beµa]S0

µ, (5.3.47)
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where we have used the boost Ward identity in the form (5.3.29). Combining our findings, we conclude
that the rotation Ward identity is covariantly expressed as

0 = ê[aν eb]µTν
µ. (5.3.48)

Repeating this procedure, we find that the rest of the Ward identities become [29]

〈Oχ〉 = e−1∂µ(eTµ) (gauge transformations), (5.3.49)

A(0) = −zv̂ντµTµ
ν + êa

νeν
a Tµ

ν + 2(z − 1)Φ̃τµTµ (dilatations), (5.3.50)

0 = ∇µTµ
ν + 2Γρ

[µρ]
Tµ

ν − 2Γρ

[νρ]
Tρ

ν − Tµ êa
µDν Ma + τµTµ∂νΦ̃ (diffeomorphisms),

(5.3.51)

where Dµ Ma = ∂µ Ma − ωµ
a − ωµ

a
b Mb. Note the similarity to the Ward identities derived from null

reduction in (4.4.8)–(4.4.10) when setting z = 2.

5.4 outlook

Many interesting avenues for future research into Lifshitz holography exist. Studying holographic
entanglement entropy in the context of Lifshitz spacetimes is an interesting unsolved problem, con-
sidered in [143, 144] (also considered recently from a field theory perspective in [145, 146]). There are
also potentially very interesting ties between Lifshitz holography and Hor̂ava-Lifshitz (HL) gravity: it
was shown in [53] that dynamical NC geometry is equivalent to HL gravity, and since NC geometry
plays a prominent role in Lifshitz holography, it would be exciting to explore the rôle of HL gravity
in Lifshitz holography.

In a similar spirit, having a dynamical NC bulk (i.e. a HL bulk) would an extremely interesting
generalization; something that was suggested from the perspective of HL gravity in [147]. It would be
extremely interesting to develop upon these results given new knowledge that HL gravity is the same
as dynamical TNC geometry and explore the general rôle TNC geometry plays in such holographic
setups. In many ways, starting from HL gravity is more natural, and we hope to report on such an
analysis in the future.

Furthermore, studying holographic Lifshitz hydrodynamics is also worthwhile; this was done in
[148, 149] as well as in [57]. More generally, studying non-relativistic fluid dynamics independently
from holography using TNC geometry is the topic of an upcoming paper [150].
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In this chapter, we develop charged Lifshitz holography for z = 2, building on the insights from the
last chapter. The bulk action consists of a generalization of the EPD model considered in chapter 5:
an EPD-Maxwell-scalar model, which is related to the EMD model (3.2.1) we renormalized in chapter
3 via Scherk-Schwarz reduction; consequently we will refer to this EMD model as the electromagnetic
uplift. As we will show, the new sources transform, perhaps not entirely unexpectedly, as the fields
of Galilean Electrodynamics (GED), and while there is some freedom in defining the sources, we
find that there is a natural choice respecting the symmetries. We also show that with this choice, the
(integrated) Weyl anomaly becomes Hořava-Lifshitz (HL) gravity coupled to GED. This generalizes
the observation made in [24, 107] that the Weyl anomaly in pure z = 2 Lifshitz holography is related
to HL gravity.

The analysis is a novel extension of the approach taken in [23, 24], and the findings of this chapter,
along with those of chapter 3, will be the subject of [41], to appear.

We begin with an introduction to GED in section 6.1, where we discuss the relation to previous
work and show in section 6.1.2 it may be obtained as a null reduction of “ordinary” electromagnetism.
In this section, we also provide dictionary between the notation used in this work and that used in
previous literature. In section 6.1.3, we provide a new dimensional analysis of GED on anisotropic
backgrounds.

In section 6.2, we discuss the Scherk-Schwarz reduction of the five-dimensional electromagnetic
uplift. We begin our exposition with a recount of the uplift as used in previous work [23, 24, 57] and
show how this leads to a specific EPD model. A detailed derivation of this is presented in appendix
H. In section 6.2.2 we discuss the additional subtleties involved with the extra Maxwell field and
present the full result of the Scherk-Schwarz reduction of the electromagnetic uplift. We then vary the
resulting new action in section 6.2.3 and determine all equations of motion as well as the responses.
Finally, in section 6.2.4, we demonstrate how the z = 2 Lifshitz solution in the dimensionally reduced
model is related to a z = 0 Schrödinger geometry, which is asymptotically AdS.

We then turn our attention to the sources in section 6.3. We define all sources in section 6.3.1
and discuss the properties of the new sources; in particular we find that the new sources appear
as subleading terms in the near-boundary expansion of the bulk U(1) gauge field. This is entirely
analogous to the source mµ, which also appears as a subleading term in the expansion of the time-like
bulk vielbein. In section 6.3.2, we first recall how the known sources transform before we proceed
to derive the novel transformation properties of the new sources under all local transformations and
demonstrate that they transform as GED fields, which were discussed in section 6.1.2.

In section 6.4, we discuss the boundary geometry of our model. In particular, we show that the
Scherk-Schwarz reduction employed in section 6.2 becomes null on the boundary, which, as demon-
strated in section 4.3, directly leads to TNC geometry. Building on our considerations in chapter 4,
we discuss the relation to the gauging of the Schrödinger algebra for z = 2, sch2(2, 1), which we
show leads to TTNC geometry, since the imposition of certain curvature constraints forces τµ to be
HSO. The discussion is based [34, 53]. In order to obtain TNC, we must add torsion by hand. We also
discuss the Stückelberg symmetry of the central charge.

As advertised, the reduced anomaly takes the form of a Lagrangian describing Hořava-Lifshitz
gravity coupled to GED, as we demonstrate in section 6.5. In order to obtain this result, we—following
[24]—make a few simplifying assumptions, namely we consider the less general case of NC boundary
geometry, where the torsion vanishes, and set the Stückelberg field to zero.

In order to make the connection between the electromagnetic uplift and the reduced model man-
ifest, we determine the near-boundary expansions of the four-dimensional bulk fields in section 6.6.
Based on the novel FG expansions of the five-dimensional fields that we determined in chapter 3, we
explicitly see the emergence of structure that leads to the definition of the sources in section 6.3. In
this section, we also derive a constraint relating the boundary value of the dilaton to the twist, which
has the important consequence that φ is not an independent field.

In section 6.7, we determine the VEVs corresponding to the sources introduced in section 6.3. In
particular, we relate the VEVs to the responses worked out in section 6.2.3 and work out their near-
boundary behaviour in section 6.7.1. We then derive the relation between the four-dimensional VEVs
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and the five-dimensional VEVs of the electromagnetic uplift in section 6.7.2, which allows us to deter-
mine all local transformations of the VEVs in section 6.7.3.

Having determined all the VEVs, we derive novel Ward identities for charged Lifshitz holography
in section 6.8 by demanding invariance of the variation of the section under the local symmetries.
We begin in section 6.8.1 with a definition of the HIM stress-energy tensor and define several GED-
augmented versions of this object that will appear in the Ward identities. We also provide the map
between these objects and the five-dimensional stress-energy tensor based on our results in section
6.7.2. In section 6.8.2, we then derive all Ward identities and consider their TNC covariant forms.
Finally, in section 6.8.3, we consider the Ward identities from a reduction perspective and show how
the Ward identities obtained in section 6.8.2 are obtained from the five-dimensional Ward identities
derived in chapter 3.

Finally, in section 6.9, we present a conjecture for the extension of these results to general values of
z based on our results in section 6.1.3.

6.1 galilean electrodynamics

Galilean electrodynamics (GED) was recently explored in the context of Newton-Cartan geometry in
[58] following earlier work in [151] (see also [152] for a historical review of Galilean electromagnetism).
In this section, we summarize the construction of [58] with a particular emphasis on the coupling of
GED to TNC geometries as obtained from null reduction; this will serve to introduce the notation we
will employ in a holographic context later in the chapter.

6.1.1 Non-Relativistic Electrodynamics & the Unification of Two Limits

Following [151], we identify two limits of Maxwellian electromagnetism that produce Galilean invari-
ant theories, known as the electric and magnetic limits, respectively. We will initially work at the level
of equations of motion and eventually identify a larger theory admitting an off-shell description into
which both these limits can be embedded [153]; this model will be referred to as Galilean Electro-
dynamics (GED) [58]. In order to discuss relativistic effects, we will keep factors of c explicit in this
section.

Denote by âµ a U(1) gauge field on Rd,1 with coordinates (t, xi). The associated field strength is
defined as f̂µν = 2∂[µ âν], implying that the equations of motion in the absence of sources, ∂µ f̂ µν = 0,
can be written as

∂i

(
∂i ât −

1
c

∂t âi

)
= 0,

1
c

∂t

(
∂i ât −

1
c

∂t âi

)
+ ∂j f̂ ji = 0. (6.1.1)

The gauge field transforms under gauge transformations as

â′t = ât +
1
c

∂tΓ, â′i = âi + ∂iΓ. (6.1.2)

Depending on whether âµ is time-like or space-like, we can take either the electric or magnetic limit:
these are summarized in the table below.

Name Limit structure EoM

Electric
ât = −ϑ, âi =

1
c ai, Γ = 1

c Γ(0)

c → ∞ with ϑ, ai, Γ(0) fixed
∂i∂iϑ = 0 = ∂t∂iϑ + ∂j f ji

where fij = 2∂[iaj]

Magnetic
ât = −ϕ̃, âi = cai, Γ = cΓ(0)

c → ∞ with ϕ̃, ai, Γ(0) fixed

∂i Ẽi = 0 = ∂j f ji

where Ẽi = −∂i ϕ̃ − ∂tai

Table 6.1: The electric and magnetic limits and the resulting equations of motion (EoM).

In order to obtain GED, we start with a Maxwell action with an additional free scalar φ̂, the La-
grangian density of which reads

L =
1

2c2 (∂t âi − c∂i ât)
2 − f̂ij f̂ij +

1
2c2

(
∂tφ̂
)2 − 1

2
(
∂iφ̂
)2 , (6.1.3)

and take the GED limit, defined by

φ̂ = cϑ, ât = −cϑ − 1
c

ϕ̃, âi = ai, c → ∞ with ϑ, ϕ̃, ai fixed, (6.1.4)
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giving rise to the GED action,

S =
∫

dd+1x
(
−1

2
fij fij − Ẽi∂iϑ +

1
2
(∂tϑ)

2
)

. (6.1.5)

The equations of motion for this action are identical to those of the electric limit (cf. table 6.1) along
with the additional equation of motion for ϑ, which takes the form ∂2

t ϑ − ∂i Ẽi = 0. In this sense, the
electric limit sits inside the GED model. To obtain the magnetic limit, we may simply (and consis-
tently) set ϑ = 0 in the equations of motion for the GED model (6.1.5). For more details, including
transformation properties of the fields in the various limits, we refer the reader to [58].

6.1.2 Null Reduction of Maxwell Electrodynamics on a Curved Background

A convenient way to obtain GED coupled to TNC geometry is the null reduction (cf. section 4.3) of
the Maxwell action on a (d + 2)-dimensional Lorentzian background described by a metric γAB,

S = −1
4

∫
dd+2x

√
−γFABFAB, (6.1.6)

where F = dA. The null reduction ansatz has the form

ds2 = γABdxAdxB = 2τµdxµ (du − mνdxν) + hµνdxµdxν, (6.1.7)
√
−γ = e, γuu = 2Φ̃, γuµ = −v̂µ, γµν = hµν, (6.1.8)

Aµ = aµ − ϑmµ − ϕ̃τµ =: âµ, Au = ϑ, (6.1.9)

where none of the fields depends on u. In the above, A, B, C, . . . represent (d + 2)-dimensional space-
time indices, while µ, ν, . . . represent (d+ 1)-dimensional space-time indices and exclude the compact
direction u,

For easy reference, we summarize some properties of the Newton-Cartan fields that we will use
repeatedly in this chapter (see also chapter 4):

vµτµ = −1, vµτν + δ
µ
ν = eµ

a ea
ν, ea

µvµ = 0, eµ
a τµ = 0, eµ

a eb
µ = δb

a , (6.1.10)

and

v̂µ = vµ − eµ
a eνamν, êa

µ = ea
µ − τµmνeνa, h̄µν = hµν − 2m(µτν), Φ̃ = −vµmµ +

1
2

hµνmµmν.

(6.1.11)

For the curvatures, we therefore obtain

Fµν = 2∂[µ âν] =: f̂µν, Fµu = ∂µϑ, (6.1.12)

Thus the term FABFAB in the action (6.1.6) becomes

FABFAB = γACγBDFABFCD = γµνγρσFµρFνσ + 2γuuγµνFuµFuν + 4γuµγνρFuνFµρ + 2γuµγνuFuνFµu
(6.1.13)

= hµνhρσ f̂µρ f̂νσ + 4Φ̃hµν∂µϑ∂νϑ + 4v̂µhνρ∂νϑ f̂µρ − 2v̂µv̂ν∂µϑ∂νϑ, (6.1.14)

which produces the GED action

SGED = −
∫

dd+1x e
[

1
4

hµνhρσ f̂µρ f̂νσ + Φ̃hµν∂µϑ∂νϑ + v̂µhνρ∂νϑ f̂µρ −
1
2

v̂µv̂ν∂µϑ∂νϑ

]
. (6.1.15)

The GED fields transform under Barg(d, 1)× UΓ(1) as1 [58]

δaµ = ϑea
µλa + τµaνeν

aλa + τµvν∂νΓ + ∂µΓ, δϕ̃ = aνeν
aλa + vν∂νΓ, δϑ = 0, (6.1.16)

where λa parametrizes Galilean boosts, while Γ represents a UΓ(1) gauge transformation.
In order to facilitate a comparison with the work on GED in [58], we construct a table below

providing a dictionary between different notations.

1 Note the typo in the transformation property of aµ under gauge transformations in eq. (6.6) in [58].
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Festuccia et al. [58] Notation in present work Description

Aµ A(0)µ, âµ b’dary value of 3-dimensional part of 5-dim. gauge field

aµ aµ Spatial part of “GED gauge field”; satisfies vµaµ = 0

ϕ̃ ϕ̃ Temporal part of GED gauge field

Aµ (Note the bar!) aµ − ϑτµ The GED gauge field

ϕ ϑ The GED scalar; comes from Au

Mµ mµ Newton-Cartan gauge field

τµ τµ Newton-Cartan clock form

vµ vµ Inverse NC clock form, vµτµ = −1

ea
µ ea

µ NC vielbein

eµ
a eµ

a Inverse NC vielbein, ea
µeµ

b = δa
b

Table 6.2: Dictionary between [58] and this work.

6.1.3 Dimensional Analysis & Scaling Weights for Anisotropic Backgrounds

The GED action (6.1.5) enables us to determine the dimensionality of the GED fields and their associ-
ated sources when the background is anisotropic, characterized by time scaling with z > 1 and spatial
directions scaling with weight one. Restricting to d = 2, the measure acquires scaling weight −(z + 2).
Introducing the scaling weight operator ∆[·] , we observe that for ai, the relevant piece of the action
reads fij fij. Now, since ∆[ fij] = 1 + ∆[ai] due to the spatial derivative, we obtain the relation

2 + z = 2 + 2∆[ai] ⇒ ∆[ai] =
z
2

. (6.1.17)

For ϑ, the piece (∂tϑ)2 in the action yields

2 + z = 2(2 + ∆[ϑ]) ⇒ ∆[ϑ] =
z − 2

2
, (6.1.18)

while the term ∂i ϕ̃∂iϑ gives us

2 + z = 2 + ∆[ϕ̃] + ∆[ϑ] =
2 + z

2
+ ∆[ϕ̃] ⇒ ∆[ϕ̃] =

2 + z
2

. (6.1.19)

We note that this is consistent since the last piece ∂tai∂iϑ has scaling weight 2+ z/2+ 1+ (z − 2)/2 =
2 + z. To summarize: on anisotropic backgrounds, the fields of GED scale as in table 6.3.

Field ai ϕ̃ ϑ

Weight z/2 z/2 + 1 z/2 − 1

Table 6.3: Scaling Weights of the GED fields.

The GED fields generally couple to “GED charges”, which we will simply refer to as VEVs. When
considering such couplings, we must add a Lagrangian of the form

LVEV = jiai + j0 ϕ̃ + 〈Oϑ〉 ϑ. (6.1.20)

Performing the same analysis as above, we find that the VEVs have scaling weights as in table 6.4.

VEV ji j0 〈Oϑ〉
Weight z/2 + 2 z/2 + 1 z/2 + 3

Table 6.4: Scaling Weights of the GED VEVs.
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6.2 the electromagnetic uplift

6.2.1 The Uplift & z = 2 Pure Lifshitz Holography

In this section, we review the results of [23, 24]. This is also the approach of [57], which deals with
hydrodynamics in the context of Lifshitz holography. As we will discuss below, when making the
choices

Z = e3Φ, W = 4, V(Φ) = 2e−3Φ − 12e−Φ, k = 3, (6.2.1)

in the EPD model (5.2.1), i.e. when

S =
∫

d4x
√
−g
(

R − 1
4

e3ΦF2 − 2B2 − 3
2
(∂Φ)2 − 2e−3Φ − 12e−Φ

)
, (6.2.2)

the action (6.2.2) can be uplifted to the following five-dimensional action,

S5d =
1

2κ2
5

∫
d5x

√
−G

(
R(G) + 12 − 1

2
∂Mψ∂Mψ

)
, (6.2.3)

with κ2
5 = 8πG5 and M = (u, M). The reduced model admits z = 2 Lifshitz solutions.

The action (6.2.2) is the S1 Scherk-Schwarz reduction of the uplift (H.2.9) (see appendix H): here,
the global symmetry is the shift symmetry of ψ; i.e. the action (H.2.9) is invariant under ψ → ψ + Λ
for Λ a constant. When going around the circle once, the reduction scheme tells us that ψ should
come back to itself plus a local shift.

Explicitly, the reduction ansatz has the form

ds2
5 = e−ΦgMNdxMdxN + e2Φ

(
du + AMdxM

)2
, (6.2.4)

ψ = 2u + 2Ξ, (6.2.5)

where M,N , . . . are five-dimensional space-time indices, and M, N, . . . are four-dimensional space-
time indices that exclude the compact direction u. The four-dimensional fields gMN , AM, Ξ and Φ do
not depend on the compactified u–direction, which—since we’re reducing on a circle of radius L—is
periodically identified, u ∼ u + 2πL. Note also that since our normalization is such that 1

16πG4
= 1,

the five-dimensional Newton constant satisfies 2πL
16πG5

= 1.
The renormalized on-shell four-dimensional EPD z = 2 action has the schematic form

Sren = S + Sgh + Sct, (6.2.6)

where Sgh = 2
∫

d3x
√
−hK is the Gibbons-Hawking boundary term.

Performing this reduction gives the action [57] (we present a detailed derivation of this result in
appendix H)

S =
∫

d4x
√
−g
(

R − 1
4

e3ΦFMN FMN − 2BMBM − 3
2

∂MΦ∂MΦ − V
)
+ 2

∫
d3x

√
−hK + Sct,

(6.2.7)

where Bµ = Aµ − ∂µΞ.

6.2.2 Scherk-Schwarz Reduction of the Electromagnetic Uplift

We now add a free abelian gauge field to the five-dimensional model considered above, resulting in
what we shall call the electromagnetic uplift,

S =
1

2κ2
5

∫
d5x

√
−G

(
R + 12 − 1

2
∂Mψ∂Mψ − 1

4
FMNFMN

)
, (6.2.8)

where FMN is the field strength of the U(1) gauge field AM, i.e.

FMN = 2∂[MAN ]. (6.2.9)
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The equations of motion are

GMN =
1
2

(
∂Mψ∂N ψ − 1

2
(∂ψ)2GMN

)
+ 6GMN +

1
2

(
FMPF P

N − 1
4
F 2GMN

)
, (6.2.10)

1√
−G

∂M
(√

−G∂Mψ
)
= 0,

1√
−G

∂M
(√

−GFMN
)
= 0, (6.2.11)

where GMN is the five-dimensional Einstein tensor of GMN . Upon reduction, the action (6.2.8) will
generically produce an extra gauge field and a scalar2 compared to the pure uplift considered in sec-
tion 6.2.1. The massless scalar Υ = Au, with its origin in the five-dimensional gauge field, is associated
with spontaneous breaking of the five-dimensional UΓ̂(1) gauge transformations, δΓ̂AM = ∂MΓ̂, that
depend on the compactification coordinate u. In the reduced theory, we thus have diffeomorphisms
and gauge transformations of the form

ζ̂N = ζN(x), ζ̂u = Λ(x), Γ̂ = Γ(x). (6.2.12)

Now, we want to identify the Maxwell field of the reduced theory. The naïve choice AM does not
transfrom correctly under KK UΛ(1) gauge transformations—that is, gauge transformations of A,
which is a remnant of diffeomorphism invariance in the compact direction. This is an ubiquitous fea-
ture of KK reductions when p-form fields are involved, and also happens e.g. when reducing eleven-
dimensional supergravity to ten-dimensional type IIB supergravity. The higer-dimensional gauge field
AM transforms under diffeomorphisms and UΓ̂(1) gauge transformations, we may identity the cor-
rect lower dimensional gauge field,

δAM = ζ̂N ∂NAM +AN ∂M ζ̂N + ∂MΓ̂. (6.2.13)

We are thus lead to conclude that the naïve reduction AM transforms according to

δAM = ζN∂NAM +AN∂MζN +

=Υ︷︸︸︷
Au ∂MΛ + ∂MΓ, (6.2.14)

which transforms as a lower-dimensional vector field but also under UΛ(1) gauge transformations.
The combination

CM = AM − ΥAM, (6.2.15)

transforms as desired, so we identify it as the lower-dimensional gauge field. Under u-independent
gauge transformations Γ̂(x, u) = Γ(x)—which we will denote UΓ(1)—only CM transforms: δΓCM =
∂MΓ.

We now identify the four-dimensional field strengths, which is closely related to FMN , which is
manifestly invariant under UΓ̂(1) and UΛ(1) transformations. The frame version of the field strength
reads

Fab = eM
a eN

b

(
2∂[MCN] + 2Υ∂[M AN]

)
, (6.2.16)

where HMN is UΛ(1) and UΓ(1) invariant. For the scalar, this produces the term

Fau = eΦ∂aΥ, (6.2.17)

implying that

F 2 = FabF ab + 2FauF a
u = H2 + Υ2F2 + 2ΥHMN FMN + 2e2Φ∂MΥ∂MΥ, (6.2.18)

where H is the field strength for C and F is the field strength for A. Using πL
κ2

5
= 1, we can summarize

our findings as

1
2κ2

5

√
−G 1

4
FMNFMN reduces to−→

√−ge−Φ

4

(
H2 + Υ2F2 + 2ΥHMN FMN + 2e2Φ∂MΥ∂MΥ

)
.

(6.2.19)

2 More specifically, we get the usual KK tower of massive (i.e. Stückelberged) gauge fields. We keep only the massless vector and
the massless scalar.
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Since nothing else is changed from uplift discussed in section 6.2.1, we infer that the reduced theory
has the form of an EPD-Maxwell-scalar model,

S =
∫

d4x
√
−g
(

R − 1
4

(
e3Φ + e−ΦΥ2

)
F2 − 2B2 − 3

2
(∂Φ)2 − 1

4
e−ΦH2 (6.2.20)

− 1
2

Υe−ΦHMN FMN − 1
2

eΦ (∂Υ)2 − 2e−3Φ − 12e−Φ
)

, (6.2.21)

Note that the counterterm is unchanged under addition of the additional Maxwell field, as we demon-
strated in section 3.2.1. This is a very non-trivial result, since it implies that the extra massless field
in the lower-dimensional theory do not give rise to divergences in the case of Lifshitz boundary
conditions. Explicitly, it reads

Sct = 2
∫

∂M
d3x

√
−h̃
(
−1

4
eΦ/2

[
R(h̃) − 3

2
∂µΦ∂µΦ − 1

4
e3ΦFµνFµν − 2BµBµ + 10e−Φ

])
(6.2.22)

− log r
∫

∂M
d3x

√
−h̃e−Φ/2Ared, (6.2.23)

where h̃ is the boundary metric. Here, r is the radial coordinate (which is inherited from the z = 0
Schrödinger space-time), and Ared is the Scherk-Schwarz reduced Weyl anomaly—we will discuss
this later in section 6.5.

6.2.3 Variation of the Action

After the reduction, the renormalized action reads

Sren = S + 2
∫

∂M
d3x

√
−h̃K + Sct, (6.2.24)

where S is given in (6.2.21), and Sct in (6.2.23). The total variation of the renormalized action conse-
quently takes the form

δSren =
∫
M

d4x
√
−g
(
EMNδgMN + EN

(B)δBN + EΦδΦ + EΥδΥ + EN
(C)δCN

)
(6.2.25)

+
∫

∂M
d3x

√
−h̃
(

1
2

Tµνδhµν + T νδBν + TΦδΦ +TνδCν + TΥδΥ − δr
r

e−Φ/2Ared

)
,

(6.2.26)

where

EMN =GMN +
1
8

(
e3Φ + e−ΦΥ2

)
gMN FPQFPQ − 1

2

(
e3Φ + e−ΦΥ2

)
FMPFN

P + gMN BPBP − 2BMBN

(6.2.27)

+
3
4

gMN∂PΦ∂PΦ − 3
2

∂MΦ∂NΦ + gMNe−Φ
(
−6 + e−2Φ

)
+

1
8

e−ΦHPQ HPQgMN − 1
2

e−ΦHMPHN
P

(6.2.28)

+
1
4

e−ΦΥHPQFPQgMN − e−ΦΥHMPFN
P − 1

2
eΦ∂MΥ∂NΥ +

1
4

eΦgMN∂PΥ∂PΥ, (6.2.29)

EΦ =3�(g)Φ − 1
4

(
3e3Φ − e−ΦΥ2

)
FMN FMN + 6e−3Φ − 12e−Φ (6.2.30)

+
1
4

e−ΦHMN HMN +
1
2

e−ΦΥHMN FMN +
1
2

eΦ∂MΥ∂MΥ, (6.2.31)

EN
(B) =∇M

([
e3Φ + e−ΦΥ2

]
FMN + e−ΦHMN

)
− 4BN , (6.2.32)

EΥ =
1√−g

∂M

(√
−geΦ∂MΥ

)
− 1

2
e−ΦΥF2 − 1

2
e−ΦHMN FMN (6.2.33)

EN
(C) =∇M

(
e−ΦHMN + Υe−ΦFMN

)
, (6.2.34)
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as well as

Tµν =− 2Khµν + 2Kµν − eΦ/2G(h̃)
µν + 5e−φ/2h̃µν (6.2.35)

+
1
2

e7Φ/2FµρFν
ρ − 1

8
e7Φ/2hµνFρσFρσ − eΦ/2hµνBρBρ + 2eΦ/2BµBν (6.2.36)

+
1
2

eΦ/2
(
∇(h̃)µ∂νΦ − h̃µν�(h̃)Φ

)
+

7
4

eΦ/2∂µΦ∂νΦ − eΦ/2h̃µν∂ρΦ∂ρΦ, (6.2.37)

TΦ =− 3nM∂MΦ − 1
4

eΦ/2R(h̃) − 3
8

eΦ/2∂µΦ∂µΦ − 3
2

eΦ/2�(h̃)Φ (6.2.38)

+
7

16
e7Φ/2FµνFµν +

1
2

eΦ/2BµBµ +
5
2

e−Φ/2, (6.2.39)

T ν =−
([

e3Φ + e−ΦΥ2
]

FMν + e−ΦHMν
)

nM − 1
2
∇(h̃)µ

(
e7Φ/2Fµν

)
+ 2eΦ/2Bν, (6.2.40)

Tν =−
(

e−ΦHMν + 2Υe−ΦFMν
)

nM, (6.2.41)

TΥ =− eΦnM∂MΥ. (6.2.42)

Note that we have not varied counterterm in the expressions above, so the expression are correct up
to log r-terms. The reduced bulk is described by the metric

ds2 = eΦ dr2

r2 + h̃µνdxµdxν, (6.2.43)

so the vector normal to hyperplanes of constant r is given by

nM = −NδM
r , (6.2.44)

where N is a normalization constant and the minus is due to the fact that the boundary is located at
r = 0. The normalization constant is determined by the condition gMNnMnN = 1, which translates
into the requirement 1 = grrN2 = N2eΦ/r, which in turn implies that N= re−Φ/2. This means that
we have the following relation for the extrinsic curvature

K = h̃µνKµν, Kµν = −1
2

£n h̃µν, nM = −re−Φ/2δM
r (6.2.45)

When appropriately truncated, these results agree with those of [57].

6.2.4 Oxidation to a z = 0 Schrödinger Geometry

Starting from the z = 0 Schrödinger geometry (see also previous work in [24, 57, 154, 155])

ds2
5 =

dr2

r2 +
1
r2

(
2dtdu + dx2 + dy2

)
+ du2, (6.2.46)

ψ = 2u + 2Ξ(0), (6.2.47)

A = A(0)µdxµ, (6.2.48)

where Ξ(0) and A(0) are constants, the Scherk-Schwarz reduction ansatz (H.2.10) gives rise to the
Lifshitz solution in the reduced theory:

ds2 = eΦ(0)

(
dr2

r2 − e−2Φ(0)
dt2

r4 +
1
r2

(
dx2 + dy2

))
, (6.2.49)

B = e−2Φ(0)r−2dt (Constant Stückelberg field), (6.2.50)

Φ = Φ(0), (6.2.51)

Υ = Υ(0), (6.2.52)

C = A(0)µdxµ − Υ(0)e
−2Φ(0)r−2dt. (6.2.53)

This solution can be verified by plugging it into the equations of motion we found above.
The z = 0 Schrödinger metric (6.2.46) satisfies the AlAdS requirement (A.2.5), since e.g.

Rtrru =
1
r4 = GtrGru − GtuGrr +O(r−3), (6.2.54)

while a similar analysis for the other seven non-zero components of the Riemann tensor shows that,
indeed, the z = 0 Schrödinger metric belongs to the class of AlAdS metrics, which is what permits
the use of the results obtained in chapter 3.
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6.3 sources & their transformations

In this section, we find the sources of charged Lifshitz Holography. We will be guided by the fact that
we expect to see GED (see [58]) on the boundary, so we can define our sources in such a way that they
transform appropriately. Guided by insights from [23, 24] involving the reduced conformal anomaly—
which eventually led to the discovery that dynamical Newton-Cartan geometry corresponds to (non-
relativistic) Hořava-Lifshitz (HL) gravity [53]—we expect that the anomaly becomes a Lagrangian
describing GED coupled to HL gravity.

6.3.1 Defining the Sources

We begin our discussion with a recap of the known sources, which were found in [23, 24, 57]. Writing
the metric (6.2.43) in terms of vielbeine,

ds2 = eΦ dr2

r2 − E0E0 + δabEaEb, (6.3.1)

and performing a Stückelberg decomposition of the massive vector, Bν = Aν − ∂νΞ, we find the
sources vµ, eµ

a , mµ, φ, χ, defined as

Eµ
0 ' −r2α−1/3

(0) vµ, (6.3.2)

Eµ
a ' rα1/3

(0) eµ
a , (6.3.3)

Aµ − α(Φ)E0
µ ' −mµ, (6.3.4)

Φ ' φ, (6.3.5)

Ξ ' −χ, (6.3.6)

ϕ ' r2α−1/3
(0) vµmµ, (6.3.7)

Aa ' −rα1/3
(0) eµ

a mµ, (6.3.8)

where (in the notation of chapter 5)

α(Φ) = e−3Φ/2, α = α(0) + · · ·+ r2α−1/3
(0)

(
Ĩ − I

)
+ . . . , (6.3.9)

where the dots hide a logarithmic term, and

mµ = Mµ + ∂µχ. (6.3.10)

The source Mµ appears in the expansion of the vielbein E0
µ at order O(r0) (see e.g. [33] and our

discussion in chapter 5)

E0
µ = r−2α1/3

(0) τµ + · · ·+ α−1
(0)Mµ + · · · , (6.3.11)

where we have omitted logarithmic terms. Note that the dots hide additional N, G, J-invariant terms
at order O(r0), see section 6.6. Note further that combining the expansion (6.3.11) with the definition
of mµ (6.3.4) and the expansion for α in (6.3.9) gives us the relation

Aµ = α4/3
(0) r−2τµ + · · · − ∂µχ + · · · , (6.3.12)

where, again, the dots hide invariant terms of order O(r0). Now, from a reduction perspective, the
Maxwell field consists of two pieces,

Cµ = Aµ − ΥAµ, (6.3.13)

which we see reflected at the solution level. Guided by the expected behaviour of the anomaly dis-
cussed in section 6.5—i.e. that the anomaly should become HL gravity coupled to GED—we define a
new source (aµ, ϕ̃)

Cµ + Υα(Φ)E0
µ ' aµ − ϕ̃τµ, (6.3.14)
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where we have performed a decomposition into spatial and temporal directions; that is, in the above
we have that aµvµ = 0. Note that this is completely analogous to the way the source mµ appears in
(6.3.4).

We can isolate the time component of this source by contracting it with Eµ
0 , giving

Ω := Eµ
0 Cµ + Υα ' −r2α−1/3

(0) ϕ̃, (6.3.15)

which is the analogue of (6.3.7). The relation E0
µEµ

a = δ0
a = 0 further gives us (when applying Eµ

a to
(6.3.14))

Ca ' rα1/3
(0) aa. (6.3.16)

This allows us to identify the fall-off of Cµ using the behaviour of Aµ in (6.3.12)

Cµ = −ϑα4/3
(0) τµr−2 + · · ·+ aµ − ϑ

(
mµ − ∂µχ

)
− ϕ̃τµ + · · · (6.3.17)

= −ϑα4/3
(0) τµr−2 + · · ·+ aµ − ϑMµ − ϕ̃τµ + · · · (6.3.18)

In summary, our holographic setup involves the following sources

Eµ
0 ' −r2α−1/3

(0) vµ, (6.3.19)

Eµ
a ' rα1/3

(0) eµ
a , (6.3.20)

Aµ − α(Φ)E0
µ ' −mµ, (6.3.21)

Φ ' φ, (6.3.22)

Ξ ' −χ, (6.3.23)

ϕ ' r2α−1/3
(0) vµmµ, (6.3.24)

Υ ' ϑ (6.3.25)

Cµ + Υα(Φ)E0
µ ' aµ − ϕ̃τµ, (6.3.26)

Eν
0Cν + Υα(Φ) ' −r2α−1/3

(0) ϕ̃, (6.3.27)

Ca ' rα1/3
(0) aa, (6.3.28)

where aµvµ = 0.

6.3.2 Transformation Properties

The known sources (6.7.12)–(6.7.20) transform as follows [24, 57] (see also chapter 5),

δea
µ = £ξ ea

µ + λaτµ + λa
beb

µ + ΛDea
µ. (6.3.29)

δχ = £ξ χ + σ, (6.3.30)

δvµ = £ξ vµ + λaeµ
a − 2ΛDvµ, (6.3.31)

δeµ
a = £ξ eµ

a + λ b
a eµ

b − ΛD, (6.3.32)

δφ = 0, (6.3.33)

δmµ = £ξ mµ + ea
µλa + ∂µσ, (6.3.34)

The rest of this section is devoted to a detailed analysis of the transformation properties of the new
sources aµ, ϕ̃, ϑ.

6.3.2.1 Galilean Boosts and Rotations

Cµ is invariant under bulk local Lorentz transformations—in particular boosts. These contract to
Galilean boosts near the boundary, which means that in a near-boundary expansion, invariance under
local Lorentz boosts is translated into invariance under Galilean boosts at each order of r. Using the
near-boundary expansion of Cµ (6.3.18), this gives us at order3 O(r0)

0 = δG
(
aµ − ϑMµ − ϕ̃τµ

)
= δGaµ − ϑ

=λaea
µ︷ ︸︸ ︷

δG Mµ −τµδG ϕ̃. (6.3.35)

3 Since ϑ is a scalar, it transforms trivially, δGϑ = 0.
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Thus, see immediately that we must have

δGaµ = ϑλaea
µ + τµ (·) , (6.3.36)

where (·) is so far undetermined. However, the condition vµaµ = 0 provides us with the additional
constraint

0 = δG(vµaµ) = aνδGvν + vµδaµ = aνλaeν
a − (·), (6.3.37)

where we have used the (6.3.36) as well as the orthogonality property vµea
µ = 0. Thus the transforma-

tion of aµ becomes

δGaµ = ϑλaea
µ + τµaνeν

aλa, (6.3.38)

and hence (6.3.35) gives us that

δG ϕ̃ = aνeν
aλa. (6.3.39)

For rotations, we do the same as above. We use invariance of the bulk field Cµ under rotations, i.e.
δJCµ = 0, which implies that at order O(r0) we have

0 = δJ
(
aµ − ϑMµ − ϕ̃τµ

)
= δJ aµ − τµδG ϕ̃. (6.3.40)

As with boosts, rotation invariance at order O(r−2) is manifest. Hence, as before, δJ aµ will be propor-
tional to τ. Using again the orthogonality property aµvµ = 0, we find that δJ aµ = 0 since δJvµ = 0,
leading us to conclude that

δJ aµ = 0 = δJ ϕ̃. (6.3.41)

6.3.2.2 Gauge Transformations

There are two types of gauge transformations: Stückelberg gauge transformations, UΛ(1), and gauge
transformations of Cµ → Cµ + ∂µΓ, which we will call UΓ(1). Starting with UΓ(1), we recall that Cµ

transforms—by construction—according to

δΓCµ = ∂µΓ, (6.3.42)

where Γ has an expansion of the form (reflecting the structure of Cµ in (6.3.18))

Γ = Γ(0) + Γ(1,0) log r + Γ(2)r
2 + · · · . (6.3.43)

At order O(r0), the transformation (6.3.42) takes the form

∂µΓ = δΓaµ − τµδΓ ϕ̃, (6.3.44)

since neither ϑ nor Mµ transforms under UΓ(1). Combining this with the orthogonality relation,

0 = δΓ(vµaµ) = vµδΓaµ, (6.3.45)

we see that (6.3.44) implies that δΓaµ also involves a term proportional to τ, which we can determine
using (6.3.45), giving

δΓaµ = ∂µΓ(0) + τµvν∂νΓ(0), δΓ ϕ̃ = vµ∂µΓ(0), (6.3.46)

On the boundary r → 0, the gauge group is truncated, i.e. UΓ(1) → UΓ(0)
(1), and, similarly, for

Stückelberg gauge transformations, we obtain the group UΛ(1) → Uσ(1), where σ is (minus) the
boundary value of Λ.

Repeating the calculation for δΛ transformations, we obtain immediately that on the boundary
(where δΛ → δσ),

δσaµ = 0, δσ ϕ̃ = 0, δσϑ = 0. (6.3.47)
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6.3.2.3 PBH Transformations: Diffeomorphisms, Dilatations & Stückelberg Gauge Transformations

The PBH transformations in the electromagnetic uplift translate into boundary diffeomorphisms, Weyl
transformations, and Stückelberg gauge transformations. As we saw in section 5.2.3 (see also appendix
A of [24]), the PBH transformations are the diffeomorphisms preserving the radial gauge choice of
the FG expansion, i.e. diffeomorphisms acting infinitesimally on the five-dimensional fields in the
manner

δζ̂GMN = £ζ̂GMN , (6.3.48)

δζ̂AM = £ζ̂AM, (6.3.49)

δζ̂ ψ = £ζ̂ ψ, (6.3.50)

and satisfying £ζ̂Grr = 0 = £ζ̂GMr. Solving these equations gives

ζ̂r ' −rΛD, ζ̂A ' ξ̂ A, (6.3.51)

where ξ̂ and ΛD are independent of r. This leads to the transformation properties

δξ̂γ(0)AB = ξ̂C∂Cγ(0)AB + γ(0)CB∂A ξ̂C + γ(0)AC∂B ξ̂C + 2ΛDγ(0)AB, (6.3.52)

δξ̂ ψ(0) = ξ̂A∂Aψ(0), (6.3.53)

δξ̂A(0)A = ξ̂B∂BA(0)A +A(0)B∂A ξ̂B. (6.3.54)

In the reduced theory, we take the diffeomorphisms to be independent of the compact direction.
Writing ξ̂µ = ξµ and −σ for the u-component of ξ, we get diffeomorphisms, Weyl transformations
and Stückelberg gauge transformations in exactly the same fashion as in section 5.2.3.

6.3.2.4 Residual Transformations

In addition to the diffeomorphisms and gauge transformations (6.2.12) in the reduced theory, the
reduction is also preserved under the u-dependent transformations ζ̂u = cu and Γ̂ = `u, where
c, ` are constants. These are remnants of full symmetry in the electromagnetic uplift and are only
preserved to leading order. We will refer to them as δc and δ`, respectively. In [24], δc was called local
dilatations, and the relevant field transformation reads

δcφ = c. (6.3.55)

The GED scalar transforms undre δ` transformations according to

δ`ϑ = `. (6.3.56)

Note that when solving the equations of motion in the reduced theory, as we discussed in section 6.2.4,
the δ` symmetry manifests itself by leaving Υ(0)—which is assumed to be constant—undetermined by
the equations of motion.

6.3.2.5 Summary of Local Transformations

Below, we present our results for the transformations of all our sources

δea
µ = £ξ ea

µ + λaτµ + λa
beb

µ + ΛDea
µ. (6.3.57)

δχ = £ξ χ + σ, (6.3.58)

δvµ = £ξ vµ + λaeµ
a − 2ΛDvµ, (6.3.59)

δeµ
a = £ξ eµ

a + λ b
a eµ

b − ΛDeµ
a , (6.3.60)

δφ = £ξ φ, (6.3.61)

δmµ = £ξ mµ + ea
µλa + ∂µσ, (6.3.62)

δϑ = £ξ ϑ, (6.3.63)

δϕ̃ = £ξ ϕ̃ + aaλa + vµ∂µΓ(0) − 2ΛD ϕ̃, (6.3.64)

δaµ = £ξ aµ + ϑλaea
µ + τµaνeν

aλa + ∂µΓ(0) + τµvν∂νΓ(0), (6.3.65)

δaa = £ξ aa + ϑλa + λa
bab − ΛDaa + eµ

a ∂µΓ(0). (6.3.66)
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Note that the sources aµ, ϑ, ϕ̃ precisely transform as GED fields (6.1.16). We also see that the symmetry
group is the direct product group

Di f f (M)× Sch2(2, 1)× U(1). (6.3.67)

Under dilatations, we have

Source φ τµ ea
µ vµ eµ

a m0 ma χ aa ϕ̃ ϑ

scaling dim. 0 −2 −1 2 1 2 1 0 1 2 0

Table 6.5: The sources and their scaling dimensions

We note that for the new sources, this behaviour precisely agrees with the scaling weights deter-
mined in the field theory in table 6.3 when putting z = 2.

6.4 boundary geometry & sch2 (2, 1)

6.4.1 Null Reduction on the Boundary

In this section, we show how the Scherk-Schwarz reduction employed in section (6.2) becomes a null
reduction—as considered in section 4.3—on the boundary. Recall that

Aµ − α(Φ)E0
µ ' −mµ, Bµ − α(Φ)E0

µ ' −Mµ, (6.4.1)

where Bµ = Aµ − ∂µΞ, which implies that(
Bµ + ∂µΞ

)
− α(Φ)E0

µ ' −Mµ − ∂µχ ⇐⇒ Aµ − α(Φ)E0
µ ' −

(
Mµ + ∂µχ

)
, (6.4.2)

where, explicitly,

mµ = Mµ + ∂µχ, or Mµ = mµ − ∂µχ. (6.4.3)

The reduction ansatz can be written in the form

ds2
5 =

dr2

r2 + γABdxAdxB = e−Φ
[

eΦ dr2

r2 + h̃µνdxµdxν

]
+ e2Φ(du + Aµdxµ)2. (6.4.4)

where the metric γAB on leaves of constant r can be written in Fefferman-Graham form (see ap-
pendices A and ??); in particular, the boundary is described by the leading term γ(0)AB which has
dilatation weight 2, i.e.

γAB ' r−2γ(0)AB. (6.4.5)

The four-dimensional part in (C.1.20)—i.e. the quantity in square brackets—can be written in terms
of vielbeine in the manner depicted in (6.3.1). We now dissect the ansatz (C.1.20) and write it piece by
piece in terms of sources via the near-boundary expansions of the bulk fields worked out in section
6.3. Using the Stückelberg decomposition of the mass gauge field (6.4.3), the first piece of (C.1.20)
becomes

−e−ΦE0
µE0

νdxµdxν = −α2/3
(0)

(
r−2α1/3

(0) τµ + α−1
(0)Mµ + · · ·

) (
r−2α1/3

(0) τν + α−1
(0)Mν + · · ·

)
dxµdxν

(6.4.6)

=
(
−α4/3

(0) r−4τµτνdx − 2r−2τ(µ Mν) − α−1/3
(0) Mµ Mν

)
dxµdxν + · · · , (6.4.7)

as well

e−ΦδabEa
µEb

νdxµdxν = α2/3
(0) δabr−2α−2/3

(0) ea
µeb

νdxµdxν = r−2eaµaa
ν =: r−2hµν, (6.4.8)

whereas

e2Φ Aµ Aνdxµdxν = e2Φ (Bµ + ∂µΞ
) (

Bν + ∂µΞ
)

dxµdxν (6.4.9)

= α−4/3
(0)

(
α4/3
(0) r−2τµ − ∂µχ

) (
α4/3
(0) r−2τν − ∂νχ

)
dxµdxν + · · · (6.4.10)

= α4/3
(0) r−4τµτνdxµdxν − 2r−2∂µχτνdxµdxν + α−4/3

(0) ∂µχ∂νχdxµdxν + · · · .

(6.4.11)
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The cross term reduces to

2e2Φ Aµdudxµ = 2e2Φ (Bµ − ∂µΞ
)

dudxµ (6.4.12)

= 2α−4/3
(0)

(
α4/3
(0) r−2τµ + ∂µχ

)
dudxµ + · · · (6.4.13)

= 2r−2τµdudxµ + 2α−4/3
(0) ∂µχdudxµ + · · · , (6.4.14)

and, finally,

e2Φdu2 = α−4/3
(0) du2 + · · · , (6.4.15)

which does not contribute at order r−2. Now, collecting all terms of order r−4, we see that they cancel
(cf. equations (6.4.7) and (6.4.11)). The boundary metric γ(0)AB is consequently given by

ds2 = γ(0)ABdxAdxB = −2τµ Mνdxµdxν − 2∂µχτνdxµdxν + 2τµdudxµ + hµνdxµdxν (6.4.16)

= 2τµdxµ (du − (Mν + ∂νχ)dxν) + hµνdxµdxν (6.4.17)

= 2τµdxµ (du − mνdxν) + hµνdxµdxν, (6.4.18)

which is identical to the null reduction ansatz employed in section 4.3, which was shown to give rise
to TNC geometry: thus we see directly that the boundary geometry is TNC.

6.4.1.1 Null Reduction of the Connection

We will now consider explicitly the consequences of the null reduction for the affine connection Γ̊C
AB,

where we use a ‘◦’ to denote that this is the affine connection of the metric γ(0)AB. Taking the three
legs in non-compact directions, we find that

Γ̊λ
µν =

1
2

hλρ
(
∂µ h̄νλ + ∂ν h̄µλ − ∂λ h̄µν

)
− v̂λ∂(µτν) (6.4.19)

= Γλ
µν + v̂λ∂[µτν] (6.4.20)

= Γλ
µν − Γλ

[µν], (6.4.21)

where we define

Γλ
µν = −v̂λ∂µτν +

1
2

hλρ
(
∂µ h̄νλ + ∂ν h̄µλ − ∂λ h̄µν

)
, (6.4.22)

which is the unique TNC metric compatible connection linear in mµ [33] that we also discussed in
chapter 4. It is (G, J) invariant and satisfies metric compatibility in the usual sense,

∇µτν = 0, ∇µhνλ = 0. (6.4.23)

It can be made N invariant by replacing mµ with Mµ. The other components of Γ̊A
BC read

Γ̊u
µν = −1

2
v̂λ
(
∂µ h̄λν + ∂ν h̄λµ − ∂λ h̄µν

)
+ 2Φ̃∂(µτν), (6.4.24)

Γ̊λ
uµ = hλρ∂(µτρ), (6.4.25)

Γ̊u
uµ = −v̂λ∂[µτλ], (6.4.26)

Γ̊u
uu = 0 = Γ̊µ

uu. (6.4.27)

6.4.2 Gauging sch2(2, 1)

Complementary to our discussion of TNC geometry in chapter 4 and the emergence of TNC geometry
in section 5.2.4 for generic values of z ∈ (1, 2], we discuss in this section how TTNC explicitly occurs
when gauging sch2(d, 1), which was first shown in [34]. In order to realize the more general TNC
geometry, torsion has to be added by hand in this approach. For an overview of Schrödinger algebras
and their rôle as Newton-Cartan space-time symmetry groups, see e.g. [115, 125].

For z = 2, it is possible to add an additional special conformal transformation K, which cannot be
done in the general-z case. To keep the analysis as general as possible, we do that in what follows.
As such, sch2(2, 1) is generated by: D (dilatations) and K (special conformal transformations), in
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addition to those of the Bargmann algebra, bar(2, 1), which is generated by H (time translations), P
(spatial translations), G (Galilean boosts), Jab (spatial rotations) and N (central charge). The non-zero
commutation relations of sch2(2, 1) read

[D, H] = −2H, [H, K] = D, [D, K] = 2K, [H, Ga] = Pa (6.4.28)

[D, Pa] = −Pa, [D, Ga] = Ga, [K, Pa] = −Ga, [Pa, Gb] = δabN, (6.4.29)

[Jab, Pc] = 2δc[aPb], [Jab, Gc] = 2δc[aGb], [Jab, Jcd] = 4δ[a[d Jc]b]. (6.4.30)

For z = 2, the Bargmann central charge N is still a central element. Further, we note in passing that it
can be shown [115] that sch2(2, 1) admits the following Levi decomposition,

sch2(2, 1) ∼= (so(3)× sl(2, R))n
(

R3 × R3
)

. (6.4.31)

We will use the δ̄–transformation approach discussed in chapter 4, where contact with diffeomor-
phisms is manifest; this was not done in [34]. As usual, we start by defining the Lie algebra valued
connection

Aµ = Hτµ + Paea
µ + Gaωµ

a +
1
2

Jabωµ
ab + Nmµ + Dbµ + K fµ. (6.4.32)

For L(x) ∈ Sch2(d, 1), the connection transforms in the adjoint, Aµ → L(x)AµL−1(x)− L(x)∂µL−1(x),
so taking L(x) to be infinitesimal, L(x) = 1+ Λ(x) with Λ(x) ∈ sch2(d, 1), we get

δAµ = ∂µΛ + [Aµ, Λ], (6.4.33)

but, since Λ(x) ∈ sch2(d, 1), we may write

Λ(x) = Hζ(x) + Paζa(x) + Gaλ̃a(x) +
1
2

Jabλ̃ab(x) + Nσ̃(x) + DΛ̃D(x) + KΛ̃K(x). (6.4.34)

For the δ̄-transformation, we replace the local translation parameters ζa in Λ with a space-time vector
ξµ defined via ζa = ξµea

µ, which allows us to write

Λ = ξµAµ + Σ, (6.4.35)

which implies that, as we have seen

Σ = Gaλa +
1
2

Jabλab + Nσ + DΛD + KΛK, (6.4.36)

where the tilde-less parameters of (6.4.36) are related to their tilded counterparts in (6.4.34) in the
same as in (4.1.11). The δ̄-transformation then becomes

δ̄Aµ = δAµ − ξνFµν = £ξAµ + ∂µΣ + [Aµ, Σ], (6.4.37)

where Fµν is the Yang-Mills curvature,

Fµν = 2∂[µAν] + [Aµ,Aν] (6.4.38)

= HRµν(H) + PaRµν
a(P) + GaRµν

a(G) +
1
2

JabRµν
ab(J) + NRµν(N) + DRµν(D) + KRµν(K).

(6.4.39)

We summarise this construction in the table below:

Table 6.6: Generators of sch2(2, 1) with their associated gauge fields, local parameters and covariant curvatures.

Symmetry Generators Gauge Field Parameters Curvatures

Time translations H τµ ζ(x) Rµν(H)

Spatial translations Pa ea
µ ζa(x) Rµν

a(P)

Boosts Ga ωµ
a λa(x) Rµν

a(G)

Spatial rotations Jab ωµ
ab λab(x) Rµν

ab(J)

Central ch. traf’os N mµ σ(x) Rµν(N)

Dilatations D bµ ΛD(x) Rµν(D)

Spec. conf. traf’os K fµ ΛK(x) Rµν(K)
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Writing out the expression of (6.4.38) for δ̄Aµ using our expressions for Aµ and Σ, we find the
following expressions for the curvatures:

Rµν(H) = 2∂[µτν] − 4b[µτν], (6.4.40)

Rµν
a(P) = 2∂[µea

ν] − 2ω[µ
abeν]b − 2ω[µ

aτν] − 2b[µea
ν], (6.4.41)

Rµν
ab(J) = 2∂[µων]

ab − 2ω[µ
c[aων]

b]
c, (6.4.42)

Rµν
a(G) = 2∂[µων]

a + 2ω[µ
bων]

a
b − 2ω[µ

abν] − 2 f[µea
ν], (6.4.43)

Rµν(D) = 2∂[µbν] − 2 f[µτν], (6.4.44)

Rµν(K) = 2∂[µ fν] + 4b[µ fν], (6.4.45)

Rµν(N) = 2∂[µmν] − 2ω[µ
aeν]a. (6.4.46)

Similarly, by writing out Aµ and Σ as they appear in (6.4.37) and identifying coefficients in front of
the generators, we find the following transformations of the gauge fields:

δ̄τµ = £ξ τµ + 2ΛDτµ, (6.4.47)

δ̄ea
µ = £ξ ea

µ + λaτµ + ΛDea
µ, (6.4.48)

δ̄ωµ
ab = £ξ ωµ

ab + ∂µλab + 2λc[aωµ
b]

c, (6.4.49)

δ̄ωµ
a = £ξ ωµ

a + ∂µλa − λbωµ
a

b + λa
bωµ

b + λabµ − ΛDωµ
a + ΛKea

µ, (6.4.50)

δ̄bµ = £ξ bµ + ∂µΛD + ΛKτµ, (6.4.51)

δ̄ fµ = £ξ fµ + ∂µΛK + 2ΛKbµ − 2ΛD fµ, (6.4.52)

δ̄mµ = £ξ mµ + ∂µσ + λaeµa. (6.4.53)

The gauge fields τµ and ea
µ transform under spatial rotations and Galilean boosts as Newton-Cartan

temporal and spatial vielbeine, respectively [54], and we identify them as such. Since they are of rank
1 and rank d, respectively, in a (d + 1)–dimensional spacetime, they are not invertible, but we can
define projective inverses vµ and eµ

a , satisfying the usual set of relations

vµτµ = −1, vµea
µ = 0, τµeµ

a = 0, ea
µeµ

b = δa
b , eµ

a ea
ν = δ

µ
ν + vµτν. (6.4.54)

The projective inverses transform under δ̄–transformations in the following manner,

δ̄vµ = £ξvµ + λaeµ
a − 2ΛDvµ, (6.4.55)

δ̄eµ
a = £ξeµ

a + λa
beµ

b − ΛDeµ
a , (6.4.56)

which are derived by considering the relations 0 = δ̄
(
vµτµ

)
and δ̄

(
vµea

µ

)
and using the identities

(6.4.54). So far, all the gauge fields are independent. This can be remedied via the imposition of
certain curvature constraints—as detailed in [34]—which allows us to make contact with TTNC. These
constraints read

0 = Rµν(H) = Rµν
a(P) = Rµν(N) = Rµν(D) = R0a

a(G) + 2mbR0a
a

b(J) + mbmcRba
a

c(J).
(6.4.57)

These constraints—along with some additional constraints coming from imposing the curvature con-
straints in the Bianchi identities (see [34] for details)—leave us with the independent fields τµ, ea

µ and
vµbµ, which we recognize as the usual fields of TNC geometry except for the odd one out: vµbµ.
However, note that under local transformations, this object transforms in the following manner

δ̄(vµbµ) = £ξ(vµbµ) + vµ∂µΛD − 2ΛDvµbµ + λaeµ
a bµ − ΛK, (6.4.58)

leading us to identify the combination vµbµ as a Stückelberg field for K transformations. This prompts
us to gauge fix it to vµbµ = 0, thereby introducing the following compensating special conformal trans-
formation

ΛK = vµ∂µΛD + λaeµ
a bµ. (6.4.59)

The next step in the gauging procedure is to write down covariant derivatives, which are covariant
with respect to the transformations (6.4.47)–(6.4.53). By taking into account all the commutators of
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sch2(d, 1) that are proportional to H and Pa, we find the following expressions for the covariant
derivatives:

Dµτν = ∂µτν − Γ̃ρ
µντρ − 2bµτν, (6.4.60)

Dµea
ν = ∂µea

ν − Γ̃ρ
µνea

ρ − ωµ
a

beb
ν − ωµ

aτν − bµea
ν. (6.4.61)

Imposing the vielbein postulates, Dµτν = 0 = Dµea
ν, allows for a identification of the curvatures

(6.4.40) and (6.4.41) in terms of the affine connection. Since the postulates imply that

Γ̃ρ
µντρ = ∂µτν − 2bµτν, Γ̃ρ

µνea
ρ = ∂µea

ν − ωµ
a

bea
ν − ωµ

aτν − bµea
ν, (6.4.62)

we immediately obtain

Rµν(H) = 2Γρ

[µν]
τρ, Rµν

a(P) = 2Γρ

[µν]
ea

ρ, (6.4.63)

implying, via the curvature constraints (6.4.57), that Γ̃ρ
µν is symmetric. It can be shown that it is

uniquely determined by [34]

Γ̃ρ
µν = −v̂ρD(b)

µ τν +
1
2

hρσ
(

D(b)
µ h̄νσ + D(b)

ν h̄µσ − D(b)
σ h̄µν

)
, (6.4.64)

where D(b)
µ = ∂µ + 2bµ is the dilatation covariant derivative. Dropping all terms involving bµ, we

recover the minimal TNC connection,

Γρ
µν = −v̂ρ∂µτν +

1
2

hρσ
(
∂µ h̄νρ + ∂ν h̄µρ − ∂ρ h̄µν

)
, (6.4.65)

with torsion

Γρ

[µν] = −v̂ρ∂[µτν]. (6.4.66)

This intimate relationship between torsion and dilatation covariance leads us—following [34]—to
attribute torsion to the gauge field bµ in the sense above.

The curvature constraint Rµν(H) implies that

∂[µτν] = 2b[µτν], (6.4.67)

which means that

τ ∧ dτ = τ[ρ∂ρτν] =
1
3

(
τµ∂[ρτν] + τρ∂[ντµ] + τν∂[µτρ]

)
=

2
3

(
bρτ[µτν] + bµτ[ρτν] + bντ[µτρ]

)
= 0,

(6.4.68)

implying, by Frobenius’ theorem, that τµ is hypersurface orthogonal, as we discussed in chapter 4.
This leads to a preferred foliation in terms of (Riemannian) slices of absolute simultaneity. Equiva-
lently, the condition (6.4.67) may be expressed as the vanishing of the twist tensor,

vµν = 2hµρhνσ∂[ρτσ] = 0. (6.4.69)

In this sense, as also emphasized in [32], the more general TNC geometry can be achieved by first
gauging the Schrödinger algebra and then adding torsion by hand.

6.4.2.1 Introducing Stückelberg Symmetry of the Central Charge

As we have seen, in Lifshitz holography the field mµ is accompanied by a Stückelberg scalar χ. The
purpose of this subsection is to make manifest the connection between TTNC geometry as obtained
from gauging sch2(2, 1) in section 6.4.2 and the sources found in section 6.3. Since we already dis-
cussed this mechanism in section 4.2.4, we will be brief.

By imposing the curvature constraints (6.4.57), we saw how we were left with three independent
fields τµ, ea

µ and mµ. By introducing an additional scalar field χ transforming as

δ̄χ = £ξ χ + σ, (6.4.70)

we promote N to a Stückelberg symmetry, the effect of which will be the replacement of mµ by Mµ

given by the usual expression

Mµ = mµ − ∂µχ (6.4.71)

in all geometric quantities. We stress that it is not necessary to do so, just as when considering a
Stückelberged Proca field, one can either choose to work directly with the Proca field or a Maxwell
field and the Stückelberg field. We will use a mixture between the two approaches.
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6.5 the anomaly & hořava-lifshitz gravity

6.5.1 Reduction of the Anomaly

Holographic renormalization of the electromagnetic uplift produces the boundary anomaly

A = −1
4

(
Q(0)ABQAB

(0) −
1
3

Q2
(0) − 2F(0)ABFAB

(0) +
1
2

(
�(γ(0))

ψ(0)

)2
)

, (6.5.1)

where

Q(0)AB = R
(γ(0))

AB − 1
2

∂Aψ(0)∂Bψ(0). (6.5.2)

The anomaly is related to HL gravity, as we now briefly discuss—this was observed in [107] and
formulated in a TNC covariant manner in [24]. In the case of ALif, where the torsion vanishes and
where χ (i.e. the boundary value of bulk Stückelberg field Ξ) is a constant (for simplicity we will set
χ = 0) , the reduced anomaly becomes [24]

A = −
(
KµνKµν −

1
2
(
hµνKµν

)2
)
− 1

24

(
R+ eµ

a ea
ν∇µ

(
hνρ£vτρ

))2
+ e−1∂µ (eJµ)− 2LGED

(6.5.3)

where Kµν = 1
2 £vhµν is the TNC extrinsic curvature, and R is the Ricci scalar of Γ. Jµ is some

complicated current (cf. [24]), while LGED is the Lagrangian for GED which can be read off from
(6.1.15). Combining our findings, we may thus write

−1
2

∫
d3x e A = SPHL + SGED, (6.5.4)

where PHL stands for projectable Hořava-Lifshitz, see [53] for details.

6.6 holographic reconstruction or mock fg expansions

From the FG expansions of the higher-dimensional fields that we determined in chapter 3, we can
work out the corresponding expansions of the four dimensional bulk fields. In particular, having
shown in section 6.4.1 that the reduction becomes null on the boundary, we can use our explicit
expression for γ(0)AB as well as our knowledge of the sources from section 6.3 to determine the
expansions. We start by translating our results from chapter 3 into the notation of this chapter.

From a five-dimensional perspective, we have the fields ds2
5 = dr2

r2 + γABdxAdxB, ψ,AA, admitting
FG expansions of the form

γAB =
1
r2

(
γ(0)AB + r2γ(2)AB + r4

(
log rγ(4,1)AB − γ(4)AB

))
+O(r6 log r), (6.6.1)

ψ = ψ(0) + r2ψ(2) + r4 log rψ(4,1) + r4ψ(4) +O(r6 log r), (6.6.2)

AA = A(0)A + r2 log rA(2,1)A + r2A(2)A +O(r4 log r), (6.6.3)
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where the coefficients are given by (see section 3.2.3 and also footnote 14)

γ(2)AB = −1
2

(
R
(γ(0))

AB − 1
2

∂Aψ(0)∂Bψ(0)

)
+

1
12

γ(0)AB

(
R(γ(0)) − 1

2
(∂ψ(0))

2
)

, (6.6.4)

ψ(2) =
1
4
�(γ(0))

ψ(0), (6.6.5)

A(2,1)A = ∇(γ(0))

B F B
(0)A, (6.6.6)

A(2)A =
1
2
J(0)A − 1

2
A(2,1)A, (6.6.7)

γ(4,1)AB =
1
4
∇(γ(0))C

(
∇(γ(0))

A γ(2)BC +∇(γ(0))

B γ(2)AC −∇(γ(0))

C γ(2)AB

)
− 1

4
∇(γ(0))

A ∇(γ(0))

B γC
(2)C (6.6.8)

+ γ(2)ACγC
(2)B − 1

2
∂(Aψ(0)∇

(γ(0))

B) ψ(2) − γ(0)AB

(
1
4

γCD
(2) γ(2)CD +

1
2

ψ2
(2)

)
(6.6.9)

+
1
3
F(0)ACF(0)B

C − 1
12

γ(0)ABF(0)CDFCD
(0) , (6.6.10)

ψ(4,1) = −1
4

(
�(γ(0))

ψ(2) + 2ψ(2)γ
A
(2)A +

1
2

∂Aψ(0)∇
(γ(0))

A γB
(2)B − γAB

(2)∇
(γ(0))

A ∂Bψ(0) − ∂Aψ(0)∇
(γ(0))Bγ(0)AB

)
(6.6.11)

ψ(4) =
1
4
〈Oψ〉 −

1
4

ψ(2)γ
A
(2)A − 3

4
ψ(4,1). (6.6.12)

The fields that we are interested live on three-dimensional surfaces of constant r,

hµν = eΦ
(

γµν − e−2Φγµuγνu

)
, Aµ = e−2Φγµu, Φ =

1
2

log γuu, Cµ = Aµ −Aue−2Φγµu

(6.6.13)

First off, since γ(0)uu = 0, the expansion for the dilaton becomes

Φ =
1
2

log
(

γ(2)uu + r2 log rγ(4,1)uu + r2γ(4)uu + · · ·
)

(6.6.14)

=
1
2

log
(

γ(2)uu

)
+

1
2

r2 log rγ(4,1)uuγ−1
(2)uu +

1
2

r2γ(4)uuγ−1
(2)uu + · · · (6.6.15)

= φ + r2 log rΦ(2,1) + r2Φ(2) + · · · , (6.6.16)

where

e2φ = γ(2)uu = −1
2

R
(γ(0))
uu + 1, Φ(2,1) =

1
2

e−2φγ(4,1)uu, Φ(2) =
1
2

e−2φ

(
Xuu −

1
4

tuu

)
,

(6.6.17)

and we have used the FG coefficients (6.6.4)–(6.6.12). In particular, in the first relation we have used
that γ(0)uu = 0 and ψ(0) = 2u − 2χ. Note that the Ricci tensor above can be rewritten in the form

R
(γ(0))
uu = 2Γ̊A

u[u,A]+ 2Γ̊A
B[AΓ̊B

u]u = 1
2
(
εµνρτµ∂ντρ

)2, where εµνρ = e−1εµν with εµνρ the Levi-Civita symbol.
In particular, this implies that φ is not an independent source, which has the important consequence
that the corresponding VEV will vanish—we will explore the consequences of this in section 6.7,
where we also provide a different reason why the VEV should vanish. This also allows us to identify
the coefficients of the expansion of α (cf. eq. (6.3.9)),

α(Φ) = e−3Φ/2 =

=α(0)(φ)︷ ︸︸ ︷
e−3φ/2 −3

2
r2 log rα(0)Φ(2,1) −

3
2

r2α(0)Φ(2) + · · · , (6.6.18)

so that the combination Ĩ − I appearing in (6.3.9) is equal to Ĩ − I = − 3
2 α4/3

(0) Φ(2).
Similarly, for the KK vector, we find the expansion

Aµ = r−2 A(0)µ + log rA(2,1)µ + A(2)µ + r2 log2 rA(4,2)µ + r2 log rA(4,1)µ + r2 A(4)µ + · · · ,
(6.6.19)
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where

A(0)µ = α4/3
(0) τµ, A(2,1)µ = −2α4/3

(0) Φ(2,1)τµ, A(2)µ = α4/3
(0) γ(2)µu − 2Φ(2)A(0)µ, (6.6.20)

A(4,2)µ = Φ2
(2,1)A(0)µ, A(4,1)µ = α4/3

(0) γ(4,1)µu − 2Φ(2,1)A(2)µ − 2Φ(4,1)A(0)µ. (6.6.21)

Note that A(2)µ transforms as δσ A(2)µ = −∂µσ under Stückelberg gauge transformations (i.e. diffeo-

morphisms in the compact direction), which follows from the transformation property δσR
(γ(0))
µu =

−R
(γ(0))
uu ∂µσ and then using the first relation of (6.6.17). For the metric, we get

hµν = r−4h(0)µν + r−2 log rh(2,1)µν + r−2h(2)µν +O(log2 r), (6.6.22)

where

h(0)µν = −α2/3
(0) τµτν, h(2,1)µν = −h(0)µνΦ(2,1), h(2)µν = α−2/3

(0) h̄µν − 2α2/3
(0) τµγ(2)νu + h(2,1)µν.

(6.6.23)

Writing

hµν = −E0
µE0

ν + δabEa
µEb

ν, E0
µ ∼ r−2τµ, Ea

µ ∼ r−1ea
µ. (6.6.24)

we infer from the second term in (6.6.22) that

E0
µ = r−2α1/3

(0) τµ + log rYµ − α−1
(0)

(
Mµ − Iτµ

)
+ · · · , (6.6.25)

where we find that

Yµ =
1
2

α1/3
(0) Φ(2,1)τµ, (6.6.26)

whereas Mµ emerges from h(2)µν in (6.6.23) as the combination involving only a single factor of τµ.
Since there is no term of order r−1 log r, we obtain

Ea
µ = r−1α−1/3

(0) +O(r0). (6.6.27)

The behaviour of the new fields follows straightforwardly from their FG expansions and the expan-
sions of the four-dimensional fields that we have worked out above,

Υ = ϑ + r2 log rΥ(2,1) + r2Υ(2) + · · · , (6.6.28)

Cµ = C(0)µr−2 + log rC(2,1)µ + C(2)µ + r2 log rC(4,1)µ + r2C(4)µ + · · · (6.6.29)

where

Υ(2,1) = e−1∂µ(e∂µϑ), Υ(2) =
1
2

(
J(0)u − e−1∂µ(e∂µϑ)

)
, (6.6.30)

C(0)µ = −ϑα4/3
(0) τµ, C(2,1) = −α4/3

(0)

(
Υ(2,1) − 2ϑΦ(2,1)

)
τµ, C(2)µ = aµ − ϑmµ − ϕ̃τµ − ϑA(2)µ.

(6.6.31)

6.7 the vevs

In this section, we consider the VEVs corresponding to the sources introduced in section 6.3.1. We
consider both the relation to the four-dimensional responses determined in section 6.2.3 and the
relation to the VEVs in the electromagnetic uplift.

6.7.1 Definition & Near-Boundary Behaviour

The goal of this section is to identify the VEVs corresponding to the sources in (6.3.19)–(6.3.28). These
can be obtained in terms of the responses (6.2.35)–(6.2.42) via the following identity (which is under-
stood to be sitting inside an integral),

1
2

Tµνδhµν + T νδBν + TΦδΦ +TνδCν + TΥδΥ = (6.7.1)

S0
µδE0

µ + S a
µδEµ

a + Tϕδϕ + T aδAa + TΞδΞ + TΦδΦ +TaδCa + TΩδΩ + TΥδΥ, (6.7.2)
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where we used that Bν = Aν − ∂νΞ (which, due to the dependence of the derivative, implies that the
identity above holds up to a total derivative), Aa = Eµ

a Aµ. In the above, we have used in particular

ϕ = Eν
0 Aν − α(Φ), (6.7.3)

Ω = Eν
0Cν + Υα(Φ), (6.7.4)

In order to identify the VEVs appearing in (6.7.2), we need to relate the variations of the sources to
the variations of (hµν, Bν, Φ). For hµν and Φ this is straightforward, but for the massive vector and the
Maxwell field a few subtleties arise, so we perform that calculation in detail. We start by noting that

T νδBν = T νδAν + e−1∂ν(eT ν) + total derivative, (6.7.5)

due to the Stückelberg decomposition of the massive vector. Further, we see that the flat version
satisfies

T 0δA0 + T aδAa = E0
µT µδ (Eν

0 Aν) + Ea
µT µδ (Eν

a Aν) (6.7.6)

= E0
µT µ AνδEν

a + Ea
µT µ AνδEν

a +

=T νδAν︷ ︸︸ ︷(
E0

µT µEν
0 + Ea

µT µEν
a

)
δAν, (6.7.7)

so that

T νδAν = T 0δA0 + T aδAa − E0
µT µ AνδEν

a − Ea
µT µ AνδEν

a . (6.7.8)

Observe further that since—by (6.7.3)—A0 = ϕ + α(Φ),

T 0δA0 = E0
µT µ

(
δA0

δϕ︸︷︷︸
=1

δϕ +
δA0

δΦ︸︷︷︸
= dα(Φ)

dΦ

δΦ

)
. (6.7.9)

Repeating the analysis above for the Maxwell field, we find that

TνδCν = T0δC0 +TaδCa − E0
µT

µCνδEν
a − Ea

µT
µCνδEν

a , (6.7.10)

where, since C0 = Ω − Υα

T0δC0 = E0
µT

µ

(
δΩ − Υ

dα

dΦ
δΦ − αδΥ

)
. (6.7.11)

Combining our findings, the responses can be written in terms of the quantities of (6.2.35)–(6.2.42)

S0
µ = −

(
TµνEν

0 + T ρE0
ρ Aµ +TρE0

ρCµ

)
, (6.7.12)

S a
µ =

(
TµνEνa − T ρEa

ρ Aµ −TρEa
ρCµ

)
, (6.7.13)

Tϕ = T νE0
ν, (6.7.14)

TΦ = TΦ + T νE0
ν

dα(Φ)

dΦ
+ ΥE0

µT
µ dα

dΦ
, (6.7.15)

T a = T νEa
ν, (6.7.16)

TΞ = e−1∂µ (eT µ) , (6.7.17)

Ta = TνEa
ν, (6.7.18)

TΩ = TνE0
ν, (6.7.19)

TΥ = TΥ +TµE0
µα (6.7.20)
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Below we list the responses and their near-boundary behaviours and thus identify the VEVs. Note
that we have to take into account the near-boundary behaviour of the measure

√
−γ as was the case

in section 5.3.1, where we performed the same analysis for general values of z. Doing this, we obtain

S0
µ ' r2α2/3

(0) S0
µ, (6.7.21)

S a
µ ' r3Sa

µ, (6.7.22)

Tϕ ' −r2α2/3
(0) T0, (6.7.23)

T a ' −r3Ta, (6.7.24)

TΦ ' r4α1/3
(0) 〈Oφ〉 , (6.7.25)

TΞ ' −r4α1/3
(0) 〈Oχ〉 , (6.7.26)

Ta ' r3 ja, (6.7.27)

TΩ ' r2α2/3
(0) j0, (6.7.28)

TΥ ' r4α1/3
(0) 〈Oϑ〉 . (6.7.29)

From these, we may immediately read off their scaling weights:

VEV S0
µ Sa

µ T0 Ta 〈Oφ〉 〈Oχ〉 ja j0 〈Oϑ〉
scaling dim. 2 3 2 3 4 4 3 2 4

Table 6.7: The VEVs and their scaling dimensions.

We note that, as was the case with the sources, the scaling dimensions of the new VEVs correspond
to the results in the field theory (cf. table 6.4) when setting z = 2.

6.7.2 Relation to Five-Dimensional VEVs Via Null Reduction

We now proceed to relate the five-dimensional VEVs to the four-dimensional VEVs and perform a
general analysis of these. In the uplift, we have that

δSren = lim
r→0

1
2κ2

5

∫
Σr

d4x
√
−γ

(
1
2

TABδγAB + Tψδψ + J AδAA

)
(6.7.30)

=
∫

∂M
d3x e

(
1
2

tABδγAB
(0)︸ ︷︷ ︸

=:(∗)

+ 〈Oψ〉 δψ(0)︸ ︷︷ ︸
=:(†)

+J A
(0)δA(0)A︸ ︷︷ ︸
=:(‡)

)
, (6.7.31)

where we have performed the u-integral and used that
√−γ(0) =: e = det(τµ, ea

µ), which follows from
(??). In the four-dimensional theory, we then have

δSren = lim
r→∞

∫
∂M

d3x
√
−h
(

1
2

Tµνδhµν + T νδBν + TΦδΦ +TνδCν + TΥδΥ

)
(6.7.32)

=
∫

∂M
d3x e

(
−S0

µδvµ + Sa
µδeµ

a + T0δm0 + Taδma + 〈Oχ〉 δχ + 〈Õφ〉 δφ + jaδaa − j0δϕ̃ + 〈Oϑ〉 δϑ
)

,

(6.7.33)

where m0 = −vµmµ, ma = eµ
a mµ, and where we have used

ψ(0) = 2u − 2χ, 〈Oψ〉 = −1
2
〈Oχ〉 . (6.7.34)

This implies that δψ(0) = −2δχ. The VEV 〈Õφ〉 is given by

〈Õφ〉 = 〈Oφ〉 −
1
2

[
vµ(S0

µ + T0mµ) + eµ
a (Sa

µ + Tamµ) + jaaa − j0 ϕ̃
]
= 0, (6.7.35)
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and vanishes, as we will explain shortly. The extra terms in 〈Õφ〉 come from the presence of α(0)(φ)-
terms in the responses (6.3.2)–(6.3.8) considered from the perspective of the right-hand side of the
identity (6.7.2), e.g.

√
−γS0

µδEµ
0 ' −eS0

µδvµ − eα1/3
(0) S0

µvµ
d
(

α−1/3
(0)

)
dφ

δφ = −eS0
µδvµ − 1

2
eS0

µvµδφ. (6.7.36)

The new terms will contribute

√
−γTaδCa ' ejaδaa + eα−1/3

(0) jaaa
dα1/3

(0)

dφ
δφ = ejaδaa −

1
2

ejaaaδφ, (6.7.37)

as well as (using Ω ' −r2α−1/3
(0) ϕ̃)

√
−γTΩδΩ ' −ej0δϕ̃ − α1/3

(0) ej0 ϕ̃
dα−1/3

(0)

dφ
δφ = −ej0δϕ̃ − 1

2
ej0 ϕ̃δφ. (6.7.38)

Since none of the bulk fields have a near-boundary behaviour that involves the source ϑ, the same
does not happen to 〈Oϑ〉,

〈Õϑ〉 = 〈Oϑ〉 , (6.7.39)

i.e. there will be no additional terms in front of δϑ as was the case for δφ.
Now, recall from our analysis of the FG expansions in section 6.6 that

e2φ = −1
4

v2 + 1, (6.7.40)

where v is the twist. This implies that the source φ is not independent and has the consequence
that the variation of the renormalized on-shell action with respect to φ gives zero. This can also be
seen from the shift transformation (the δc transformation, also known as local dilatations in [24])
we considered in section 6.3.2.4, which directly implies 〈Õφ〉 = 0. Similarly, from the gauge shift
transformation δ`, we get the relation

〈Oϑ〉 = 0. (6.7.41)

Now, as we demonstrated in section 6.4.1, the Scherk-Schwarz reduction employed becomes a null re-
duction on the boundary. In order to relate the VEVs appearing on the right-hand side in (6.7.21)–(6.7.29)
to the VEVs in the electromagnetic uplift, we perform a null reduction of the expression in (6.7.31),
which is then equated with the same expression from a lower-dimensional perspective (6.7.33). In
components, the null reduction (6.4.18) can be written as

γ
µν

(0) = hµν = eµaeν
a , γ

uµ

(0) = −v̂µ = eµama − vµ, γuu
(0) = 2Φ̃ = mama + 2m0, (6.7.42)

which means that δhµν = 2e(µa δeν)a. From the expansion of Cµ in (6.3.18), we note that

A(0)µ = aµ − ϑmµ − ϕ̃τµ, A(0)u = ϑ, (6.7.43)

which in particular means that we can rewrite

A(0)µ = ea
µ (aa − ϑma)− τµ (ϑm0 + ϕ̃) . (6.7.44)

Omitting the integral4 and applying the null reduction of (6.7.42) to each term in (6.7.31), we obtain:

(∗) = tµνeµ
a δeνa + tuµ (eµaδma + maδeµa − δvµ) + tuu (maδma + δm0) , (6.7.45)

(†) = 〈Oχ〉 δχ (follows immediately from (6.7.34)), (6.7.46)

(‡) = J u
(0)δϑ + J µ

(0)

[
ea

µ (δaa − ϑδma − maδϑ)− τµ (ϑδm0 + m0δϑ + δϕ̃)
]
+ J µ

(0)(aa − ϑma)δea
µ −J µ

(0)(ϑm0 + ϕ̃)δτµ.

(6.7.47)

4 When omitting the integral, we must recall our ability to integrate by parts. Equalities therefore only hold up to total derivatives.
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We observe that the expression above involves two additional variations, δea
µ and δτµ, in the last two

terms, and that these are not present in the expression for δSren in (6.7.33) which we’ll eventually want
to compare with. Therefore, we use the second identity in (6.1.10) to write, first off

J µ

(0) =
(

eµ
a ea

ν − τνvµ
)
J ν
(0). (6.7.48)

Now, using the first, third, fourth and fifth identity of (6.1.10), we find that

τµδvµ = −vµδτµ, ea
µδvµ = −vµδea

µ, τµδeµ
a = −eµ

a δτµ, ea
µδeµ

b = −eµ
b δea

µ, (6.7.49)

and so we can rewrite the last two terms in the expression for the term (‡) (6.7.47) in the following
manner:

J µ

(0)(aa − ϑma)δea
µ = J ν

(0)(aa − ϑma)ea
µ

[
τνδvµ − eb

νδeµ
b

]
, (6.7.50)

J µ

(0)(m0 + ϕ̃)δτµ = J ν
(0)(ϑm0 + ϕ̃)τµ

[
τνδvµ − eb

νδeµ
b

]
. (6.7.51)

Combining our findings, we obtain

1
2

tABδγAB
(0) + 〈Oψ〉 δψ(0) + J A

(0)δA(0)A = −
[
tuµ −J ν

(0)τν

{
(aa − ϑma)ea

µ − (ϑm0 + ϕ̃) τµ

}]
δvµ (6.7.52)

+
[
tνµeνa + tuµma −J ν

(0)e
a
ν

{
(ab − ϑmb)eb

µ − (ϑm0 + ϕ̃)τµ

}]
δeµ

a +
[
tuu − ϑJ µ

(0)τµ

]
δm0 (6.7.53)

+
[
tuµeµa + tuuma −J µ

(0)e
a
µϑ
]

δma +
[
−J µ

(0)(τµm0 + ea
µma) + J u

(0)

]
δϑ + J µ

(0)e
a
µδaa + 〈Oχ〉 δχ −J µ

(0)τµδϕ̃,

(6.7.54)

giving us the result

S0
µ = tuµ −J ν

(0)τν

{
(aa − ϑma)ea

µ + (ϑm0 − ϕ̃) τµ

}
= tuµ −J ν

(0)τν âµ, (6.7.55)

Sa
µ = tνµeνa + tuµma −J ν

(0)e
a
ν

{
(ab − ϑmb)eb

µ − (ϑm0 + ϕ̃)τµ

}
= tνµeνa + tuµma −J ν

(0)e
a
ν âµ,

(6.7.56)

T0 = tuu −J µ

(0)ϑτµ, (6.7.57)

Ta = tuµeµa + tuuma −J µ

(0)e
a
µϑ, (6.7.58)

〈Oϑ〉 = −J µ

(0)(τµm0 + ea
µma) + J u

(0) = J u
(0) −J µ

(0)mµ = 0, (6.7.59)

〈Oχ〉 = −2 〈Oψ〉 , (6.7.60)

ja = J µ

(0)e
a
µ, (6.7.61)

j0 = J µ

(0)τµ, (6.7.62)

where we have introduced the notation

âµ = aµ − ϑmµ − ϕ̃τµ, (6.7.63)

which is the same GED field combination we considered in section 6.1. These allow is to determine
the transformation properties of the VEVs, which we will consider in section 6.7.3. Now, we invert
the relations above to find the expressions for the higher dimensional VEVs in terms of the lower
dimensional ones, which will allow for a straightforward translation of the higher-dimensional Ward
identities:

J µ

(0) = jµ, tuµ = S0
µ + j0 âµ, eνatνµ = Sa

µ + ja âµ − (S0
µ + j0 âµ)ma, tuu = T0 + ϑj0.

(6.7.64)

6.7.3 Local Transformations of the VEVs

Having obtained expressions for the four-dimensional VEVs in terms of the VEVs in the electromag-
netic uplift in (6.7.55)–(6.7.62), we can use our knowledge of the transformation properties of tAB to
obtain the transformations of the VEVs, just like in section 6.3.2.3. Using

£ξ̂ tAB = ξ̂C∂CtAB + tCB∂A ξ̂C + tAC∂B ξ̂C + δDtAB, (6.7.65)
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with

ξ̂u = −σ, (6.7.66)

we find

δS0
µ = £ξ S0

µ − T0∂µσ + j0ϑ∂µσ − j0∂µΓ(0) − 2ΛDS0
µ, (6.7.67)

δSa
µ = £ξ Sa

µ + λaS0
µ + λa

bSb
µ − Ta∂µσ + jaϑ∂µσ − ja∂µΓ(0) − 3ΛDSa

µ, (6.7.68)

δT0 = £ξ T0 − 2ΛDT0, (6.7.69)

δTa = £ξ Ta + λaT0 + λa
bTb − 3ΛDTa, (6.7.70)

δ 〈Oχ〉 = £ξ 〈Oχ〉 − 4ΛD 〈Oχ〉 , (6.7.71)

δj0 = £ξ j0 − 2ΛD j0, (6.7.72)

δja = £ξ ja + λa j0 + λa
b jb − 3ΛD ja. (6.7.73)

Thus, we see that—just like the sources—the VEVs transform under the symmetry group

Di f f (M)× Sch2(d, 1)× U(1). (6.7.74)

6.8 the ward identities & boundary stress tensor

6.8.1 The HIM Boundary Energy-Momentum Tensor & Augmentations

The HIM stress tensor,

Tµ
ν = −vµS0

ν + eµ
a Sa

ν, (6.8.1)

transforms under gauge transformations (Uσ(1) and UΓ(1)) as

δσ,ΓTµ
ν = − (Tµ + jµϑ) ∂νσ − jµ∂νΓ(0). (6.8.2)

This leads us to define a totally gauge invariant augmentation,

T(χ,â)
µ

ν = Tµ
ν + Tµ∂νχ + jµ â(χ)ν, (6.8.3)

where

â(χ)µ = aµ − ϑMµ − ϕ̃τµ. (6.8.4)

Note in particular that T(χ,â)
µ

ν is also invariant under δ`. The combination Tµ + jµϑ featuring promi-
nently above is δ` invariant, and we write it as

Tµ

(â) = Tµ + jµϑ. (6.8.5)

Note that this implies the relation

T(χ,â)
µ

ν = Tµ

(â)ν + Tµ

(â)∂νχ, (6.8.6)

where

T(â)
µ

ν = Tµ
ν + jµ âν (6.8.7)

is the UΓ(1) gauge invariant HIM tensor. We will eventually want to write Ward identities in terms of
quantities carrying space-time indices, so it is useful to note that

Tµ = −T0vµ + Taeµ
a , tµ = −j0vµ + jaeµ

a . (6.8.8)

We also have augmented Galilean boost invariant objects,

Φ̃(χ) = −vρ Mρ +
1
2

hρσ Mρ Mσ, (6.8.9)

v̂µ

(χ)
= vµ − hµν Mν, (6.8.10)

êa
(χ)µ = ea

µ − Mνeνaτµ, (6.8.11)

ĥ(χ)µν = δab êa
(χ)µ êb

(χ)ν, (6.8.12)
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where we have replaced mµ with the gauge invariant version Mµ. Note that we can relate the lower
dimensional quantities to higher dimensional fields in a more covariant manner. For example, observe
that

Tµ
ν = −vµS0

ν + eµ
a Sa

ν = −vµtuν + eµ
a
(
tρνeρa + tuνma)+ vµ j0 âν − eµ

a ja âν (6.8.13)

= γ
µA
(0) tAν − jµ âν = tµ

ν − jµ âν. (6.8.14)

A similar analysis shows that

Tµ = tµ
u − jµϑ. (6.8.15)

Continuing this procedure, we find

tµu = 2Φ̃ (Tµ + ϑjµ)− v̂σ (Tµ
σ + jµ âσ) , tµν = −v̂µ (Tν + ϑjν) + hµρ

(
Tν

ρ + jµ âρ

)
. (6.8.16)

This implies further that

tu
ν = 2Φ̃Tµ

(â) h̄µν − v̂σTµ

(â)σ h̄µν, (6.8.17)

where we have used that γ(0)uu = 0.

6.8.2 Ward Identities

These Ward identities are obtained by requiring invariance of the renormalized on-shell action under
the respective symmetries, that is to say, the expression

δSren =
∫

∂M
d3x e

(
−S0

µδvµ + Sa
µδeµ

a + T0δm0 + Taδma + 〈Oχ〉 δχ + jaδaa − j0δϕ̃ + 〈Oϑ〉 δϑ −A(0)
red

δr
r

)
,

(6.8.18)

should be invariant under Di f f (M)× Sch2(d, 1)× U(1). Note also that 〈Oϑ〉 = 0 above.

6.8.2.1 Galilean Boosts

We start with the boost Ward identity; the fields transforming under Galilean boosts G are

δGvµ = λaeµ
a , δGma = λa, δGm0 = −λama, δG ϕ̃ = aaλa, δGaa = ϑλa. (6.8.19)

Requiring invariance of (6.8.18) under Galilean boosts, we obtain the Ward identity

−S0
µeµ

a + Tbδba − T0ma − j0aa + jbδbaϑ = 0. (6.8.20)

Employing techniques identical to those in section 5.3.3, we may covariantize the boost Ward identity
above. Using our result for the pure Lifshitz boost Ward identity (5.3.34), we note that (6.8.20) can be
written as

êa
(χ)µTµ − j0aa + jaϑ = τνeµa (Tν

µ + Tν∂µχ
)

. (6.8.21)

To covariantize the new part, observe that

j0 = τµ jµ, jb = eb
µ jµ, aa = eµ

a aµ, (6.8.22)

implying that

−j0aa + jbδbaϑ = jµ
(
−τµeν

a aν + ϑeµa
)
= jµ

(
−τµeν

a (aν − ϑMν) + ϑê(χ)µa

)
. (6.8.23)

We can replace aν − ϑMν with a Stückelberg invariant extension of âµ,

â(χ)µ = aµ − ϑMµ − ϕ̃τµ, (6.8.24)

due to the orthogonality property τµeµ
a = 0. All in all, this means that the boost Ward identity becomes

êa
(χ)µTµ + jµ

(
ϑêa

(χ)µ − τµeνa â(χ)ν
)
= τνeµa

(
Tν

µ + Tν∂µχ
)

, (6.8.25)

which can also be written as

êa
(χ)µTµ

(â) = τνeµaT(χ,â)
ν

µ. (6.8.26)

Thus, we see that the boost Ward identity takes a form identical to what we find in pure Lifshitz
holography in chapter 5, but instead in written in terms of the GED-augmented quantities defined in
section 6.8.1.
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6.8.2.2 Rotations

Next, we turn to rotations J, where the relevant transformations are

δJ aa = λa
bab, δJma = λa

bmb, δJe
µ
a = λa

beµ
b , (6.8.27)

which means that the rotation Ward identity becomes

S[a
µ eµb] + T[amb] + j[aab] = 0. (6.8.28)

Multiplying by mb and antisymmetrizing, this becomes

S0
µeµ[amb] + t0a[amb] − t[amb]ϑ = T[amb]. (6.8.29)

Following the insight from section 5.3.3, we expect that in order to obtain the rotation Ward identity,
we need to apply the boost Ward identity in the form

−S0
µeµa + Ta − T0ma − j0aa + jaϑ = 0, (6.8.30)

so that our rotation Ward identity (6.8.28) can be recast in the form

S[a
µ eµb] + S0

µeµ[amb] + j0a[amb] − j[amb]ϑ + j[aab] = 0. (6.8.31)

Now, observe that we can rewrite the left-hand side of the expression above in the following manner

ê[a
(χ)ν

eb]µT(χ,â)
ν

µ − ∂µχeµb
(

ϑta − j0aa + Ta − maT0 − eρaS0
ρ

)
(6.8.32)

+ ∂µχeµa
(

ϑjb − j0ab + Tb − mbT0 − eρbS0
ρ

)
. (6.8.33)

Here we recognize the two last terms as two copies of the boost Ward identity5 (6.8.30), implying that
the rotation Ward identity can be written covariantly as

ê[a
(χ)ν

eb]µT(χ,â)
ν

µ = 0. (6.8.34)

This statement is the non-relativistic analogue of symmetry of the energy-momentum tensor, and we
see again that the Ward identity can be expressed compactly in terms of the GED-augmented HIM
stress tensor.

6.8.2.3 Gauge Transformations

For gauge transformations δΓ, the relevant transformations are

δΓ ϕ̃ = vµ∂µΓ(0), δΓaa = eµ
a ∂µΓ(0), (6.8.35)

which means that we get

0 =
∫

d3x e
(
−j0vµ∂µΓ(0) + jaeµ

a ∂µΓ(0)

)
= −

∫
d3x e

Γ(0)

e
∂µ

[
e
(
−j0vµ + jaeµ

a

)]
= −

∫
d3x e

Γ(0)

e
∂µ (ejµ) ,

(6.8.36)

that is to say, the UΓ(1) Ward identity is

1
e

∂µ (ejµ) = 0. (6.8.37)

This expresses the TNC analogue of conservation of the GED current. Note that we can also write this
in the form

0 = ∇̊µ jµ = ∇µ jµ + Γν
[νµ] j

µ. (6.8.38)

We note that [36] finds an identical Ward identity.

5 Recall that the same happened in our treatment of pure Lifshitz holography, cf. section 5.3.3.
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6.8.2.4 Stückelberg Gauge Transformations

In this case, the relevant field transformations are

δNχ = σ, δNmµ = ∂µσ ⇒ δNm0 = −vµ∂µσ, δNma = eµ
a ∂µσ. (6.8.39)

Plugging this into the expression for δS in (6.8.18), we get

0 =
∫

d3x e
(
Tµ∂µσ + 〈Oχ〉 σ

)
(6.8.40)

=
∫

d3x e
(
−σ

e
∂µ (eTµ) + 〈Oχ〉

)
, (6.8.41)

which implies the Ward identity

〈Oχ〉 =
1
e

∂µ(eTµ). (6.8.42)

Since the left-hand side is generically different from zero, this breaks mass current conservation.

6.8.2.5 Weyl Transformations

The relevant transformations read in this case

δDvµ = −2ΛDvµ, δDeµ
a = −ΛDeµ

a , δDm0 = −2ΛDm0, δDma = −ΛDma (6.8.43)

δD ϕ̃ = −2ΛD ϕ̃, δDaa = −ΛDaa, δDr = −ΛDr. (6.8.44)

This produces the Weyl Ward Identity

A(0)
red = −2S0

µvµ + Sa
µeµ

a + 2T0m0 + Tama − 2j0 ϕ̃ + jaaa. (6.8.45)

The right-hand side can be rewritten in the following manner:

−2vµτν

(
Tν

µ + jν âµ

)
+ eµ

a ea
ν

(
Tµ

ν + jν âµ

)
+ 2Φ̃τµ (Tµ + jµϑ) + ma

(
−maT0 + Ta − ma j0ϑ + ϑja

)
.

(6.8.46)

Using the boost Ward identity in the form (6.8.20), the part proportional to ma takes the form

ma

(
S0

µeµa + j0 (aa − maϑ)
)
= maτνeµa [Tν

µ + jν âµ

]
, (6.8.47)

which means that we can further rewrite the Weyl Ward identity (6.8.45) as

A(0)
red = −2v̂µτν

(
Tν

µ + jν âµ

)
+ eµ

a êa
ν

(
Tµ

ν + jν âµ

)
+ 2Φ̃τµ (Tµ + jµϑ) (6.8.48)

=
(

eµ
a êa

ν − 2v̂µτν

)
T(â)

µ
ν + 2Φ̃τµTµ

(â). (6.8.49)

The first term in (6.8.49) is the z = 2 deformed trace, while the second can be interpreted as a form of
potential energy since T0 is roughly the mass, while Φ̃ plays the rôle of the Newtonian potential.

6.8.2.6 Diffeomorphisms

All the fields transform under infinitesimal boundary diffeomorphisms generated by ξ, but there are
only two types of transformations depending on the number of space-time indices:

δξ X = ξν∂νX, δξVµ = ξν∂νVµ − Vν∂νξµ. (6.8.50)

In particular, the only fields carrying space-time indices are vµ and eµ
a , and we note that due their

transformation properties it will be necessary to integrate by parts in order to obtain the Ward identity.
This procedure is straightforward and gives the Ward identity

0 =
1
e

∂µ (eTµ
ν)− S0

µ∂νvµ + Sa
µ∂νeµ

a + T0∂νm0 + Ta∂νma + 〈Oχ〉 ∂νχ + ja∂νaa − j0∂ν ϕ̃ + 〈Oϑ〉 ∂νϑ

(6.8.51)

=
1
e

∂µ (e (Tµ
ν + Tµ∂νχ))− S0

µ∂νvµ + Sa
µ∂νeµ

a + T0∂νm0 + Ta∂νma + ja∂νaa − j0∂ν ϕ̃. (6.8.52)

We will consider the covariant version of this result from the perspective of null reduction in the next
section.
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6.8.3 Ward Identities From Null Reduction

The five-dimensional Ward identities read

tA
A = A(0)

5D , ∇̊AtA
B +F(0)BAJ A

(0) + 〈Oψ〉 ∂Bψ(0) = 0, ∇̊AJ A
(0) = 0, (6.8.53)

where A(0)
5D is the boundary value of the Weyl anomaly, which we emphasize has nothing to with the

five-dimensional gauge field AA, and ∇̊ is the covariant derivative of γ(0). Reducing the last of these
gives us

∂µ (ejµ) = 0, (6.8.54)

as we found in (6.8.37). Note that this does not put any constraints on J u
(0). Now, recall that

tµ
ν = Tµ

ν + jµ âν, tµ
u = Tµ + jµϑ. (6.8.55)

The u-component of the higher-dimensional diffeomorphism Ward identity then takes the form

0 =
1
e

∂µ (etµ
u) +F(0)uµJ

µ

(0) + 〈Oψ〉 ∂uψ(0) =
1
e

∂µ (e [Tµ + jµϑ])− jµ∂µϑ − 〈Oχ〉 (6.8.56)

=
1
e

∂µ (eTµ) +���jµ∂µϑ +
ϑ

e
∂µ (ejµ)︸ ︷︷ ︸

=0

−���jµ∂µϑ − 〈Oχ〉 , (6.8.57)

leading to the Stückelberg Ward identity (6.8.42) found previously.
We now begin our reduction of the Weyl Ward identity (using A(0)

5D = A(0)
red):

A(0)
red = γAB

(0) tAB = γ
µν

(0)tµν + 2γ
uµ

(0)tuµ + γuu
(0)tuu (6.8.58)

= hµνtµν − 2v̂µtuµ + 2Φ̃tuu (6.8.59)

= eµ
a Sa

µ + ja âµeµ
a −

(
S0

µ + j0 âµ

)
maeµ

a − 2v̂µ
(

S0
µ + j0 âµ

)
+ 2Φ̃

(
T0 + ϑj0

)
(6.8.60)

= (Tµ
ν + jµ âν)

[
eν

a êa
µ − 2v̂ντµ

]
+ 2Φ̃τµ (Tµ + ϑjµ) (6.8.61)

= Tµ

(â)ν

[
eν

a êa
µ − 2v̂ντµ

]
+ 2Φ̃τµTµ

(â), (6.8.62)

in agreement with our previous result (6.8.49).
Turning to the diffeomorphism Ward identity, we observe

∇̊AtA
µ = ∂νtν

µ + Γ̊ν
νλtλ

µ − Γ̊λ
νµtν

λ + Γ̊u
uλtλ

µ − Γ̊λ
uµtu

λ (6.8.63)

= ∇νTν
(â)µ + Γλ

[νµ]T
ν
(â)λ − 2Γν

[νλ]T
λ
(â)µ + hλρ∂(µτρ)

[
2Φ̃Tσ

(â) h̄σλ − v̂ηTσ
(â)η h̄σλ

]
. (6.8.64)

Now, defining f̂µν = 2∂(µ âν) and using the relation (6.7.59) for J u
(0), the rest of the diffeomorphism

Ward identity can be written as

F(0)µAJ A
(0) + 〈Oψ〉 ∂µψ(0) = f̂µν jν + jνmν∂µϑ + 〈Oχ〉 ∂µχ (6.8.65)

= f̂µν jν + jνmν∂µϑ + ∇̊νTν∂µχ. (6.8.66)

Results from [57] indicate that the diffeomorphism Ward identity can also be covariantly expressed in
the form

0 = e−1
[
∂ν

(
eTν

(â)µ

)
+ ∂ν (eTν) ∂µχ

]
+ Tρ

(âν)

(
v̂ν∂µτρ − eν

a∂µ êa
ρ

)
+ τνTν

(â)∂µΦ̃ + jν
(

f̂µν + mν∂µϑ
)

.

(6.8.67)

6.9 general–z conjecture

Based on the analysis for z = 2 above and the dimensional analysis of section 6.1.3, we can put
forward a general conjecture for charged Lifshitz holography with z > 1.
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6.9.1 The Action

Amalgamating our starting point for pure Lifshitz holography (5.2.1) in chapter (5) with our specific
upliftable model (6.2.21), we take as our starting point the action

S =
∫

d4x
√
−g

(
R − 1

4
Z(F)(Φ, Υ)F2 − 1

2
W(Φ, Υ)B2 − x

2
(∂Φ)2 − 1

4
Z(H)(Φ, Υ)H2 (6.9.1)

− 1
2

Z(F,H)(Φ, Υ)FMN HMN − 1
2

Z(Υ)(∂Υ)2 + V(Φ, Υ)

)
.

(6.9.2)

We have kept the dependency on Υ general in the action above. The functions Z(i) and W are restricted
to be positive and to be of such a form that the function α does not depend on Υ. If we did not do
that, we would no longer find that α ' α(0) + · · · , since, based on our dimensional analysis in section
6.1.3, this field behaves as Υ ' rz/2−1ϑ, so for 1 < z < 2, the leading component would no longer be
O(r0). Whenever z ≥ 2, α can depend on Υ, but we will not explicitly consider this. The potential V
is negative close to a Lifshitz solution.

We expect in analogy with our analysis in this chapter that this action admits solutions of the form

ds2 = − 1
r2z dt2 +

1
r2

(
dr2 + dx2 + dy2

)
, (6.9.3)

B = A0
1
rz dt, C = − β(Φ, Υ)

α(Φ)
A0

1
rz dt, Υ = rz/2−1Υ?, Φ = Φ?, (6.9.4)

where β(Φ, Υ) is a suitable generalization of the combination Υα(Φ), which appears in the upliftable
model.

6.9.2 Sources & VEVs

The metric and Proca field are expressed as in chapter 5,

ds2 =
dr2

R(Φ)r2 − E0E0 + δabEaEb, BM = AM − ∂MΞ, (6.9.5)

Invoking the equivalence principle, we can translate the results of section 6.1.3 for the scaling weights
of the GED fields on a flat background to the scaling weights of the frame components of the sources,
which we saw matched our holographic results for z = 2. Our boundary conditions, suitably general-
ized, can therefore be expressed in the form (where ∆ ≥ 0)

Eµ
0 ' −rzα−1/3

(0) vµ, (6.9.6)

Eµ
a ' rα1/3

(0) eµ
a , (6.9.7)

Aµ − α(Φ)E0
µ ' −rz−2m̃µ, (6.9.8)

Φ ' r∆φ, (6.9.9)

Ξ ' −rz−2χ, (6.9.10)

Ar ' −(z − 2)rz−3χ, (6.9.11)

Υ ' rz/2−1ϑ (6.9.12)

Eµ
0 Cµ + Υα(Φ) ' −rz/2+1α−1/3

(0) ϕ̃, (6.9.13)

Eµ
a Cµ ' rz/2α1/3

(0) aa. (6.9.14)

Note that, as was the case in chapter 5, α(0) is only a function of φ when ∆ = 0, which, as explicitly
demonstrated in section 6.7.2, leads to additional contributions to the VEV 〈Õφ〉.
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These generalized sources transform according to

δea
µ = £ξ ea

µ + λaτµ + λa
beb

µ + ΛDea
µ. (6.9.15)

δτµ = £ξ τµ + zΛDτµ, (6.9.16)

δχ = £ξ χ + σ − (z − 2)ΛDχ, (6.9.17)

δvµ = £ξ vµ + λaeµ
a − zΛDvµ, (6.9.18)

δeµ
a = £ξ eµ

a + λ b
a eµ

b − ΛD, (6.9.19)

δφ = £ξ φ − ∆ΛDφ, (6.9.20)

δm̃µ = £ξ mµ + ea
µλa + ∂µσ − (z − 2)ΛDm̃µ, (6.9.21)

δϑ = £ξ ϑ − (z/2 − 1)ΛDϑ, (6.9.22)

δϕ̃ = £ξ ϕ̃ + aaλa + vµ∂µΓ(0) − (z/2 + 1)ΛD ϕ̃, (6.9.23)

δaµ = £ξ aµ + ϑλaea
µ + τµaνeν

aλa + ∂µΓ(0) + τµvν∂νΓ(0) − (z/2 − 1)ΛDaµ, (6.9.24)

δaa = £ξ aa + ϑλa + λa
bab − ΛDaa + eµ

a ∂µΓ(0) − z/2ΛDaa. (6.9.25)

Similarly, as we did in chapter 5, we can assume the existence of a renormalized bulk action write

the variation of the on-shell renormalized action as δSren = −
∫

∂M d3x e
(
VδX −A δr

r

)
, where the

source complex is given by X = {E0
µ, Eµ

a , ϕ, Aa, Ξ, Φ, Ω, Ca, Υ}, and the responses are collected in the
complex V = {S0

µ,S a
µ, Tϕ, T a, TΞ, TΦ, TΩ, Ta, TΥ}, whose leading terms are the VEVs:

S0
µ ' r2α2/3

(0) S0
µ, (6.9.26)

S a
µ ' rz+1Sa

µ, (6.9.27)

Tϕ ' r4−zα2/3
(0) T0, (6.9.28)

T a ' r3Ta, (6.9.29)

TΞ ' r4α1/3
(0) 〈Oχ〉 , (6.9.30)

TΦ ' rz+2−∆α1/3
(0) 〈Oφ〉 , (6.9.31)

TΩ ' rz/2+1α2/3
(0) j0, (6.9.32)

Ta ' rz/2+2 ja, (6.9.33)

TΥ ' rz/2+3α1/3
(0) 〈Oϑ〉 , (6.9.34)

where we have, once more, used the results of the field theory dimensional analysis of section 6.1.3.
Thus, the variation of the renormalized on-shell action becomes6:

δSren =
∫

d3x e
[
−S0

µδvµ + Sa
µδeµ

a + T0δm̃0 + Taδm̃a + 〈Oχ〉 δχ + 〈Õφ〉 δφ − j0δϕ̃ + jaδaa + 〈Oϑ〉 δϑ −A(0)
δr
r

]
,

(6.9.35)

where

〈Õφ〉 = 〈Oφ〉+ δ∆,0
1
3

[
vµ(S0

µ + T0mµ) + eµ
a (Sa

µ + Tamµ) + jaaa − j0 ϕ̃
] d log α(0)

dφ
= 0. (6.9.36)

6 In this section, we use the symbol A(0) for the anomaly, which in our z = 2 was the leading part of the five-dimensional gauge
field. We hope that this does not cause confusion.
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The VEVs transform under the Schrödinger group in the following manner

δS0
µ = £ξS0

µ − T0∂µσ + j0ϑ∂µσ − j0∂µΓ(0) − 2ΛDS0
µ + · · · , (6.9.37)

δSa
µ = £ξSa

µ + λaS0
µ + λa

bSb
µ − Ta∂µσ + jaϑ∂µσ − ja∂µΓ(0) − (z + 1)ΛDSa

µ + · · · , (6.9.38)

δT0 = £ξ T0 − (4 − z)ΛDT0 + · · · , (6.9.39)

δTa = £ξ Ta + λaT0 + λa
bTb − 3ΛDTa + · · · , (6.9.40)

δ 〈Oχ〉 = £ξ 〈Oχ〉 − 4ΛD 〈Oχ〉+ · · · , (6.9.41)

δ 〈Oφ〉 = £ξ 〈Oφ〉+ δ∆,0
d log α(0)

dφ
(λaTa + ϑjaλa)− (z + 2 − ∆)ΛD 〈Oφ〉+ · · · , (6.9.42)

δ 〈Oϑ〉 = £ξ 〈Oϑ〉 − (z/2 + 3)ΛD 〈Oϑ〉+ · · · , (6.9.43)

δj0 = £ξ j0 − (z/2 + 2)ΛD j0 + · · · , (6.9.44)

δja = £ξ ja + λa j0 + λa
b jb − (z/2 + 2)ΛD ja + · · · , (6.9.45)

where the dots denote possible terms involving derivatives of ΛD.

6.9.3 Ward Identities

As demonstrated in [29, 32] and discussed in section 5.3, the Ward identities in pure Lifshitz holog-
raphy are the same in all the four cases (5.2.28), although their derivation are differ from case to
case. Assuming this also applies for charged Lifshitz holography, we restrict our attention to the case
1 < z < 2 with ∆ > 0. In this case, the analysis of section 6.8.2 is nearly unchanged: the main dif-
ference is that now 〈O〉ϑ and 〈Õφ〉 are no longer zero. Therefore, we conjecture the following Ward
identities

êa
(χ)µTµ

(â) = τνeµaTν
(χ,â)µ (boosts), (6.9.46)

0 = ê[a
(χ)ν

eb]µTν
(χ,â)µ (rotations), (6.9.47)

0 =
1
e

∂µ (ejµ) (UΓ(1) gauge transformations), (6.9.48)

〈Oχ〉 =
1
e

∂µ(eTµ) (Stückelberg gauge transformations), (6.9.49)

A(0) = −zS0
µvµ + Sa

µeµ
a + (2z − 2)T0m0 + (z − 1)Tama + (z − 2) 〈Oχ〉 χ (6.9.50)

+ ∆ 〈Õφ〉 φ − (z/2 + 1)j0 ϕ̃ +
z
2

jaaa + (z/2 − 1) 〈Oϑ〉 ϑ (Weyl transformations),

(6.9.51)

0 =
1
e

∂µ

(
eTµ

(χ)ν

)
− S0

µ∂νvµ + Sa
µ∂νeµ

a + T0∂νm0 (6.9.52)

+ Ta∂νma + ja∂νaa − j0∂ν ϕ̃ + 〈Oϑ〉 ∂νϑ + 〈Õφ〉 ∂νφ (Diffeomorphisms). (6.9.53)
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In this thesis, we have developed charged Lifshitz holography for z = 2 by Scherk-Schwarz reducing
the electromagnetic uplift, which we holographically renormalized to obtain a novel counterterm. We
have shown that the new sources transform as the fields of Galilean electrodynamics, and we have
worked out the VEVs and the corresponding Ward identities. We have shown that the boundary
geometry becomes TNC and that fixing the boundary value of the dilaton φ = 0 turns the boundary
geometry into TTNC, and we have commented on the relation to the gauging of the Schrödinger
algebra.

Our results open up a number of very interesting avenues for future research: one immediate thing
to do would be the explicit verification of the general-z charged Lifshitz holography conjecture made
in section 6.9 using the methods of [32]: once it has been verified that (6.9.3)–(6.9.4) provides a solution
to the general model (6.9.2), the identification of sources and VEVs as well as the computation of the
Ward identities will match our results.

With an understanding of charged Lifshitz holography in conjunction with a suitably generalized
hydrodynamic analysis à la [57], we would be able to undertake a promising first foray into what
we may dub Lif/CMT. In particular, given the link between TNC geometry and certain condensed
matter problems, this for example paves the way for a Lifshitz holographic realization of the fractional
quantum hall effect (FQHE).

Another possibly worthwhile path of exploration—also related to hydrodynamics—would be to
investigate if a hydrodynamical analysis of charged z = 0 Schrödinger black branes in the uplift
can be null reduced to give an interesting perspective on existing results [156] on non-relativistic
hydrodynamics where the boost symmetry is intact.

In another direction, it would be interesting to develop a notion of holography with HL gravity in
the bulk, especially given the connection between dynamical TNC geometry and HL gravity [53] and
to see if the boundary geometry in this scenario is also described by TNC geometry. This again has ties
to the FQHE [38]. In a similar vein, it would be interesting the explore the holographic implications
of bulk HL gravity coupled to GED on a TNC geometry. As we have demonstrated, such an action
arises from the Weyl anomaly of our z = 2 charged Lifshitz model.

It would also be fruitful to explore the holographic rôle of other non-Lorentzian geometries. In
particular it was recently discovered in [157] that by null reducing the Polyakov action in target space
and sending the string tension to zero, a novel type of non-Lorentzian geometry called U(1)-Galilean
geometry emerges. Whereas NC geometry arises by gauging the Galilei algebra which arises as a
c → ∞ contraction of the Poincaré algebra, as discussed in chapter 4, one may instead take the limit
c → 0 to obtain the Carroll algebra, which was gauged in [121] to obtain Carrollian geometry. It was
shown in [158] that the BMS group is the conformal extension of the Carroll group, and the relation
to flat space holography was explored in [159]. The boundary geometry for Lifshitz space-times with
z < 1 would be Carroll geometry, but such space-times violate the null energy condition and as such
are not usually considered.

Extending the analysis of the holographic superconductor (cf. appendix E) using the version of
Lifshitz holography developed in this thesis would also be worthwhile. In this context, the results of
[160] could be useful.

There are other models admitting Lifshitz solutions. In particular, setting W = 0 in the EPD action
(5.2.1) results in an EMD model, where the Lifshitz solutions are supported by a Maxwell field and a
logarithmically running dilaton [22]. Lifshitz hydrodynamics in this theory was explored in [148, 149],
and it would be interesting to also add additional charged fields to this analysis and working out the
consequences.

In regards to holographic renormalization, as we described in chapter 3, it would be interesting to
work out the properties of p-form fields in general and verify the conjecture put forward in section
3.3.

We also point out that in the Lifshitz holography literature, there is a disagreement about the
scaling weight of a scalar ψ that appears in metric analyses of Einstein-Proca models [27] as well as of
EPD models [28, 106]. This discrepancy carries over to the charged Lifshitz holography that we have
developed in this thesis.
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In particular, [27, 28, 106] argue that ψ has scaling weight ∆− given by

1
2
(z + 2 − βz) , β2

z = (z + 2)2 + 8(z − 1)(z − 2). (7.0.1)

This source is related to Φ̃(χ) = −vµ Mµ + 1
2 hµν Mµ Mν [33, 57], which, from our analysis in chapter 5,

we know has scaling weight 2(z − 1), which only agrees with

δD Mµ = −(z − 2)ΛD Mµ, δDvµ = −zΛDvµ, (7.0.2)

implying that Φ̃ has scaling weight 2(z − 1). Thus, the scaling weight of ψ in (7.0.1) only agrees with
that of Φ̃(χ) when z = 1. It would therefore be interesting to work out the precise relation between Φ̃
and ψ. In particular, a possible resolution could involve the scalar field Φ ' r∆φ, where the scaling
weight ∆ can in principle be computed, and it could be that ψ is related to a combination of φ and
Φ̃(χ).
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AG E O M E T RY O F A D S S PA C E - T I M E S

In this appendix, we describe anti de-Sitter (AdS) spaces to provide some background for the material
discussed in chapter 2. What follows is based on [42, 43, 161].

a.1 ads space-times

a.1.1 Definition and Useful Coordinates

(d + 1)-dimensional anti de-Sitter space, AdSd+1, is the unique maximally symmetric Einstein space1

with constant negative curvature. AdSd+1 can be embedded into Rd,2 with metric ds2 = −(dX0)2 −
(dXd+1)2 + ∑d

i=1(dXi)2 as the quadric,

−(X0)2 − (Xd+1)2 +
d

∑
i=1

(Xi)2 = −L2, (A.1.1)

where L is the radius of curvature of AdSd+1. The embedding is clearly invariant under the “Lorentz
group” for Rd,2, SO(d, 2), which has dimension 1

2 (d + 1)(d + 2)—this is the number of Killing vectors
associated to AdSd+1, leading us to conclude that AdSd+1 is maximally symmetric. SO(d, 2) is the
conformal group (see B) of d-dimensional Minkowski space. We now turn to describe some explicit
parametrizations satisfying the AdS quadric (A.1.1); first, introduce t ∈ R, ~x = (x1, . . . , xd−1) ∈ Rd−1

and, finally, r ∈ R+, in terms of which we have

X0 =
L2

2r

(
1 +

r2

L4

(
~x2 − t2 + L2

))
, (A.1.2)

Xi =
rxi

L
, i ∈ {1, . . . , d − 1}, (A.1.3)

Xd =
L2

2r

(
1 +

r2

L2

(
~x2 − t2 − L2

))
, (A.1.4)

Xd+1 =
rt
L

. (A.1.5)

Since r > 0, we only cover half of AdSd+1—the local coordinates t, r,~x define the Poincaré patch (see
also figure A.1) coordinates, where the induced metric becomes2,

ds2
AdSd+1

=
L2

r2 dr2 +
r2

L2

(
−dt2 + d~x2

)
=

L2

r2 dr2 +
r2

L2 ηµνdxµdxν︸ ︷︷ ︸
=ds2

Rd−1,1

, (A.1.7)

where we have recognized the metric of d-dimensional Minkowski space. Using this metric, we can
calculate the Ricci scalar, which becomes R = − d(d+1)

L2 , implying that L2 is indeed the radius of
curvature. Another useful form of the Poincaré metric is obtained by inverting the radial coordinate,
z = L2/r, thus yielding the metric in Poincaré z-coordinates,

ds2 =
L2

z2

(
dz2 + ηµνdxµdxν

)
. (A.1.8)

Note that the boundary in these coordinates is located at z = 0. When doing holographic renormal-
ization, we use another set of coordinates known as domain-wall coordinates, which are nothing but

1 That is, it solves the Einstein equations.
2 For example, any one of the xx-components (to be understood as any of d − 1 xi’s) of the induced metric, γ, is calculated as

follows:

γxx = ηMN
∂XM

∂x
∂XN

∂x
=
���������
− ∂X0

∂x
∂X0

∂x
+

∂Xd

∂x
∂Xd

∂x
+

∂Xi

∂x
∂Xi

∂x︸ ︷︷ ︸
only one Xidepends on x

=
r2

L2 , (A.1.6)

where ηMN is the d + 2 dimensional Minkowski metric of signature (−,+, . . . ,+,−).
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Gaussian normal coordinates. They are obtained from the Poincaré coordinates of (A.1.8) by setting
z = e−r—which means that the boundary will now be located at r → ∞—and they read

ds2 = dr2 + e2rηµνdxµdxν. (A.1.9)

It is also possible to introduce global coordinates {τ, ρ, {θi}i∈{1,...,d−1}} for AdSd+1: the following parametriza-
tion satisfies the AdSd+1 quadric:

X0 = L cosh ρ cos τ, (A.1.10)

Xd+1 = L cosh ρ sin τ, (A.1.11)

X1 = L sinh ρ cos θ1, (A.1.12)

X2 = L sinh ρ sin θ1 cos θ2, (A.1.13)
... (A.1.14)

Xd−1 = L sinh ρ sin θ1 · · · sin θd−2 cos θd−1 (A.1.15)

Xd = L sinh ρ sin θ1 · · · sin θd−2 sin θd−1, (A.1.16)

where the {θi}i∈{1,...,d−1} precisely parametrize Sd−1. The induced metric becomes,

ds2
AdSd+1

= L2
(
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

Sd−1

)
, (A.1.17)

where dΩ2
Sd−1 is the metric of the (d − 1)-sphere. Since the metric above does not depend on τ, we

infer the existence of a timelike killing vector3 ∂τ , and since this killing vector is defined globally
on the manifold, τ acts as a sensible global time coordinate. Near the center of AdSd+1, ρ = 0, the

metric assumes the form ds2
AdSd+1

ρ∼0
' L2(−dτ2 + dρ2 + ρ2 dΩ2

Sd−1), implying that the space-time

described by (A.1.17) has topology—since τ is periodic—of S1 × Rd, where S1 is the periodic time; in
particular, since ∂τ is everywhere timelike, keeping ρ and θi fixed while varying τ will produce closed
time-like curves. This is, however, not an intrinsic property of the space-time—merely an artefact of
our embedding: Rd,2 has two timelike directions, so the appearance of closed timelike curves is not so
surprising after all. To get rid these, we may instead choose to define [44, 161] (although some authors,
e.g. [43], do not!) AdSd+1 as the universal covering space, where we decompactify so that τ assumes
all real values with no periodicity constraints, which makes AdSd+1 a causal space-time. Since the
universal covering4 of S1 is R, the universal covering of AdSd+1 will have topology Rd+1. We also
want to draw the conformal diagram for AdSd+1, and for this, we change coordinates again:

cosh ρ =
1

cos φ
, (A.1.18)

implying that sinh ρ = tan φ. In this manner, the metric takes the form

ds2
AdSd+1

=
L2

cos2 φ

(
−dτ2 + dφ2 + sin2 φ dΩ2

Sd−1

)
, (A.1.19)

which we see implies that AdSd+1 is conformally flat5. The range of the new radial coordinate is
0 ≤ φ ≤ π

2 .

3 Timelike since the ττ-component of the metric is less than zero.
4 To see this [162], one can check that p : R → S1 with p(t) = (cos t, sin t) satisfies the properties of a covering map.
5 A manifold (M, g) is conformally flat if for each x ∈ M, there exists a neighborhood U of x as well as a smooth function f on

U such that (U, e2 f g) is flat. In our case, we can choose for all x ∈ AdSd+1 the function, e2 f = L2

cos2 φ
, or f = log L − log cos φ,

which is smooth.
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Figure A.1: Conformal diagram of global AdSd+1 (i.e. we drop the conformal factor L2/ cos φ in the global AdS
metric (A.1.17)) with radial direction φ and global time τ. In the figure, every point (τ, φ) contains
a Sd−1. and the boundary topology is (set φ = π/2 in (A.1.17)) that of a cylinder, R × Sd−1. The
Poincaré patch, described by the metric (A.1.8), covers only part of global AdS (the pink area), and its
boundary is conformal to Rd−1,1, i.e. (d − 1)-dimensional Minkowski space. See appendix A of [163]
for more details.

a.1.2 Conformally Compact Einstein Manifolds & The Boundary

We now turn to examining the boundary of AdSd+1. In particular, the metric in Poincaré coordinates,
(A.1.7), we have in the r → 0 limit a degenerate Killing horizon6, known as the Poincaré horizon. On
the other hand, in the limit r → ∞, the metric has a pole of second order. As described in [79, 93,
164]—and in the more rigorous [165]—we now turn to describing a general method for taming the
conformal boundary of AdS. Therefore, we let M be the interior7 of a compact (d + 1)-dimensional
manifold M with boundary ∂M (sometimes denoted I [166]). A metric gµν on M is conformally
compact if it has second order pole at the boundary ∂M and there exists a defining function ρ on M
such that the conformally equivalent metric,

g̃µν = ρ2gµν, (A.1.20)

smoothly extends to a metric on the compactification8 M. The defining function is a smooth non-
negative satisfying ρ|∂M = 0, ∂µρ|∂M 6= 0. The induced metric γµν = g̃µν|∂M is the boundary metric
associated to the specific conformal compactification of (A.1.20)—there are generally many possible
defining functions, and so many conformal compactifications of a given metric gµν, which induces a
conformal (equivalence) class of metrics [γ] on ∂M, known as conformal infinity. A conformally compact
Einstein manifold is a conformally compact manifold that also solves Einstein’s equation. We shall have
more to say about this when considering the generalized spaces AAdS and AldS spaces. We can now
apply this analysis the AdSd+1 metric in the coordinates of (A.1.19)—which indeed has a second order
pole in the radial coordinate φ at φ = π/2. Taking ρ = cos φ

L , we see that it satisfies all the conditions
for a defining function, and thus the boundary metric becomes ηµν. Now, let’s discuss how conformal
transformations act on the boundary. From the quadric, (A.1.1), the full conformal symmetry SO(d, 2)
is clear, whereas from the Poincaré metric (A.1.7), only two subgroups of SO(d, 2) are manifest: the
set of Poincaré transformations acting on t,~x, ISO(d − 1, 1), and SO(1, 1), which has the action,

(t,~x, r) 7→ (λt, λ~x, r/λ). (A.1.21)

6 A Killing horizon is a null hypersurface defined by vanishing norm of a Killing vector kµ. That it is degenerate just means that
the surface gravity vanishes on the hypersurface.

7 In particular, M will be non-compact.
8 Note that we now use the word in the mathematical sense: it simply refers to the process of making a topological space into a

compact space.
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Using a light-cone formalism for the conformal algebra and the isomorphism SO(d, 2) ' ISO(d, 1)×
SO(1, 1), one can make explicit exactly how the symmetries are inherited by the boundary, see [11]
for details.

a.1.3 The Boundary: There and Back Again

In this section, we consider the behaviour of radial geodesics and investigate if they can reach the
boundary. Being interested in radial rays, we may set dΩ2

d−1 = 0. Starting light rays, we immediately
set ds2 = 0, allowing us to determine the coordinate time it takes to go to the boundary. Using global
coordinates (A.1.17), we find

0 = ds2 = L2(− cosh2(ρ)dτ2 + dρ2) ∴ dρ2 = cosh2(ρ)dτ2. (A.1.22)

This is a differential equation that we can solve:∫ ρ

ρ0

1
cosh(ρ′)

dρ′ = τ(ρ)− τ(ρ0) = τ(ρ), (A.1.23)

i.e.

τ(ρ) = 2 tan−1[tanh(ρ/2)]− 2 tan−1[tanh(ρ0/2)]. (A.1.24)

The time for a light ray to go to the boundary and back must be 2t(∞), which is then

2τ(∞) = lim
ρ→∞

4(tan−1[tanh(ρ/2)]− tan−1[tanh(ρ0/2)]) = 4(π/4 − tan−1[tanh(ρ0/2)]),

(A.1.25)

so for ρ0 = 0 we find, specifically, that 2τ(∞) = π.
Note that if we had instead been interested in how much affine time it would take the light ray, we

would find that the answer diverges.
Now, turning to massive geodesics, we could in principle go on to compute the Christoffel symbols

and look at the geodesic equation, but we can obtain some interesting qualitative features of the
behaviour of a massive, radially-directed particle just from the normalization of 4-velocity, that is
uµuµ = −1, with uµ = dxµ

dλ , where λ is the proper time. We write

−1/L2 =
1
L2 gµνuµuν = − cosh2(ρ)

(
dt
dλ

)2
+

(
dρ

dλ

)2
.

Note that ∂τ is a (time-like) Killing vector of AdS, with components which we will denote Kµ = δ
µ
τ ,

meaning that pµ∇µ(Kν pν) = 0. In other words, Kν pν = gνρKρ dxν

dλ = gντ
dxν

dλ = − cosh2(ρ) dτ
dλ is

conserved along the trajectory, i.e. cosh2(ρ) dτ
dλ = C, which means that(

dρ

dλ

)2
= C2/ cosh2(ρ)− 1/L2.

Notice that dρ
dλ = 0 has a solution ρ = ρ∗ given by

cosh2(ρ∗) = (LC)2,

which means that there is always a turning point beyond which the massive particle cannot probe.
The position of this turning point is “energy-dependent” (that is, it is C-dependent—recall that C is
the conserved quantity corresponding to the time-translation symmetry). We find

dρ

dλ
= ± 1

L

√
(LC)2

cosh2(ρ)
− 1,

and choosing the positive sign, we obtain

L
∫ ρ

ρ0

(
(LC)2

cosh2(ρ′)
− 1

)−1/2

dρ′ = λ(ρ)− λ(ρ0).
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If we let ρ0 = 0 and compute λ(ρ∗)− λ(0), we find

λ(ρ∗)− λ(0) = L
∫ ρ∗

0

(
(LC)2

cosh2(ρ′)
− 1

)−1/2

dρ′,

so, since ρ∗ = cosh−1(LC), we obtain (using Mathematica)

λ(cosh−1(LC))− λ(0) = L
∫ cosh−1(LC)

0

(
(LC)2

cosh2(ρ′)
− 1

)−1/2

dρ′ = π/2,

implying that the turning point ρ∗ for massive particles is analogous to the boundary for massless
particles, i.e. it takes proper time π to go from ρ = 0 to the turning point and back again.

a.2 alads space-times & the fefferman-graham theorem

Holographically, as we discussed in chapter 2, the energy-momentum tensor of the dual field theory
is sourced by the boundary value of the bulk metric. Consequently, a dynamical boundary metric
is required in order for the field theory energy-momentum tensor to be well defined as the usual
variational derivative. This can be achieved via so-called asymptotically locally AdS space-times [48]:

Definition (AldS): An asymptotically locally AdS space-time is a conformally compact Einstein manifold.

An important subset of AldS space-times are the asymptotically AdS (AAdS) space-times, the bound-
aries of which are equal to that of AdS; a nice example is the (d + 1)-dimensional AdS-Schwarzschild
(static and spherically symmetric) black hole with metric [167]

ds2 = − fd(r)dt2 + fd(r)−1dr2 + r2dΩ2
Sd−1 , (A.2.1)

where the blackening factor is fd(r) = r2

L2 + 1 −
( rh

r
)d−3

(
r2

h
L2 + 1

)
r→∞−→ r2

L2 + 1, which thus reduces

to the global AdS metric of (A.1.17) in the limit r → ∞ upon doing the coordinate transformation
r 7→ L sinh ρ and t 7→ Lτ, since

ds2
r�1 ∼ −

(
r2

L2 + 1
)

dt2 +
dr2

r2

L2 + 1
+ r2dΩ2

Sd−1 (A.2.2)

r 7→L sinh ρ
t 7→Lτ−→ −L2(sinh2 ρ + 1)dτ2 + L2 cosh2 ρ

sinh2 ρ + 1
dρ2 + L2 sinh2 ρdΩ2

Sd−1 (A.2.3)

= L2
(
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

Sd−1

)
. (A.2.4)

A concrete condition, which we can take as the defining property of AlAdS space-times was also given
in [48], and reads

Rµνρσ =
1
L2

(
gµρgνσ − gµσgνρ

)
+O(r−3), (A.2.5)

in Poincaré coordinates. The class of AlAdS metrics are subject to the Fefferman-Graham theorem [87],
and a generic AlAdS metric can be written in Fefferman-Graham coordinates as follows9 [48, 168],

ds2 = L2
(

dρ2

4ρ2 +
1
ρ

gµν(ρ, x)dxµdxν

)
, (A.2.6)

where gµν(x, ρ) admits an expansion which depends on whether d is even or odd (that is, whether
d + 1 is odd or even); if d is odd, the expansion takes the form (where the subscript in parentheses
indicates the number of derivatives involved in the term under scrutiny) [169]

gµν(x, ρ) = g(0)µν(x) + ρg(2)µν(x) + ρ2g(4)µν(x) + . . . , (A.2.7)

9 In the case of pure AdS, where gµν = ηµν, the Fefferman-Graham metric can be obtained from the z-metric (A.1.8) by defining
ρ = z2.
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while for even d, the expansion involves logarithmic terns

gµν(x, ρ) = g(0)µν(x) + ρg(2)µν(x) + . . . ρd/2g(d)µν(x) + ρd/2 log(ρ)h(d)µν(x) +O(ρ
d
2 +1).

(A.2.8)

The coefficients g(0)µν, . . . , g(d−2)µν are determined by solving the Einstein equations order by order
in ρ. In a holographic setting, the term h(d)µν turns out to be equal to the metric variation of the
holographic conformal anomaly [169], while g(d)µν is related to the one-point function of the energy-
momentum tensor of the dual field theory. Note that the solution obtained in this manner is only
valid near the boundary; more powerful techniques are required if one is interested in solutions that
extend into the deep interior. An important ingredient of the method of holographic renormalization
is a Fefferman-Graham-like expansion for generic bulk fields (see chapter 3 and in particular appendix
??)—this was first realized by Witten in [79].



BC O N F O R M A L F I E L D T H E O RY

b.1 cft and the conformal algebra

Conformal invariance (see [42, 43, 170, 171] for more comprehensive reviews) generalizes Poincaré in-
variance by imposing scale invariance. This circumvents the Coleman-Mandula no-go theorem, since
scale invariance does not allow the existence of a non-trivial S-matrix due to the fact that asymptotic
states cannot be defined in the usual manner1. Although no formal proof exists in dimensions dif-
ferent from two, evidence suggests that any unitary scale invariant theory is invariant under the full
conformal group.

The conformal group consists of diffeomorphisms which preserve the form of the metric up to an
arbitrary scale factor2,

gµν(x) → Ω2(x)gµν(x), (B.1.1)

which is the smallest group containing the Poincaré group (Ω = 1) as well as inversion symmetry, x →
xµ/x2. In Minkowski space, the conformal group is generated by the usual Poincaré transformations
as well as the scale transformation,

xµ → λxµ, (B.1.2)

and the special conformal transformations,

xµ =
xµ + aµx2

1 + 2xνaν + a2x2 . (B.1.3)

The generators of the corresponding Lie algebra are Jµν for Lorentz transformations, Pµ for transla-
tions, D for the scaling transformation (dilatation), and Kµ for the special conformal transformation,
and the new—i.e. those different from Poincaré commutation relations (see (4.1.1))—non-vanishing
commutation relations of the conformal algebra read

[D, Pµ] = −iPµ, [Jµν, Kρ] = −i(ηµρKν − ηνρKµ), [D, Kµ] = iKµ, [Pµ, Kν] = 2iJµν − 2iηµνD.
(B.1.4)

The conformal algebra is isomorphic to so(d, 2) (with signature (−,+, · · · ,+,−)); the isomorphism
is constructed by enhancing the J’s in the following manner:

Jµd =
Kµ − Pµ

2
, Jµ(d+1) =

Kµ + Pµ

2
, J(d+1)d = D. (B.1.5)

The physically interesting representations of the conformal algebra give rise to operators satisfying
[D, φ(0)] = −i∆φ(0), which—since φ(x) = eixµPµ φ(0)—implies that,

[D, φ(x)] = [D, eixµPµ φ(0)] =
(
[D, eixµPµ ] + eixµPµ D

)
φ(0) + eixµPµ φ(0)D, (B.1.6)

where

[D, eixµPµ ] =
∞

∑
n=0

in

n!
xµ1 · · · xµn [D, Pµ1 · · · Pµn ]︸ ︷︷ ︸

=:[D,Pn ]

. (B.1.7)

Then, since [D, Pµ] = iPµ, we postulate the commutation relation

[D, Pn] = inPn, (B.1.8)

1 In fact, the only allowed asymptotic state is |0〉. One way to see this is to note that since the theory is scale invariant, the
interactions are always long-range forces, so asymptotic in and out states cannot be defined in the usual manner. One would
think that this voids the entire amplitude program which uses (primarily) N = 4 SYM in the planar limit, which is, as we have
seen, conformal. However, mirror symmetry relates the conformal Coulomb branch of the theory to the Higgs branch, which
breaks conformal invariance and thus possesses an S-matrix [172].

2 We discuss conformal symmetry in dimensions d > 2; in two dimensions, the conformal group is infinite dimensional, and the
corresponding algebra is the familiar Witt algebra.
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which can easily be proved by induction: assume (B.1.8) to be true and consider the commutator,

[D, Pn+1] = [D, Pn]P + Pn[D, P] = inPn+1 + iPn+1 = i(n + 1)Pn+1. (B.1.9)

Therefore, we find that

[D, φ(x)] =
∞

∑
n=0

in+1n
n!

(xµPµ)
nφ(0) + eixµPµ

[D, φ(0)] (B.1.10)

= i2xµPµ

∞

∑
n=1

in−1

(n − 1)!
(xµPµ)

n−1φ(0)− i∆φ(x) (B.1.11)

= i
(

xµ∂µ − ∆
)

φ(x), (B.1.12)

where we have used the explicit form of the momentum operator, Pµ = −i∂µ. This relation can be
used to fix the two-point function for scalar operators up to a constant; by rotation and translation
invariance, we have

〈φ1(x)φ2(y)〉 = f (|x − y|), (B.1.13)

where f is an as of yet undetermined function. We now need the Ward identity corresponding to
dilatation: this may be found in the “usual” Schwinger-Dyson manner, or by noting that D |0〉 = 0,
implying that, for two-point functions3,

0 = 〈0|[D, φ1(x)φ2(y)]|0〉 = 〈0|φ1(x)[D, φ2(y)] + [D, φ1(x)]φ2(y)|0〉 = (xµ∂
(x)
µ − ∆1 + yµ∂

(y)
µ − ∆2) 〈φ1(x)φ2(y)〉 ,

(B.1.15)

where the superscript on the derivative refers to the variable that is differentiated. The differential
equation 0 = (xµ∂

(x)
µ − ∆1 + yµ∂

(y)
µ − ∆2) f (|x − y|) is solved by

f (|x − y|) = C

|x − y|∆1+∆2
, (B.1.16)

where C is a constant. Invariance under special conformal transformations further fixes ∆1 = ∆2.
Conformal symmetry also fixes the tree-point function uniquely (up to a constant); this takes the
form

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

, (B.1.17)

where f123 is a constant and xij =
∣∣xi − xj

∣∣. We now derive (B.1.17) from conformal symmetry, using
a slightly different approach than the one we used to obtain (B.1.16) (but the method can easily be
“degeneralized” to also give the two-point function). A spin-less quasi-primary field φ of scaling
dimension ∆ transforms—by definition—under general conformal transformations as

φ(x) → φ′(x′) =
∣∣∣∣∂x′

∂x

∣∣∣∣−∆/d

φ(x), (B.1.18)

where
∣∣∣ ∂x′

∂x

∣∣∣ is the Jacobian of the coordinate transformation and d the space-time dimension. For

conformal rescalings, x → x′ = λx, (B.1.18) implies that

φ′(λx) = λ−∆φ(x). (B.1.19)

Now, translation invariance restricts the form of the three-point function

〈φ1(x1)φ2(x2)φ3(x3)〉 = f (|x12| , |x13| , |x23|), (B.1.20)

where xij = xi − xj. The behaviour of the fields under conformal rescalings (B.1.19) implies that

f (x, y, z) = λ∆1+∆2+∆3 f (λx, λy, λz). (B.1.21)

3 The calculation below is easily generalized to an arbitrary number n of scalar fields, in which case one obtains the Ward identity

0 =
n

∑
j=1

(
xµ

j
∂

∂xµ
j
+ ∆j

)
〈φ(x1) . . . φj(xj) . . . φn(xn)〉 . (B.1.14)
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Introducing a + b + c = ∆1 + ∆2 + ∆3, the above implies that

xaybzc f (x, y, z) = xaybzcλ∆1+∆2+∆3 f (λx, λy, λz) = (λx)a(λy)b(λz)c f (λx, λy, λz), (B.1.22)

i.e. it transforms as a constant under conformal rescalings, implying that it is independent of x, z and
z. Thus, we are led to conclude that

〈φ1(x1)φ2(x2)φ3(x3)〉 =
Cabc

123

|x12|a |x13|b |x23|c
, (B.1.23)

where 〈φ1(x1)φ2(x2)φ3(x3)〉 is a (structure) constant. Now, special conformal transformations with
parameter b can be shown4 to have Jacobian∣∣∣∣∂x′

∂x

∣∣∣∣ = 1
(1 − 2b · x + b2x2)d . (B.1.24)

Defining γi := 1 − 2b · xi + b2x2
i , the distance

∣∣xij
∣∣ = √

(xi − xj) · (xi − xj) transforms under special
conformal transformations as

∣∣xij
∣∣→ ∣∣∣x′ij∣∣∣ =

∣∣xij
∣∣

√
γiγj

. (B.1.25)

Transforming both sides of (B.1.23) using (B.1.18) and (B.1.25), we see that

γ∆1
1 γ∆2

2 γ∆3
3 〈φ1(x1)φ2(x2)φ3(x3)〉 = (γ1γ2)

a/2(γ1γ3)
b/2(γ2γ3)

c/2 Cabc
123

|x12|a |x13|b |x23|c
, (B.1.26)

which implies that

〈φ1(x1)φ2(x2)φ3(x3)〉 = γ
−∆1+

a+b
2

1 γ
−∆2+

a+c
2

2 γ
−∆3+

b+c
2

3 〈φ1(x1)φ2(x2)φ3(x3)〉 , (B.1.27)

which is true for arbitrary γi, which gives us the equations

2∆1 = a + b, 2∆2 = a + c, 2∆3 = b + c, (B.1.28)

the solution to which is

a = ∆1 + ∆2, b = ∆1 + ∆3 − ∆2, c = ∆2 + ∆3 − ∆1, (B.1.29)

which gives (B.1.17).
Now, an infinitesimal conformal transformation xµ → x′µ = xµ + εµ satisfies:

∂x′µ

∂xν
= δ

µ
ν + ∂νεµ =

(
1 +

1
d

∂ρερ

)(
δ

µ
ν +

1
2
(∂νεµ)− ∂µεν

)
, (B.1.30)

where we have used the conformal Killing equation in the last equality. This we see to be an in-
finitesimal rescaling times and infinitesimal rotation, which, upon exponentiating, gives us the finite
transformation

∂x′µ

∂xν
= Ω′(x)Rµ

ν(x), R ∈ O(d), (B.1.31)

where the parameter Ω′ is equal to the Ω of (B.1.1), since

ηρσ
∂x′ρ

∂xµ

∂x′σ

∂xν
= Ω′2ηµν, (B.1.32)

where we have used that R ∈ O(d). Next, we need to find out how these guys act on the Hilbert space,
and, by extension, on the primary fields φ(0). To this end, we construct unitary operators which are
representations of the conformal generators, U = eiQε , where the Qε are the charges associated with

4 One approach to showing this is to use the homomorphism property of determinants and to use that a special conformal
transformation is equivalent to an inversion followed by a translation followed by another inversion; see e.g. [43].
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infinitesimal conformal transformations [43, 171], which allows us to write the general transformation
of a field φa transforming in the SO(d) representation D as,

Uφa(x)U−1 = Ω(x′)∆D(R(x′)) a
b φb(x′), (B.1.33)

where, as we have seen, ∂x′µ
∂xν = Ω′(x)Rµ

ν(x). For the scalar representation, D(R) = 1, while for the
vector representation, we have D(R) ν

µ = R ν
µ . For a scalar operator, as claimed, this reduces to the

relation

φ(λx) = λ−∆φ(x), (B.1.34)

where we have renamed Ω → λ.
Now, the commutation relations of (B.1.4) imply that Kµ is a lowering operator for the conformal

weight,

[D, Kµφ(0)] = [D, Kµ]φ(0) + Kµ[D, φ(0)] = −i(∆ − 1)Kµφ(0), (B.1.35)

implying that Kµ reduces the conformal weight by 1. Note that Kφ(0) above is shorthand for [K, φ(0)]—this
notation is valid due to the Jacobi identity and simplifies the notation (see also [171]); we will use it
in the rest of this section.

RepresentationNow, s of the four-dimensional conformal group can be labeled by (∆, jL, jR), corre-
sponding to the quantum numbers of the subgroup SO(1, 1)× SO(3, 1), where the j’s are the usual
quantum numbers associated with the (algebra) isomorphism SO(3, 1) = SUL(2) × SU(2)R, which,
since the quantum theory is required to be unitary, imposes the bounds ∆ ≥ 1 + jL for jR = 0 and the
same with L ↔ R, as well as ∆ ≥ 2+ jL + jR for both jL, jR 6= 0. In four dimensions, therefore, scalars5

(jL = 0 = jR) satisfy ∆ ≥ 1, while vectors (jL = 1/2 = jR) satisfy ∆ ≥ 3 and so forth. The unitarity
bound implies the existence of fields with lowest possible conformal weight, which are consequently
annihilated by Kµ—these are known as primary fields,

Kµφ(0) = 0 DEF⇐⇒ φ a primary operator. (B.1.36)

where we remind the reader that Kφ(0) is short-hand for [K, φ(0)]. From such a primary operator,
we can construct the conformal descendants by acting with the momentum operator, which acts as a
raising operator, since

[D, Pµφ(0)] = −i(∆ + 1)Pµφ(0), (B.1.37)

so the operator Pµ1 · · · Pµn φ(0) has conformal weight ∆ + n (provided that φ(0) has weight ∆). It’s
amusing to note that φ(x) = eixµPµ φ(0), which we used previously, is an infinite linear combinations
of descendant operators. Finally, the primary operator satisfies the relation [Jµν, φ(0)] = −Jµνφ(0),
where Jµν is a finite-dimensional representation of the Lorentz group, implying that a primary con-
formal field satisfies the relations:

[D, φ(0)] = −i∆φ(0), [Jµν, φ(0)] = Jµνφ(0), [Kµ, φ(0)] = 0. (B.1.38)

This allows us to construct a representation of the conformal algebra out of the primary φ(0) and its
descendants6.

b.2 the superconformal algebra

The four-dimensional superconformal group PSU(2, 2|N ), which we will focus on, is the symmetry
group of SYM with N supersymmetries. The corresponding algebra, psu(2, 2|N ), consists of the con-
formal generators, Jµν, Pµ, D, Kµ as well as the Poincaré supercharges Qa

α, Q̄a
α̇—in addition to these,

closure of the superconformal algebra requires further supercharges Sa
α, S̄a

α̇, which are the fermionic
superpartners of Kµ (the Poincaré supercharges are superpartners of Pµ). Furthermore, the internal
R-symmetry group U(N ) = U(1)× SU(N ) ⊂ SU(2, 2|N ) is generated by T (the U(1)) and Ti (the
SU(N )) for i = 1, . . . ,N 2 − 1.

5 In d dimensions, this generalizes to ∆ ≥ d−2
2 .

6 This is accomplished by using the technique of induced representations: we pass from a representation of the subalgebra gen-
erated by D, Jµν, K at x = 0 to a representation of the full conformal algebra by shifting the position using Pµ. Mathematicians
like to call such a construction a parabolic Verma module.
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In order to find representations of the superconformal algebra, we do the same as for the confor-
mal algebra above: we identity the superconformal primary operators7 O, which in addition to the
requirement (B.1.36) has to satisfy8

[Saα,O} = 0 = [S̄a
α̇,O}, (B.2.1)

for all a = 1, . . . ,N and α, α̇ = 1, 2, and where [·, ·} is a commutator if O is bosonic and an anti-
commutator if O is fermionic. This is because the S, S̄—just like Kµ—lowers the conformal dimension
by one half, since [D, Saα] =

i
2 Saα, implying that, if φ is a fermionic primary:

[D, Saαφ(0)] = −i(∆ − 1/2)Saαφ(0), (B.2.2)

and similarly for S̄a
α̇. In particlar, superconformal primary operators are conformal primaries, and the

formalism developed in the previous section carries over; in particular Pµ acts as a raising operator
for the conformal weight.

A new feature, however, is the existence of superdescendants: the commutation relation [D,Qa
α] =

− i
2Qa

α implies that Qa
α (and its conjugate) raise the conformal dimension by one half, i.e. the su-

perdescendant O′ = [Q,O} has conformal dimension ∆′ = ∆ + 1/2. Note that superdescandants of
superconformal primaries are conformal primary operators, since (we take O to be bosonic here since
it makes the computation easier)

[Kµ,O′] = [Kµ, [Q,O]] = [Q,

=0︷ ︸︸ ︷
[Kµ,O]] + [[Kµ, Q],O] ∼ [S,O] = 0, (B.2.3)

where we have used the Jacobi identity and the condition (B.2.1).
A class of particularly interesting operators are the so-called chiral primary operators that are

annihilated by at least one of the Qa
α,

[Qa
α,O} = 0, (B.2.4)

which are 1/2 BPS operators, which, as we now show, means that the scaling dimension ∆ is protected.
Let O∆ be a chiral primary operator of conformal dimension ∆ and spin Jµν, i.e.

[D,Oδ(0)] = −i∆O∆(0), [Jµν,O∆(0)] = −JµνO∆(0). (B.2.5)

Superconformal primarity implies that

[Sa
α,O∆(x)} = 0 = [S̄aα̇,O∆(x)}, (B.2.6)

for all a ∈ {1, . . . ,N} and α, α̇ ∈ {1, 2}, while the condition that O∆ be chiral primary amounts to the
requirement

[Qa
α,O∆(x)} = 0, (B.2.7)

for at least one of the Qa
α’s, which we will denote Qā

ᾱ. Now, recall that the anti-commutation relation
between the special conformal supercharges and the Poincaré supercharges has the form{

Qa
α, Sβb

}
= εαβ (δ

a
b D + Ra

b) +
1
2

δa
b Jµν(σ

µν)αβ, (B.2.8)

where Ra
b ∈ uR(N ), i.e. the automorphism subalgebra (R-symmetry) of the full su(2, 2|N ). Using

(B.2.6) and (B.2.7), we see that (schematically)

0 = [{S, Q},O∆(0)] = [J + D + R,O∆(0)] ∼ (∆ +R+ J )O∆(0). (B.2.9)

So, the dimension is given in terms of R-charge and spin, implying that it is indeed protected from
quantum corrections.

In four-dimensional N = 4 SYM, the elementary fields are the fermions, ψ̄aα̇, ψa
α, the six scalars, φi

and the gauge field Aµ, all transforming in the adjoint of the gauge group, SU(N). Representations
of the superalgebra psu(2, 2|4) are labeled by the quantum numbers of the bosonic subgroup (just as
we had for the conformal group above, but with more structure)

(jL ,jR)︷ ︸︸ ︷
so(3, 1)×

∆︷ ︸︸ ︷
so(1, 1)×

[r1,r2,r3]︷ ︸︸ ︷
su(4) , (B.2.10)

7 We consider only local gauge invariant operators constructed from the elementary fields of the CFT.
8 The latin index structure of Qa

α and Saα comes from the fact they transform in conjugated representations of U(N ).
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where [r1, r2, r3] are the Dynkin labels of the representations of su(4), labelling a given irreducible
representation. The dimension of such a representation is given in terms of the Dynkin labels by [173]

Dim(r1, r2, r3) = (r1 + 1)(r2 + 1)(r3 + 1)
(

1 +
r1 + r2

2

)(
1 +

r1 + r2 + r3

3

)
, (B.2.11)

and gives the degeneracy of the state transforming in the representation under scrutiny. In order to
construct gauge-invariant local operators, we must use only gauge-invariant operators such as the
fermions, the scalars and the field strength tensor evaluated at the same space-time point x. A local
single-trace operator involving scalars, for example, becomes

O(x) = Tr
[
φi · · · φj

]
(x), (B.2.12)

where the trace is over the adjoint representation of SU(N); i.e. we write φi = φi
aTa and take the

matrix trace of the generators. In general, such single-trace scalar operators have the form [45],

O(x) = Str
[
φ{i1 · · · φik}

]
, (B.2.13)

where the {i1 . . . ik} stands for the traceless part and the Str stands for symmetrized trace over the
gauge algebra, given by

Str [Ta1 · · · Tan ] = ∑
σ∈Sn

Tr
[

Tσ(a1)
· · · Tσan

]
. (B.2.14)

These operators can be shown to be 1/2 BPS and chiral primary operators with conformal dimension
∆ = k; in particular, in the large-N limit of AdS/CFT, the single-trace operators are leading, so these
are the most important to us. For example, the ∆ = 2 single trace operator is given by Str

[
φ{iφj}

]
=

Tr
[
φiφj]− 1

6 δijTr
[
φkφk

]
, where we have used that the N = 4 multiplet contains six scalars as well as

the cyclic property of the trace. A more complete treatment [45] reveals that various BPS multiplets
and non-BPS multiplets satisfy the properties listed in the table below (the column #Q lists the number
of Poincaré supercharges left invariant by the primary operator in question):

Operator type #Q spin range su(4) rep. conformal dim. ∆

identity 16 0 [0, 0, 0] 0

1/2 BPS 8 2 [0, k, 0], k > 2 k

1/4 BPS 4 3 [`, k, `], ` ≥ 1 k + 2`

1/8 BPS 2 7/2 [`, k, `+ 2m], m ≥ 1 k + 2`+ 3m

non-BPS 0 4 any unprotected

Table B.1: Properties of superconformal BPS multiplets.

The Konishi operator is an example of a non-BPS operator; it is given by [43]

K = Tr
[
φiφi

]
. (B.2.15)
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c.1 supersymmetric gauge theory

In 1967, Coleman and Mandula proved a no-go theorem [174] for the S-matrix of quantum field the-
ory: given certain reasonable assumptions, the only possible symmetry group is a direct product of
the Poincaré group and an internal symmetry group1. Another nifty albeit rather long proof of the
theorem using Lie algebras directly is presented by Weinberg in [176]. It is, however, possible to cir-
cumvent the Coleman-Mandula theorem in two ways: if a theory contains only massless particles, one
may extend the Poincaré group to the conformal group; or, one may introduce supersymmetry [177]
by enhancing the Poincaré algebra to a superalgebra (graded Lie algebra) via the introduction of a set
of spinorial2 supercharges Qa, a = 1, . . . ,N , where N is the number of independent supersymmetries
in the system—see appendix B and also e.g. [170, 178]. A particularly interesting supersymmetric the-
ory is (planar) N = 4 super Yang-Mills theory (SYM) in four spacetime dimensions. It is the CFT of
AdS/CFT, and it has garnered much interest as a more tractable toy model of QCD: understanding the
perturbative behavior of N = 4 has lead to great advances in the field of scattering amplitudes, e.g. it
has been realized that the off-shell gauge freedoms in Feynman diagrams in general QFTs are hugely
redundant [172], and new recursion relations for tree amplitudes [179]. Great progress at loop level
has also been achieved—recently, the planar N = 4 four-point gluon amplitude has been computed
to no less than ten loops [180].

Figure C.1: (a): This particular on-shell diagram corresponds to the four-gluon tree amplitude of N = 4 SYM.
The vertices are equivalent to three-particle on-shell amplitudes which are fixed uniquely by little
group scaling—specifically, the filled vertex corresponds to the MHV three-point amplitude, given

by the Parke-Taylor expression 〈23〉3

〈12〉〈31〉 δ2×2(λ · λ̃), where δ-function imposes momentum conserva-

tion expressed in spinor-helicity variables. Similarly, the MHV vertex (the non-filled), is given by
[23]3

[12][31] δ
2×2(λ · λ̃). It is worth noting that this one on-shell diagram corresponds to the sum of three

Feynman diagrams. (b): Illustration of BCFW recursion: an n-point tree amplitude An({h, p}) (LHS)
is obtained by shifting the momentum of two lines, i and j, say, by two C-valued vectors zrµ

i , zrµ
j , for

a complex parameter z in such a way that the shifted lines ı̂, ̂ are on-shell. Setting z = 0, the shifted
amplitude, Ân(z) reduces to An, so considering Ân/z, we can use Cauchy’s theorem (disregarding

the possibility of a pole at infinity) to relate An = ∑ Resz 6=0
Ân(z)

z . Now, since we are considering
tree-level diagrams, the poles occur when propagators between legs a, b, say, go on-shell, for z = zab,
which results in a residue of the form ÂL(zab)

1
p2

ab
ÂR(zab), where the shifted left/right amplitudes are

on-shell evaluated at z = zab. Summing over all possible lines that can go on shell and all helicity
configurations λ then gives the total sum of residues, which is the sought-after tree amplitude.

1 In [175], Witten presents a delightful argument as to why the Coleman-Mandula theorem should be true: it turns out that
extending the Poincaré symmetry overconstrains scattering amplitudes, which can be non-vanishing only for a discrete set of
scattering angles.

2 That is, they transform as spinors under Lorentz transformations and they are an odd element of a Z2-graded symmetry
algebra.

115
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Roughly following [181], we now describe N = 4 in four spacetime dimensions. The spinorial
supercharges—in four dimensions—are Weyl spinors, consisting of two complex components, Qa =(
Qa

α

Q̄aα̇

)
, implying that N = 4 SYM has 16 real supercharges, which is also the dimension of a

Majorana-Weyl spinor in ten dimensions, which, as we shall see, is quite significant. N = 4 is the
maximum number of supercharges we can have, since they raise/lower the helicity by ∆λ = 1

2 when
acting on the fields, so—since we require that no particles have spin greater than one (otherwise we’d
have a theory of gravity)—the N = 4 is the maximal degree of SUSY possible. The supersymmetry
algebra has a global U(N ) symmetry rotating the supercharges into each other: this is known as
R-symmetry. The extended supersymmetry algebra read [43],

[Qa
α, Jµν] = (σµν)

β
α Qa

β, [Q̄a
α̇, Jµν] = εα̇β̇(σ

µν)
β̇

γ̇Q̄
aγ̇, (C.1.1)

[Qa
α, Pµ] = 0, [Q̄a

α̇, Pµ] = 0, (C.1.2)

{Qa
α, Q̄bβ̇} = 2σ

µ

αβ̇
Pµδa

b (C.1.3)

{Qa
α,Qb

β} = εαβZab (C.1.4)

{Q̄aα̇, Q̄bβ̇} = εα̇β̇Z̄ab, (C.1.5)

where the anti-symmetric Zab and its barred cousin are the central charges of the SUSY algebra,
which generate its center (i.e., they commute with all other generators of the algebra). They also
satisfy Zab = (Z̄†)ab, since Q̄aα̇ = (Qa

α)
∗. We can now explicitly see the emergence of the R-symmetry:

under global phase rotations (“reshufflings”) of the supercharges,

Qa
α 7→ (Qa)′α = Ra

bQ
b
α, Q̄aα̇ 7→ Q̄′

aα̇ = Q̄′
bα̇(R†)b

a. (C.1.6)

Under R-symmetry, the first two lines of the SUSY algebra are clearly unchanged, while invariance
of (C.1.3) implies unitarity of Ra

b—to see this, take the trace of (C.1.3) and R-transform the resulting
expression,

{Qa
α, Q̄aβ̇} = 2N σ

µ

αβ̇
Pµ 7→ 2N σ

µ

αβ̇
Pµ

(!)
= (R†)c

aRa
b{Q

b
α, Q̄cβ̇} (C.1.7)

∴ (R†)c
aRa

b = δc
b, (C.1.8)

implying unitarity of Ra
b. Thus—as long as the central charges vanish—we conclude that the R-

symmetry group is U(N ). It turns that when the central charges do not vanish, the R-symmetry
group (which is of course still required to be unitary by the argument just presented) is given by the
compact symplectic unitary group, PSU(N ). It turns out that for D = 4 the central charges do vanish,
and for N = 4 SYM in four space-time dimensions, the R-symmetry group is U(4)—however, for
N = 4 SYM, the superconformal algebra (as we shall see) breaks this to SU(4). We now turn to the
classification of massless particle representations of the SUSY algebra in four spacetime dimensions.
Since the particles are massless, we choose a Lorentz frame in which the momentum takes the form
Pµ = (E, 0, 0, E) for E > 0, and so the relation (C.1.3) takes the explicit form3—where the Q are
unitary reps of the SUSY algebra on the relevant Hilbert space H:

{Qa
α, Q̄bβ̇} = 2(σµPµ)αβ̇δa

b =

(
4E 0

0 0

)
αβ̇

δa
b . (C.1.10)

Setting α = β̇ = 2 and a = b, we get (no sum on a) {Qa
2, Q̄a2̇} = {Qa

2, (Qb
2)

†} = 0, so for any
(normalized) |φ〉 ∈ H, we have that

0 = 〈φ| {Qa
2, (Qa

2)
†} |φ〉 = 2 ||Qa

2||
2 (no sum on a), (C.1.11)

implying that Qa
2 = 0. Furthermore, using the relation {Qa

α,Qb
β} = εαβZab with α = 1 and β = 2 gives

us that 0 = Zab for all a, b since ε12 = 1 and Qb
2 vanishes for all b; that is, central charges are absent

3 Note that for any vector vµ, we have that

vµσ
µ

αβ̇
=

(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
. (C.1.9)
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from N = 4 SYM. The commutation relations also imply that {Qa
1,Qb1̇} = 4Eδa

b , which allows us to
define creation and annihilation operators realising the fermionic harmonic oscillator algebra:

ab =
Qb

1

2
√

E
, a†

b =
Q̄b1̇

2
√

E
, (C.1.12)

satisfying the anti-commutation relations,

{ab, a†
c} = δb

c , {ab, ac} = 0 = {a†
b , a†

c}. (C.1.13)

Now, the helicity λ of a given single particle state |pµ, λ〉 ∈ H⊗1 is the eigenvalue4 of J12, and thus,
using (C.1.1), we find that (taking α = 1)

[Qa
1, J12] = (σ12)

1
1 Qa

1 =
1
2
(σ3)

1
1 Qa

1 =
1
2
Qa

1, (C.1.16)

and thus,

J12Qa
1 |pµ, λ〉 = λQa

1 |pµ, λ〉 − [Qa
1, J12] |pµ, λ〉 (C.1.17)

= (λ − 1/2)Qa
1 |pµ, λ〉 , (C.1.18)

implying that Qa
1—and by extension ab—lowers the helicity by 1/2. A completely analogous argument

can be invoked to see that Q̄1̇b and a†
b increases the helicity by 1/2. Now, take N = 1 and note that

the spinorial nature of Q̄1̇ implies its nilpotency. To form a supermultiplet, we take a vacuum state
|Ω〉—which by definition is annihilated by a, i.e. a |Ω〉 = 0— of lowest helicity, λ0, and act with
a†, and so, by nilpotency of a†, the supermultiplet (since we require that no helicity be greater than
one) consists only of two states, |Ω〉 = |pµ, λ0〉 and a† |Ω〉 = |pµ, λ0 + 1/2〉. However, in order to
make the multiplet CPT self-conjugate, we have—in general—to add the states with opposite chirality,
implying that the full multiplet contains the states |pµ,±λ0〉, |pµ,±(λ0 + 1/2)〉. This makes possible
only two kinds of multiplets: starting from λ0 = 0, we get helicities {−1/2, 0, 0,+1/2}—this is the
chiral multiplet, consisting of two fermionic degrees of freedom and a complex scalar (two real scalar
fields). Taking λ0 = 1/2, we obtain the vector multiplet with helicities {−1,−1/2,+1/2,+1}, the
on-shell field content of which consists of two spinors and one vector.

Now, for N = 4, however, starting with the lowest helicity state λ0 = −1, we get a supermultiplet
of 16 = 2N states which is already CPT self-conjugate5. For the excited states (obtained by acting with
a combination of the four creation operators on the chosen minimal helicity state) themselves—which
translates to the field content of the supermultiplet—this produces a Pascal’s triangle structure: There
are (4

4 ) = 1 ways of of selecting four operators out of four, (4
3 ) = 4 of selecting three out of four

operators etc. All in all, this produces a vector multiplet containing a gauge boson Aµ, which takes
values in su(N), four left-handed fermions, ψA, A ∈ {1, . . . , 4}, and six real scalars, which we can
group together to form three complex scalars, Φk, k ∈ {1, 2, 3}. Further, since Aµ transforms in the
adjoint representation of SU(N), the fact that all the other fields are related to Aµ by supersymmetry
implies that they also transform in the adjoint of SU(N). Under the SU(4) R-symmetry, the fieds
transform in more interesting ways: the gauge field Aµ is a singlet, 1; scalars are in the 6, whereas the
fermions transform in 4.

The Lagrangian for N = 4 can be obtained by dimensional reduction: starting from the unique
N = 1 SYM in ten dimensions,

SN=1
10D =

∫
d10x Tr

[
−1

2
FMN FMN +

i
2

Ψ̄ΓMDMΨ
]

, M, N ∈ {0, . . . , 9} (C.1.19)

4 To see this, recall that helicity is defined as the projection of angular momentum along the direction of the momentum,

λ =
~J · ~P∣∣∣~P∣∣∣ . (C.1.14)

For our concrete massless momentum, we have
∣∣∣~P∣∣∣ = √

2E, and since Ji =
1
2 εijk J jk ,, this implies that

λ =
1√
2

J12 =
1√
2

J12. (C.1.15)

5 One can do the same exercise for N = 3, but to ensure CPT self-conjugacy, one has to double the field content which makes it
identical to N = 4.
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where ΓM are the 32× 32 (since 2b5c = 32) Dirac matrices in ten spacetime dimensions, and the Ψ’s are
Majorana-Weyl spinors. The field strength is given by FMN = ∂M AN − ∂N AM + ig[AM, AN ] whereas
the covariant derivative is given by DMΨ = ∂MΨ + ig[AM, Ψ]. The actual procedure, which is done
in some detail in [44], involves dimensional reduction on a T6. Explicitly, the ten-dimensional gauge
field decomposes in the following manner,

AM = (Aµ(xν), φi(xν)), µ, ν ∈ {0, . . . , 3}, i ∈ {1, . . . , 6}, (C.1.20)

where—by assumption—nothing depends on the compactified directions. So, for example, Fµi =
∂µφi + ig[Aµ, φi] = Dµφi, where we have recognized the covariant derivative. Similarly, Fij = ig[φi, φj],
so for the dimensionally reduced FMN FMN , we obtain,

Tr
[

FMN FMN
]
= Tr

[
FµνFµν + FµiFµi + FijFij

]
= Tr

[
FµνFµν + DµφiDµφi − g2[φi, φj][φi, φj]

]
.

(C.1.21)

The full Lagrangian reads6:

L = Tr

[
− 1

2g2
YM

FµνFµν − iψ̄aσ̄µDµψa − DµφiDµφi + gYM

(
Cab

iψa[φi, ψb] + h.c.
)
+

g2
YM
2

[φi, φj]
2

]
,

(C.1.22)

where the Cab
i are the Clebsch-Gordan coefficients coupling two 4 representations of SO(6) to a 6. Now,

we see that the reduction of (C.1.20) breaks the original SO(9, 1) Lorentz invariance: it gets broken to
SO(3, 1)× SO(6), where the six scalars φi transform as a vector under SO(6), whereas the eight chiral
spinors ψa and ψ̄a transform in 4 and 4̄, respectively, of SO(6). Recall that the R-symmetry group of
N = 4 is SU(4), which is isomorphic to SO(6)—so this is nothing but the R-symmetry group.

Further, one can show that the β-function of N = 4 vanishes, implying conformal invariance of the
theory, which enhances the Lorentz group SO(3, 1) to the conformal group, SO(4, 2). We now see the
first glimpse of the AdS/CFT correspondence: as we shall see, the isometry group of AdS5 × S5 is pre-
cisely SO(4, 2)× SO(6), so the global symmetries on either side of the correspondence match. In fact,
the full symmetry group of N = 4 is obtained by combining the conformal symmetry with supersym-
metry: in this manner, one obtains the supergroup PSU(2, 2|4). The corresponding Lie superalgebra
psu(2, 2|4) contains, somewhat surprisingly, two extra superconformal spinorial generators, Sa

α and
S̄a

α̇, which are needed for the algebra to close. The total set of generators of psu(2, 2|4) consists of the
bosonic generators from the conformal part, D, Jµν, Pµ and Kµ, and the generators T and T j from the
u(N ) = u(1)× su(N ) subalgebra, where T generates u(1) and the T j generate su(N ). The fermionic
generators are Qa

α, Q̄aα̇, Sa
α, S̄a

α̇. The full algebra is somewhat formidable, but it turns out that for N = 4,
the u(1) generator T commutes with all other generators, and so, by Schur’s lemma, is a multiple of
the identity. It can be made to vanish [43], and thus, the R-symmetry group is not U(4) but rather
SU(4).

c.1.1 The Planar Limit of SU(N) Gauge Theories

In particular, the prototypical gauge theory is SU(N) Yang-Mills theory, which has the Lagrangian,

LYM = − 1
2g2 Tr

[
FµνFµν

]
, (C.1.23)

which is identical to the gluonic part of N = 4 SYM we considered previously. The su(N)-valued
gauge field Aµ = Aa

µTa is written in terms of the generators {Ta}a∈{1,...,N2−1} of su(N) satisfying
[Ta, Tb] = i f c

ab Tc and Tr [TaTb] = C(R)δab, where C(R) is a number that depends on the representation
that turns out to be 1/2. Thus. there are two “perspectives” on Aµ: it can either be considered a N-
vector, Aa

µ, or it can be written in terms of the generators {Ta}. Taking the gauge group to be U(N)

rather than SU(N) (which in the limit of large N give the same theory) and thinking of Aµ as a

6 We exclude the topological θ-term, proportional in the action to
∫

F ∧ F, which breaks CP invariance.
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N × N matrix (Aµ)i
j = Aa

µ(Ta)i
j, we can write the (Lorenz gauge) Feynman rules of the theory in

the following manner [11],

〈(Aµ)
i

j(p)(Aν)
k

l(k)〉 = g2δi
jδ

k
l

ηµν

p2 (2π)dδd(p + k), (C.1.24)

〈(Aµ)
i

j(p)(Aν)
k

l(k)(Aρ)
m

n(q)〉 =
1
g2 δi

nδk
j δm

l (pµ + kν + qρ)(2π)dδd(p + k + q),

(C.1.25)

〈(Aµ)
i

j(p)(Aν)
k

l(k)(Aρ)
m

n(q)(Aσ)
h

g(r)〉 =
1
g2 δi

gδk
j δm

l δh
nηµνηρσ(2π)dδd(p + k + q + r),

(C.1.26)

which can represented by the ’t Hooft the double line notation diagrams [182] of figure C.2.

Figure C.2: The propagator and the vertices for U(N) Yang-Mills theory. Their values are given in eqs. (C.1.24) to
(C.1.26).

Clearly, each closed loop contributes a factor N, since δijδji = Tr [1N×N ] = N; thus, a Feynman
diagram with F loops, or faces, will carry a factor of NF, whereas for each propagator (edge) (P),
there will be a factor g2, while each vertex (whether it be cubic or quartic) contributes a factor g−2,
implying that a generic Feynman diagram will contribute a factor,

diagram ∼ g2P−2V NF = (g2N)P−V NF−P+V = λP−V Nχ, (C.1.27)

where we have defined the ’t Hooft coupling λ = g2N—which becomes the effective coupling of the
theory at large N—and identified the Euler characteristic χ. which is also related to the genus g of the
surface—in the absence of boundaries—via the relation χ = 2 − 2g. Thus, in the ’t Hooft (or planar)
limit, where N → ∞ with λ held fixed, only planar diagrams, that is, diagrams that can be drawn
on S2 contribute. It is also worth noting that taking the limit N → ∞ naïvely leads to a divergent
β-function, while taking the limit with fixed ’t Hooft coupling leads to a renormalization equation
with finite coefficients [43].

Figure C.3: Two vacuum diagrams: the left is planar; it can be folded over the sphere S2, whereas the other cannot:
it has genus one, and thus maps to the 2-torus, T2. Figure inspired by [183].

Crucially, the large N expansion of our field theory is formally the same as the topological expan-
sion of strings with string coupling 1/N, which is also a sum over genera. For N = 4, the string
theory that leads to the correct expansion is, as we explore in appendix D, ten-dimensional type IIB
string theory on AdS5 × S5, which we now briefly describe.
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c.2 type iib supergravity

Following [184] (see also [45]), we take the limit α′ → 0, thereby retaining only the massless modes
of the type IIB superstring—this is precisely type IIB supergravity. The bosonic spectrum from the
NS-NS sector thus consists of the dilaton, Φ, the graviton GMN and the Kalb-Ramond two-form, B2,
and its associated field strength H3 = dB2. The R-R sector contributes form fields, C0, C2 and C5, with
their associated odd-form field strength, of which F̃5 is particularly interesting since it is self-dual.
Finally, the fermionic part of the spectrum is provided by the NS-R (and its cousin) sector, which
includes two left-handed Majorana-Weyl gravitinos and two right-handed Majorana-Weyl gravitinos.

However, it turns out that the self-duality of F̃5 makes writing down a classical action for type
IIB SUGRA quite complicated—the issue is that the ‘usual’ F2 action, i.e. something like

∫
F5 ∧ ?F5,

does not incorporate the self-duality constraint, and thus describes twice the number of degrees of
freedom. One solution to this problem is the PST approach [185] makes use of an auxiliary scalar field
and an extra gauge symmetry, which allows the scalar field to be set equal to one of the space-time
coordinates (this results in a loss of general covariance in the chosen direction).

Another way to deal with this is to produce an action which gives the correct equations of motion
when one imposes the self-duality constrain. The action—which is not supersymmetric due to the
overcounting that has to be fixed by the self-duality constraint—turns out to be,

SIIB SUGRA =
1

2κ2

(∫
d10x

√
−G

{
e−2Φ

[
R + 4∂MΦ∂MΦ − 1

2
|H3|2

]
− 1

2
|F1|2 −

1
2

∣∣F̃3
∣∣2 + 1

2

∣∣F̃5
∣∣2})
(C.2.1)

− 1
κ2

∫
C4 ∧ H3 ∧ F3, (C.2.2)

where Fn+1 = dCn, H3 = dB2, F̃3 = F3 −C0H3 and F̃5 = F5 − 1
2 C2 ∧ H3 +

1
2 B2 ∧ F3. Here, the R-R fields

differ by field redefinitions from the ones that couple simply to the the D-brane world volumes. The
self-duality constraint that makes the action above “correct” reads

F̃5 = ?F̃5. (C.2.3)

Furthermore, the ten-dimensional gravitational constant is given by.

2κ = (2π)7α′
4. (C.2.4)

Interestingly, type IIB SUGRA has a global SL(2, R) (Möbius) symmetry which is not manifest in the
action (C.2.2); in order to identify it, one has to rewrite to Einstein frame and perform a couple of field
redefinitions (see [45, 184]). This SL(2, R) invariance is holographically related to the Montonen-Olive
duality of N = 4 SYM [186].



DT H E A D S / C F T C O R R E S P O N D E N C E F R O M S T R I N G T H E O RY

In this appendix, which serves as supplementary material to chapter 2, we provide a “derivation” of
the AdS/CFT correspondence from string theory by considering a stack of N D3 branes from the
perspectives of open and closed strings, following [42–44].

d.1 d3 duality and ads5 /cft4

Consider a stack of N D3 branes in R9,1, which extend along a (3 + 1)-dimensional hyperplane. Per-
turbative string theory on this background contains both open and closed strings: the closed strings
enter as excitations of the vacuum, while the open strings end on the D3 branes and, as such, act as
excitations of the branes. At low energies, E � l−1

s , only massless string modes are excited. When
the string coupling is small, gs � 1, the Dirac-Born-Infeld (DBI) action describes the string dynamics
accurately: the dynamics of open strings are then described by a supersymmetric gauge theory living
on the worldvolume of the D branes, where the gauge field Aµ corresponds to open string excitations
parallel to the D brane, while excitations transverse to the D brane—which are interpreted as fluctu-
ations in the position of the D-brane—behave as scalar fields. If we consider only a single D brane,
we get a U(1) gauge theory (see e.g. [187]), but if we consider N coincident branes, we have to intro-
duce Chan-Paton factors, which are non-dynamical degrees of freedom assigned to the endpoints of
the string: the Chan-Paton factor λij labels strings that go between the i’th and the j’th brane. One
can show that the λij form the Lie algebra U(N), resulting in U(N) gauge theory with effective cou-
pling gsN. On the other hand, D-branes are also solitonic solutions to supergravity, where they act as
sources of the gravitational field. In order for supergravity to be a good description, we require that
the characteristic scale L of the spacetime under scrutiny to be large implying weak curvature and, by
extension, low energy, so that supergravity is a good description of the dynamics. For N coincident
D-branes, we have L4

α′2
∝ gsN, leading us to conclude that the closed string perspective is valid for

gsN � 1. In summary, the (schematic) action describing the configuration of N D3 branes is given by

S = Sclosed + Sopen + Sint, (D.1.1)

where Sclosed is the the action of type IIB supergravity (SUGRA) with some additional corrections—
since we’re in the low-energy limit—and Sopen describes the dynamics on the (3+1)-dimensional
worldvolume constituted by the brane-stack, and Sint describes the interactions (which we will largely
ignore; see [42] for details). The (effective) action above involves only the massless modes, but in
general takes into account the effects of integrating out the massive modes. The action is not renor-
malizable.

We will consider the action above from two different points of view, and—from the physical equiva-
lence of these perspectives—arrive at the AdS/CFT correspondence. Note that in both perspectives,
we will be in the low energy limit, E � 1

ls
, while the two perspectives will be valid for opposite

extremes of the string coupling.

d.1.1 Open Strings

We start by taking the point of view of the open strings; valid in the regime gsN � 1. While we
should really consider a stack of N coincident D3-branes in R1,9 extending into the directions Xµ for
µ ∈ {0, 1, 2, 3} with X I = 0 for I ∈ {4, . . . , 9}, we will, as is standard, focus on the case N = 1 and then
hand-wavily generalize our results. The dynamics on the D3 brane is described by the DBI action,

SDBI = − 1
(2π)3lsgs

∫
d4σ

√
−det [γab + 2πα′Fab] + fermions, (D.1.2)

where γab = ηMN∂aXM∂bXN is the induced metric, and F = dA is the field strength two-form of the
U(1) gauge field. The σa with a ∈ {0, . . . , 3} are the coordinates of the wold-volume, which we can
choose by specifying our embedding such that Xa(σ) = σa, whereas the directions transverse to the
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brane—which we center at the origin—are described in terms of six scalar fields, which are essentially
fluctuations in brane position,

Xi+3(σ) = 2πα′φi(σ), i ∈ {1, . . . , 6}. (D.1.3)

Hence, the induced metric takes the form,

γab = ηab + (2πα′)2∂aφi∂bφi, (D.1.4)

which means that the determinant featuring in the DBI action (D.1.2) takes the form:

det := det
[
ηab + 2πα′Fab + (2πα′)2∂aφi∂bφi

]
. (D.1.5)

The low-energy limit lsE → 0 implies α′ → 0 and allows us to expand the determinant in the by-now
small parameter α′, which we will do shortly. Consider first the general expression ηab + εBab where
ε is some small parameter and perform the rewriting

ηab + εBab = ηac (δ
c
b + εBc

b) . (D.1.6)

The determinant (D.1.6) can now be computed by using the homomorphism property of the determi-
nant,

det (ηac (δ
c
b + εBc

b)) = det (ηac)det (δc
b + εBc

b) = −det (δc
b + εBc

b) . (D.1.7)

Now, since det A = exp (Tr [log A]) for A an n × n matrix, setting A = 1+ εB, we get

det(1+ εB) = exp (Tr [log(1+ εB)]) = exp

(
∞

∑
n=1

(−1)n+1

n
εnTr [Bn]

)
(D.1.8)

= 1 +
∞

∑
n=1

(−1)n+1

n
εnTr [Bn] +

1
2

(
∞

∑
n=1

(−1)n+1

n
εnTr [Bn]

)(
∞

∑
m=1

(−1)m+1

m
εmTr [Bm]

)
+ . . .

(D.1.9)

= 1 + εTr [B]− 1
2

ε2Tr
[
B2
]
+

1
2

ε2Tr [B]2 . (D.1.10)

Combining this with the expansion
√

1 + x = 1 + x/2 +O(x2), we find that the expansion of the DBI
determinant (D.1.5) becomes

√
−det = 1 + (2πα′)2

(
−1

2
Fa

bFb
a +

1
2

∂aφi∂aφi

)
+O(α′

3
) (D.1.11)

= 1 + (2πα′)2
(

1
2

FabFab +
1
2

∂aφi∂aφi

)
+O(α′

3
), (D.1.12)

where the “matrix index structure” (i.e. one raised and one lowered index) we impose in determinant
relation (D.1.7) incurs an additional minus due to antisymmetry of the field strength. This means that
the DBI action assumes the form1

SDBI = − 1
(4π)gs

∫
d4σ

(
1
4

FabFab + ∂aφi∂aφi

)
+ fermions, (D.1.13)

which is the action for four-dimensional N = 4 SYM with gauge group U(1) provided that we identify
(compare (C.1.23))

g2
YM = 4πgs. (D.1.14)

Generalizing the above to a stack of N coincident D3-branes, the gauge fields and scalars are valued
in u(N), φi = φiaTa, Aµ = Aa

µTa, where the Ta are the N2 − 1 generators of the Lie algebra satisfy-
ing [Ta, Tb] = f c

ab Tc. This complicates matters somewhat: the partial derivatives turn into covariant
derivatives, but the end result is the same: the identification of (D.1.14) makes equivalent the DBI
action and that of four-dimensional U(N) SYM theory [43]. Furthermore, the limit α′ → 0 reduces the
type IIB action—i.e. Sclosed of the full action (D.1.1)—to free supergravity in the R1,9 bulk. Similarly,

1 We ignore the constant contribution from the 1, which will just integrate to the world-volume.
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we see that Sint
α′→0−→ 0, so the N = 4 U(N) gauge theory living on the brane world-volume decouples

(hence the α′ → 0 is sometimes called the decoupling limit) from the free SUGRA theory in the flat bulk.
Now, let’s examine the limit that we’re taking in some detail: starting with N + 1 D3-branes in R1,10,
we take N of them to be coincident with Xi+3 = 0 for i ∈ {1, . . . , 6}, while we take the last brane to be
separated from the stack in the X9-direction by a distance r; i.e. the last brane has X9 = r. Considering
only the massless modes, the fields living on the brane are now described by a U(N)× U(1) gauge
theory. This separation is characterized by a Higgs expectation value 〈X9〉 = r

2πα′ , which has to be
kept fixed when bringing together the stack and the rogue brane. This results in the Maldacena limit
[1],

α′ → 0, U :=
r
α′

= fixed. (D.1.15)

In particular, keeping U fixed implies that the mass of the stretched strings remains fixed. Seemingly,
then, we get U(N) four-dimensional N = 4 SYM living in the branes; it turns out, however, that the
U(1) ⊂ U(N) corresponds to singleton fields living on the boundary in the gravity theory that cannot
propagate into the bulk and thus decouple, leaving us with SU(N) four-dimensional N = 4 SYM.
Note also that what we have done so far is valid for any N!

d.1.2 Closed Strings

From the point of view of closed strings, a stack of N D3-branes in the strongly coupled limit2,
gsN � 1, arise as a BPS solution to type IIB supergravity preserving SO(3, 1)× SO(6) isometries of
R9,1. Explicitly, this solution is given by [43]

ds2 = H−1/2ηµνdXµdXν + H1/2(dr2 + r2dΩ2
S5), (D.1.16)

H = 1 +
L4

r4 , L4 = 4πgsNα′
2, (D.1.17)

C4 = (1/H − 1)dX0 ∧ dX1 ∧ dX2 ∧ dX3 + terms that ensure self-duality of F(5), (D.1.18)

eφ = gs, BMN = 0, (D.1.19)

where r2 = XiXi and C4 is the four-form gauge field, which is related to the self-dual five-form
R-R field via F(5) = dC(4). Further, since g00 is non-constant, the energy Er of a string excitation as
measured by an observer at a constant position r and the energy E∞ measured by an observer at
infinity are related by [42]

E∞ = H−1/4Er. (D.1.20)

The D3-branes act as sources for the self-dual five-form F(5), which has a flux on the five-sphere. The
background of the D3 SUGRA solution has two distinct regions: for large r � L, we have H ∼ 1, and
we’re left with ten-dimensional Minkowski space, while r � L corresponds to the near-horizon or
throat region, where the 1 in the harmonic function H can be neglected, leaving us with

ds2
throat =

r2

L2 ηµνdXµdXν +
L2

r2 (dr2 + r2dΩ2
S5) (D.1.21)

=

(
r2

L2 ηµνdXµdXν +
L2

r2 dr2
)

︸ ︷︷ ︸
AdS5 with radius L

+ L2dΩ2
S5︸ ︷︷ ︸

S5 with radius L

(D.1.22)

which we recognize as the metric of AdS5 × S5 in Poincaré patch coordinates (cf. eq. (A.1.7)). This
leads us to conclude that we have two different types of closed strings; closed strings propagating in
the ten-dimensional Minkowski space (the asymptotically flat region) far away from the horizon and
closed strings propagating in the near-horizon geometry AdS5 × S5. In the Maldacena limit, however,
these regions decouple, as we shall now argue, following [42]: consider a string state near the throat

2 Note that gs N, while large, is kept fixed, which in particular implies that the ’t Hooft coupling λ = g2
YM N ∼ gs N is kept fixed

from the open string perspective. Note further that this assumes that gs < 1; if gs > 1, we’d have instead N/gs � 1—that is, we
need large N, not large g. This requirement arises because SUGRA is only a good description when the background curvature is
much larger than the string length, L � ls, because we need to avoid string worldsheet quantum corrections. Further, quantum
string corrections are avoided when gs → 0.
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with (fixed) energy Er � 1 (at fixed radial position r). The energy E∞ of this string state as measured
by an observer at infinity is then given by (D.1.20)

E∞ ∼ r
L

Er, (D.1.23)

where we have used that r is in the throat region, i.e. r ∼ 0, implying that E∞ is negligible since r
L Er →

0 for Er fixed and r � L. Thus, the observer at infinity sees two different low-energy contributions:
closed strings in the asymptotically flat region described by type IIB SUGRA in R1,9, while the closed
strings in the throat region are described by fluctuations around the AdS5 × S5 solution of IIB SUGRA,
and since these fluctuations can be arbitrarily large even in the low energy limit, we are dealing with
the full quantum string theory on AdS5 × S5. When taking the low energy limit, the two regions decouple
from each other3. To summarize, we have found that in the low-energy large-N limit, the open and
closed string perspectives, which are equivalent, give rise to two different decoupled effective theories:

• Open string perspective: four-dimensional SU(N) N = 4 SYM on R1,3 and type IIB SUGRA on
R1,9.

• Closed string perspective: Type IIB string theory on AdS5 × S5 and type IIB SUGRA R1,9.

This leads us to conclude that four-dimensional SU(N) N = 4 SYM on R1,3 is dual to type IIB string
theory on AdS5 × S5 with the identification:

g2
YM = 4πgs, L4 = 4πgsN(α′)2, λ = g2

YMN = 2πgsN =
L4

2(α′)2 , (D.1.26)

where λ is the ’t Hooft coupling that we introduced previously. Of course, our derivation is valid only
for large N and fixed λ, but it is natural to conjecture that the duality holds for any values of λ and
N.

3 When writing the throat metric (D.1.22), we have used the coordinate r, which is not fixed in the Maldacena limit (D.1.15).
Instead, we should replace our radial coordinate with U, which is kept fixed in the Maldacena limit, r = Uα′, yielding the
near-horizon metric:

ds2
throat = α′

2 U2

L2 ηµνdXµdXν +
L2

U2 (dU2 + U2dΩ2
S5 ) (D.1.24)

= α′
[

U2√
4πgs N

ηµνdXµdXν +

√
4πgs N
U2 dU2 +

√
4πgs NdΩ2

S5

]
, (D.1.25)

which—up to an overall factor of α′—again produces the metric of AdS5 × S5 in Poincaré patch coordinates. This is the
procedure of the original paper [1].
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e.1 holography at finite temperature , density & chemical potential

e.1.1 Gravity Dual of Finite Temperature Field Theory I: Black D3-Branes

The gravity dual of a finite temperature field theory is obtained by considering a black brane1 in
AdS space (cf. the dictionary in 2.3)—thus, in this case, making the spacetime AAdS; see the met-
ric in (E.1.1). These black branes radiate and have a temperature, TH—the Hawking temperature—
associated to them. This identification was first realized by Witten in [188], where he considers the
AdS Schwarzschild black hole; we shall take this approach shortly. Our starting point for now—to
make contact with our heuristic derivation of the AdS/CFT correspondence—will be a black D3-
brane, which is a non-extremal D3-brane (see [189, 190]) described by the metric (compare (D.1.16))

ds2 = H(r)−1/2
(
− f (r)dt2 + d~x2

)
+ H(r)1/2

(
dr2

f (r)
+ r2dΩ2

S5

)
, (E.1.1)

with blackening factor f (r) = 1 −
( rh

r
)4 and harmonic function H(r) = 1 +

(
L
r

)4
. The black brane

horizon rh is related to the Hawking temperature of the black brane—we will have more to say about
this connection later; in particular, rh = 0 reduces the black D3-brane to an ordinary extremal D3-
brane with metric (D.1.16). Proceeding in the same manner as we did when motivating the AdS/CFT
correspondence in appendix D, we—following [43]—focus on the near-horizon (throat) region of the
black D3-brane, where r/L � 1. Upon introducing the coordinate z = L2/r, the black D3-brane in
the throat limit takes the form

ds2
throat =

r2

L2

(
−
[

1 −
( rh

r

)4
]

dt2 + d~x2
)
+

L2

r2
(

1 −
( rh

r
)4
)dr2 + L2dΩ2

S5 (E.1.2)

=
L2

z2

−(1 −
(

z
zh

)4
)

dt2 + d~x2 +
1

1 −
(

z
zh

)4 dz2

+ L2dΩ2
S5 (E.1.3)

=
L2

z2

(1 −
(

z
zh

)4
)

dτ2 + d~x2 +
1

1 −
(

z
zh

)4 dz2

+ L2dΩ2
S5 (E.1.4)

where zh = L2/rh, and where, in the last equality, we have Wick rotated to Euclidean time, τ = it.
Further, we define a radial variable ρ = L

√
1 − z

zh
, which measures the distance from the black brane

horizon at zh, in terms of which the Euclidean metric close to the black brane horizon (that is, to
lowest order in ρ) takes the form

ds2
throat–NBBH =

4ρ2

z2
h

dτ2 +
L2

z2
h

d~x2 + dρ2 + L2dΩ2
S5 , (E.1.5)

where NBBH stands for near black brane horizon. Next, we focus on the (τ, ρ) plane and rescale the
Euclidean time coordinate, φ = 2τ/zh, which yields the (φ, ρ) plane metric

ds2 = dρ2 + ρ2dφ2, (E.1.6)

and thus, in order to avoid a conical singularity, we need periodicity; that is, we must identify φ ∼
φ + 2π (the ∼ is to be read as identified with), implying that τ ∼ τ + zhπ. The periodicity of the
Euclidean time is precisely the inverse temperature (see table 2.3), leading us to conclude that

T =
1

zhπ
. (E.1.7)

1 In contradistinction to black holes, the spatial topology of a black brane is not compact: this is required in order for the spatial
geometry of the dual field theory to be R3. In particular, the black D3-brane has horizon topology R3 × S5, i.e. planar with
five-spheres at every point.

125



126 the holographic superconductor

Note that we have to use the periodicity of the time coordinate τ and not its diffeomorphic cousin
φ, since we identify τ as the (Euclidean) time coordinate in the dual N = 4 theory. We now want
to apply the Bekenstein-Hawking formula for the black brane entropy, S = A

4G . First, we determine
the horizon area A of the black D3-brane, for which we introduce the metric g̃ij— derived from
(E.1.5)—describing a hyperplane with ρ = 0 (equivalently, z = zh) and τ fixed, but arbitrary. The
determinant, owing to the diagonality of the metric (E.1.5), is consequently given by g̃ = L6

z6
h
× L10gS5 ,

with gS5 the determinant of the metric of S5, implying that the area becomes2,

A =
∫

R3×S5
d8x

√
g̃ =

L8

z3
h

∫
R3

d3x ×
∫

S5
d5x

√
gS5 =

L8

z3
h

Vol(R3)Vol(S5) =
π3L8

z3
h

Vol(R3)

(E.1.8)

= π6T3L8Vol(R3), (E.1.9)

where we have used (E.1.7). Now, a nice holographic calculation [43] shows that the ten-dimensional
Newton constant G is given by

G =
π4L8

2N2 , (E.1.10)

implying that the entropy of the black D3-brane, and—by extension—the field theory, takes the form3

S =
A

4G
=

π2

2
N2T3Vol(R3). (E.1.12)

This implies that the free energy density takes the form f = −
∫

dT S(T)/Vol(R3) = − 1
8 N2π2T4,

which, as noted in [12], is precisely the Stefan-Boltzmann law. Finally, note that (E.1.12) is a highly
non-trivial result: it is impossible to calculate the entropy N = 4 SYM via the usual route—attempting
to do so would require summing infinitely many Feynman diagrams to arbitrarily high loop order,
which is not presently feasible. It is, however, instructive to compare this with the entropy of free
N = 4 SYM. This is given by [191]

SFree =
2π2

3
N2T3Vol(R3), (E.1.13)

implying that the entropy varies extremely slowly with coupling (see also [11]).

e.1.2 Gravity Dual of Finite Temperature Field Theory II: AdS Schwarzschild Black Hole

Rather than starting from the black D3-brane solution of type IIB SUGRA, we can instead, as Witten
does in [188]—and as is done in [11–13]—focus on the ordinary planar AdS-Schwarzschild Black hole,
which in (d + 1) dimensions4 has the form

ds2 =
L2

z2

(
− f (z)dt2 + d~x2 + f (z)−1dz2

)
, (E.1.14)

in Poincaré-like coordinates, where f (z) = 1 − zd

zd
h
. For d = 4, this metric is identical to the black D3-

brane throat metric, and we may apply the same general method to compute the Hawking tempera-
ture of the Adsd+1 Schwarzschild black hole; in particular, we apply the coordinate transformation ρ =
2L√

d

√
1 − z

zh
and Wick rotate, τ = it, which puts the metric into the form ds2 = d2ρ2

4z2
h

dτ2 + dρ2 + L2

z2
h

d~x2.

Again, we focus on the (τ, ρ) plane and rescale Euclidean time, φ = d/(2zh)τ, to bring the (τ, ρ) plane
metric to the form ds2 = dρ2 + ρ2dφ2 which, to avoid a conical singularity, requires φ ∼ φ + 2π, or,
equivalently, τ ∼ τ + 4zhπ

d , implying that the Hawking temperature is

T =
d

4zhπ
. (E.1.15)

2 The volume of Sd is given by Vol(Sd) = 2π(d+1)/2

Γ
(

d+1
2

) .

3 We note in passing that for a conformal theory, which possesses no internal energy scales, the temperature dependence of
thermodynamic variables is entirely determined by scaling,

F = α
1

d + 1
, U = α

d
d + 1

, S = αTd. (E.1.11)

in d dimensions, where α is a constant. Our findings above, e.g. (E.1.12), confirm this behavior. For more details see [11].
4 Since we forget about the supergravity origins of the objects under scrutiny, we can keep the dimensionality general.
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It is useful to generalize this argument to generic AAdS manifolds, which in particular include the
static black holes that we are currently dealing with. These have the form of (E.1.14) for some function
f (z) with a first order zero at the black hole horizon zh. Now, we can ignore the conformal factor L2/z2,
since the Hawking temperature is invariant under conformal transformations (see [192]), so, after
Wick rotating, we introduce ρ2 = 4

f ′(zh)
(z − zh) and 1

2 f ′(zh), which brings the (conformal) metric—to

lowest order in ρ—into the form in the (φ, ρ) plane, ds2 = dρ2 + ρ2dφ2, so, to avoid the usual conical
singularity, we must identify φ ∼ φ + 2π, which leads to the periodicity τ ∼ τ + 4π

| f ′(zh)|
, so that the

Hawking temperature takes the form:

T =
| f ′(zh)|

4π
. (E.1.16)

Thus, considering a planar Schwarzschild black hole reproduces the results obtained from the black
D3-brane (for appropriate values of the dimension). This represents a more heuristic approach to the
AdS/CFT correspondence: rather than referring to the supergravity roots of the correspondence, we
can instead take the correspondence for granted and consider various field configurations in AdS
to see what consequences they have in the field theory. This bottom-up approach is very useful, but
lacking an explicit string theory embedding comes at a cost: determining relations between certain
parameters (such as the Newton constant in (E.1.10)) is no longer possible.

e.1.3 The D3/D7 Brane Configuration and the AdS Reissner-Nordström Black Hole

Referring to the holographic dictionary of 2.3, we observe that a finite chemical potential µ in the field
theory requires an electric monopole in the bulk: the time component of the bulk U(1) gauge field
is related to µ. To motivate this, we consider a theory with global U(1) gauge containing a massless
complex scalar and a massless Dirac fermion charged under the gauge symmetry. The Lagrangian of
such a theory reads

L = −(Dµ ϕ)∗Dµ ϕ + iψ̄ /Dµψ − 1
4g2 FµνFµν, (E.1.17)

where the covariant derivative is given by Dµ = ∂µ − iAµ. Now, introduce a non-vanishing back-
ground field µ ∈ R for the time component of the gauge field around which the dynamic field
fluctuates, Ã0 = µ + A0. This constant shift will not affect the field strengths and thus generates an
extra potential V = µ2 ϕ∗ϕ − µψ†ψ, where we have used the fact that ψ̄γ0ψ = ψ†βγ0ψ = ψ†ψ, since
the β-matrix and γ0 are numerically equivalent (though they differ in van der Waerden indices) and
square to one (this is why we need the time component—none of the other γ-matrices would produce
the pure number operator). The modified Lagrangian becomes L̃ = L+ V, and we recognize ψ†ψ as
the number density operator. Further, we see that the scalar acquires a negative mass squared, −µ2,
which is allowed by the BF bound (2.4.10) as long as it isn’t too negative. This analysis naturally
leads us to propose that a finite chemical potential is holographically encoded in a bulk one-form
A = At(r)dt with near-boundary (r → ∞)

At(r) ∼ µ +
ρ̃

rd−2 , (E.1.18)

in d dimensions, where ρ̃ is related to the density ρ. There is one obstacle, however: there is no
one-form field in type IIB SUGRA! There are two ways to get around this, which we now describe.

e.1.3.1 D3/D7 Brane Configuration

As described in [43, 193], one can introduce a stack of N f (with f standing for flavor) D7-branes in
addition to the usual stack of N D3-branes. One can show that the theory dual to this configuration
is N = 4 SYM coupled to N f multiplets of N = 2 with gauge group U(N f ). In particular, the
N = 2 multiplets transform in the fundamental representation of the gauge group—just as quarks in
ordinary QCD. Collectively, we dub the fields in such a multiplet flavor fields. The mass of the flavor
fields turns out to be given by the separation ` between the brane-stacks, m f =

`
2πα′ . To get the desired

U(1) symmetry of the field theory, we need just a single flavor multiplet, N f , which is well within the
so-called probe limit, where any back-reaction to the supergravity solution can be neglected; that is: the
AdS5 × S5 geometry of the D3-branes will still be the near-horizon geometry. In this probe limit, the
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combined action becomes Sprobe = SIIB–SUGRA + SD7, where SD7 at T = 0 reduces to the DBI action5.
In this case, we have

SD7 = −τ7

∫
d8ξ
√
−det (γab + (2πα′)Fab), (E.1.19)

where τ7 is the D7-brane tension. Now, the rest of the argument proceeds as follows: the field theory
has, by Noether’s theorem, a conserved current Jµ corresponding to the global U(1) symmetry, the
(expectation value of) time component of which is precisely the charge density, ρ = 〈J0〉. Obtaining
and solving the equations of motion of (E.1.19), we can find the on-shell action Son-shell

D7
, which we

may then renormalize and identify with the grand canonical potential, Ω ∼ Son-shell
D7,ren . Noting that the

density satisfies 〈J0〉 ∼ ∂Ω
∂µ , we obtain

〈J0〉 =
δSon-shell

D7,ren

δAt(r = ∞)
. (E.1.20)

Performing this variation, we obtain

〈J0〉 ∼ ρ̃, (E.1.21)

up to string-theoretical factors.

e.1.3.2 Bottoms Up & The AdS Reissner-Nordström Black Hole

As described in [11–13, 194], another—perhaps more useful method—of obtaining a finite chemical
potential and a global U(1) symmetry in the field theory is to simply add a Maxwell gauge field in the
bulk, in a “bottom-up approach” to holography. The bulk is consequently described by the negative
cosmological constant Einstein-Maxwell action in (d + 1) dimensions,

SEM =
∫

ddx
√
−g

[
1

2κ2

(
R +

d(d + 1)
L2

)
− 1

4g2
F

FµνFµν

]
, (E.1.22)

where gF is the electromagnetic coupling and the field strength is Fµν = ∂µ Aν − ∂ν Aµ. Varying this
action produces the equations of motion,

Rµν −
R
2

gµν −
d(d − 1)

L2 gµν =
κ2

2g2

(
2FµσFρνgσρ − 1

2
gµνFσρFσρ

)
, ∇µFµν = 0, (E.1.23)

which are solved by the AdS Reissner-Nordström planar black hole,

ds2 =
L2

z2

(
− f (z)dt2 + f (z)−1dz2 + d~x2

)
, (E.1.24)

where f (z) = 1 − Mzd + Q2z2(d−1). The horizon, determined by the condition f (z0) = 0, has two
solutions; we identify the larger of the two, located at z+, with the horizon. The parameters involved
in f (z) are explicitly given by [13]

M = z−d
+ +

z2−d
+ µ2

γ2 , Q2 =
z4−2d
+ µ2

γ2 , (E.1.25)

where

γ2 =
(d − 1)g2

FL2

(d − 2)κ2 , (E.1.26)

Finally, the Maxwell one-form becomes

A = µ

(
1 −

(
z

z+

)d−2
)

dt. (E.1.27)

5 In principle, there is also a contribution from a Chern-Simons term, but since it vanishes at zero temperature we’ll ignore it.
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We now proceed to compute the Hawking temperature of the RN-AdS black hole:

T =
| f ′(zh)|

4π
=

∣∣∣(2d − 2)Q2z2d−3
+ − dMzd−1

+

∣∣∣
4π

=
1

4πz+

(
d −

(d − 2)z2
+µ2

γ2

)
. (E.1.28)

We may then determine ρ = 〈Jt〉 in the same way as previously outlined: we compute the grand
canonical ensemble potential at the boundary as Ω = −T logZ , where Z is the gravity partition
function in the saddle-point approximation, Z = exp

[
−Son-shell

E
]

with E standing for Euclidean. We
may then identify Ω = TSon-shell

E , and the density relation becomes ρ = 〈Jt〉 = − 1
Vol(Rd−1)

∂Ω
∂µ .

e.2 the s-wave holographic superconductor

First proposed in [5], where the “vanilla” s-wave superconductor was constructed in a bottom-up
manner, holographic superconductors has since grown into a large area of research, with the more
complicated varieties, the p- and d-wave superconductors, which carry angular momenta of ` = 1
and ` = 2, respectively, now having been embedded in a holographic framework [195–197]. To get
to grips with the formalism, we now describe the simplest holographic superconductor: the s-wave
holographic superconductor, following the reviews [11, 13, 198–200].

As we have seen, systems with finite U(1) charge density are gravitationally encoded in AdS-
Reissner-Nordström black holes, which arise as solutions to the Einstein-Maxwell action with negative
cosmological constant. Superconductivity is a consequence of spontaneous breaking of a (gauged)
U(1) symmetry to Z2. For our purposes, however, we focus on global U(1) symmetry, since we cannot
holographically obtain a gauged U(1) symmetry on the boundary. This implies that what we are really
describing is a holographic superfluid.

In this scenario, photons are effectively treated as an external electromagnetic field, correspond-
ing to non-dynamical photons6. This global symmetry is then taken to be spontaneously broken: a
charged operator—in this case, the Cooper pair order parameter—acquires a finite VEV.

The holographic dictionary (cf. 2.3) tells us that such a charged operator is itself dual to charged
operators (with gauged U(1) symmetry) in the bulk—in particular, this implies that a superfluid on
the boundary is dual to a form of superconductivity in the bulk. In order to simplify the analysis, we
take the charged field to be a complex scalar (Higgs field) ϕ coupled to a gauge field Aµ, so the bulk
action describing the holographic s-wave superconductor takes the form

S =
∫

dd+1x
√
−g
[

1
2κ2

(
R +

d(d − 1)
L2

)
− 1

4gF
FµνFµν −

∣∣Dµ ϕ
∣∣2 − V(|ϕ|)

]
, (E.2.1)

where Dµ = ∂µ − iqAµ is the gauge covariant derivative and q the charge of the scalar field. In
what follows, we’ll specialize to d = 3 and take the potential to be a mass term, V(|ϕ|) = m2 |ϕ|2.
Interestingly, this model has been realized as a Freund-Rubin compactification if M-theory in [8]. Fur-
thermore, before the advent of holographic superconductors, this model was studied quite thoroughly
by Gubser in [201]. To proceed, we note that the normal—non-superconducting—state of the theory,
which satisfies ϕ = 0, is given AdS-RN planar black hole. We now wish to lower the temperature see
if we can obtain a transition to a charged condensate at a critical temperature, Tc.

In order to obtain such a charged condensate, we need a finite VEV, 〈O〉, where O is the operator
dual to ϕ. In particular, this implies the existence of a stability of the AdS-RN black hole with respect
to perturbations of ϕ. Now, the equation of motion for ϕ is obtained by varying the action with respect
to ϕ∗, δS

δϕ∗ = 0, leading to

δϕ∗S = −
∫

d4x
√
−g
[(

∂µδϕ∗ + iqAµδϕ∗)Dµ ϕ − m2 ϕδϕ∗
]

(E.2.2)

IBP
=
∫

d4x
[
∂µ

(√
−gDµ ϕ

)
− iq

√
−gAµDµ ϕ −

√
−gm2 ϕ

]
δϕ∗, (E.2.3)

implying that the equations of motion take the form

0 =
1√−g

∂µ

(√
−gDµ ϕ

)
− iqAµDµ ϕ − m2 ϕ = ∇µ(Dµ ϕ)− iqAµDµ ϕ − m2 ϕ. (E.2.4)

6 This neglecting of effectively virtual photons is also made in BCS theory, so saying that we are describing a superconductor is
less of a stretch than it may seem at first.
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where we have used that ∇µVµ = 1√−g ∂µ (
√−gVµ). Further, using ∇µ ϕ = Dµ ϕ, the above can be

recast in the form

(∇µ − iqAµ)(∇µ − iqAµ)ϕ − m2 ϕ = 0. (E.2.5)

Alternatively, the equations of motion can be obtained from doing the minimal coupling procedure
twice: starting from the flat space non-charged coupled scalar Lagrangian,

L = −∂µ ϕ∗∂µ ϕ − m2 ϕ∗ϕ, (E.2.6)

the Euler-Lagrange equations of motion ∂L
∂ϕ − ∂µ

∂L
∂(∂µ ϕ)

lead to the Klein-Gordon equation,

∂µ∂µ ϕ − m2 ϕ = 0, (E.2.7)

which we can “gauge minimally couple”, ∂µ → Dµ

DµDµ ϕ − m2 ϕ = 0, (E.2.8)

which we can again “gravitationally minimally couple”, where the ∂µ that sits inside Dµ is sent to ∇µ,
in which case we end up with

(∇µ − iqAµ)(∇µ − iqAµ)ϕ − m2 ϕ = 0. (E.2.9)

Moving on, we see that this induces a mass correction to the scalar:

m2
eff = m2 + q2 Aµ Aµ, (E.2.10)

which in the presence of an exclusively electrostatic gauge field, Ai = 0, becomes,

m2
eff = m2 − |gtt|q2 A2

t . (E.2.11)

e.2.1 Holographic Superconductivity in the Probe Limit (d = 3)

We now turn to the simplest model for holographic superconductivity first proposed in the seminal
paper [5]. The key simplifying assumption is to ignore backreaction on the metric, that is, we take
κ2 � g2L2, which decouples the Maxwell-Higgs sector from the gravity sector. This results in an
AdS-Schwarzschild background described by

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2

(
dx2 + dy2

)
, (E.2.12)

where

f =
r2

L2 − M
r

. (E.2.13)

The Hawking temperature is determined in the usual fashion (cf. (E.1.16)),

T =
| f ′(rh)|

4π
, (E.2.14)

where rh is determined by the condition f (rh) = 0, that is, rh = L2/3M1/3, implying that

T =
3M1/3

4L4/3π
, (E.2.15)

taking the potential to be V(|ϕ|) = − 2|ϕ|2
L2 , and employing a radial ansatz, ϕ = φ(r), we find that the

equations of motion take the form—assuming q = 1 and that the spatial part of A vanishes,

0 = ∇µ∇µφ − gtt A2
t φ +

2
L2 φ =

1√−g
∂r
(√

−ggrr∂rφ
)
+

A2
t

f
+

2
L2 φ (E.2.16)

=
1
r2 ∂r

(
r2 f φ′

)
+

A2
t

f
φ +

2
L2 φ (E.2.17)

= f φ′′ +

(
f ′ +

2 f
r

)
φ′ +

A2
t

f
φ +

2
L2 φ (E.2.18)
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where we have used that
√−g = r2. Dividing by f yields the equation of motion:

φ′′ +

(
f ′

f
+

2
r

)
φ′ +

A2
t

f 2 φ +
2

f L2 φ = 0, (E.2.19)

in agreement with [5].
Doing the same for At, we find

A′′
t +

2
r

A′
t −

2φ2

f
At = 0. (E.2.20)

while the equation of motion for φ implies that it is a constant phase—these findings are in agreement
with those presented in the original article, [5]. We note that φ provides a mass to the bulk theory
gauge field via a Higgs mechanism.

Let’s now discuss boundary conditions. A priori, we have a four-parameter family of solutions;
in order to remedy this, we impose boundary conditions. First, requiring At to have finite norm
at the horizon, r0, defined as the value of r satisfying f (r0) = 0 ⇒ r0 =

(
ML2)1/3, we see that

gtt(r0)At(r0) < 0, implying that At(r0) = 0 (since lim
r→r0

gtt = ∞). In this way, we infer that A′
t ∼ A′′

t at

the horizon; that is, they are not independent. Plugging At(r = r0) = 0 into (E.2.19), which we then
proceed to multiply by f , gives us,

0 = f ′(r0)φ
′(r0)(r0)φ

′(r0) +
2
L2 φ(r0) =

3r0

L2 φ′(r0) +
2
L2 φ, (E.2.21)

where we have used that M =
r3

0
L2 . This can be rewritten as,

φ(r0) = −3
2

r0φ′(r0), (E.2.22)

thus leading us to conclude that at the horizon r = r0, both φ and At are described by one-parameter
families of solutions. A similar asymptotic analysis can be carried out for the boundary: assuming the
leading behaviour (at r → ∞) for the fields to be of the general form,

φ(r) = Kφrαφ + · · · , At(r) = KAt r
αAt + · · · , (E.2.23)

where Kφ, KAt are constants. We then insert the above into the appropriate equations of motion; for φ,
(E.2.19) gives us (where we have expanded the coefficients around r = ∞),

αφ(αφ − 1)Kφrαφ−2 + αφKφrαφ−1
(

4
r
+ · · ·

)
+ rαφ+2αAt

(
KφK2

At
L4

r4 + · · ·
)
+ Kφrαφ

(
2
r2 + · · ·

)
= 0,

(E.2.24)

so, to leading order, we obtain

αφ(αφ − 1) + 4αφ + K2
At

L4r2αAt−2 + 2 = 0, (E.2.25)

which means that αφ = 1
2

(
−3 ±

√
1 − 4B2L4r2αAt−2

)
. Since we have constrained φ ∈ R, we must

demand that αAt < 1, implying that (E.2.25) becomes

αφ(αφ − 1) + 4αφ + 2 = 0. (E.2.26)

which means that

αφ = −1,−2, (E.2.27)

so, since the equations of motion are linear, we can write the solution as:

φ =
φ(1)

r
+

φ(2)

r2 + . . . . (E.2.28)

Similarly, the equation (E.2.20) implies (after plugging in the solution (E.2.28) and getting rid of sub-
leading terms)

αAt(αAt − 1) + 2αAt = 0, (E.2.29)
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so that αAt = 0,−1, and so

At = µ − ρ

r
+ · · · , (E.2.30)

where the density is determined by the condition At(r0) = 0, so that the charge density is given by
ρ = µr0. Both terms in φ above are normalizable7. Now, recall that (cf. 2.2) m2L2 = ∆(∆ − 3). Since
we have chosen m2L2 = −2, this corresponds to either ∆ = 1 or ∆ = 2. Recalling our discussion in
section 2.4, we see that if ∆ = 2, φ(1) is interpreted as a source for the dual operator in the field theory,
whereas φ(2) ∼ 〈O2〉 is the VEV.

Similarly, if ∆ = 1, the discussion of section 2.4 implies that the rôles are switched: now φ(1) ∼ 〈O1〉
is the VEV, whereas φ(2) acts as a source. In order to study phase transitions, we turn off the source
and look for solutions where the VEV acquires a non-zero value at some critical temperature—this
leaves a one-parameter family of solutions for both φ and At. In summary, then, we have

〈Oi〉 =
√

2φ(i), i = 1, 2, εijφ
(j) = 0. (E.2.31)

where, following [5], we have chosen the
√

2-normalization, which turns out to simplify subsequent
calculations. From now on, we also set M = 1 = L. Next, note that [ρ] = 2 and [T] = 1, implying that,
first off, 〈Oi〉

Ti are dimensionless quantities, and that Tc ∼ ρ1/2. Solving the equations numerically8

yields the curves of figure E.1.
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Figure E.1: The condensate as a function of Oi exhibiting the usual second order Ginzburg-Landau behaviour
near the phase transition, 〈O〉i ∼ (1 − T/Tc)1/2.

Fitting the curves of figure E.1, we get:

T(1)
c ' 0.2255ρ1/2, T(2)

c ' 0.1184ρ1/2. (E.2.32)

Note further that at low temperatures, the condensate VEV 〈O1〉 begins to diverge. This is an artifact
of the probe approximation that we’re employing: for large values of the condensate, we can no
longer ignore backreaction to the bulk metric, so our scheme is invalid in this region. We shall see,
by studying the conductivity of the system, that 〈O1〉 and

√
〈O2〉 can be interpreted as twice the

superconducting gap (which is conventionally denoted ∆, but since this clashes with the notation
we use for the conformal dimension, we’ll simply write it as “gap”). BCS theory predicts that at
T = 0, we have 2 × gap = 3.54Tc [202]; for our holographic superconductor, twice the gap is either
infinite for ∆ = 1 or 2 × gap ' 8Tc for ∆ = 2, which is a characteristic of strongly interacting high-Tc
superconductors (see [202] for more details).

7 That is, their action is finite.
8 Christopher Herzog has provided a nice Mathematica document that does this on his web-page: click here.

http://insti.physics.sunysb.edu/~cpherzog/superconductor/index.html
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e.2.2 Conductivity in the Probe Limit

e.2.2.1 Conductivity and the Drude Model

In this section we discuss the physics of conductivity as it appears in condensed matter systems,
following [76, 203]. Consider a spatially constant electric field varying in time. After Fourier trans-
forming, Ohm’s law reads

j(ω) = σ(ω)E(ω), (E.2.33)

where σ(ω), which in general will be complex, is the optical conductivity. Note in particular that if
we shake the electric field at some frequency ω, the “system” responds at the same frequency: this
where linear response can be applied. The real part of the optical conductivity, Re[σ(ω)] describes the
dissipation of the current; in other words, it behaves as an actual conductivity, whereas the imaginary
part, Im[σ(ω)], describes the so-called reactive part. Next, let us briefly discuss the Drude model:
consider, therefore, a particle of mass m, charge q and velocity v, described by Newton’s second law
with a friction term linear in the velocity,

m
dv
dt

+
m
τ

v = qE, (E.2.34)

where τ is the scattering time (or mean free path); the average time the particle travels unhindered
before bumping into something. If we then turn on an AC electric field with frequency ω, E(t) =
Re
[
E0e−iωt], the solution to the Drude differential equation (E.2.34) becomes

v(t) =
qτ

m
E(t)

1 − iωτ
+

Negligible in steady-state regime︷ ︸︸ ︷
Const. × e−t/τ , (E.2.35)

so, assuming we’re in the steady state the regime where the second term can be safely neglected, the
optical conductivity becomes; according to (E.2.33)

σ(ω) =
σ0

1 − iωτ
, σ0 =

nq2τ

m
, (E.2.36)

where we have used that j = nqv, where n is the electron density and defined the DC (ω = 0)
conductivity, σ0. At high frequencies, particle-anti-particle creation contributes to the conductivity,
but for low frequencies, the Drude model captures the physics nicely. In the superconducting limit,
where the mean free path is infinite, τ → ∞, we may use L’Hôpital’s rule to obtain:

lim
τ→∞

σ(ω) = lim
τ→∞

nq2

−iωm
= i

nq2

mω
, (E.2.37)

but since the conductivity is analytic, the real part can be determined9 via the Kramers-Kronig rela-
tion,

Re [σ(ω)] =
1
π
P
∫ ∞

−∞
dω′ Im [σ(ω′)]

ω′ − ω
(E.2.38)

=
nq2

mπ
P
∫ ∞

−∞
dω′ 1

ω′ (ω′ − ω)
(E.2.39)

=
πne2

m
δ(ω). (E.2.40)

Let’s quickly prove this: consider the original integral

I = P
∫ ∞

−∞
dω′ 1

ω′(ω′ − ω)
, (E.2.41)

and define for infinitesimal ε and η

Iε,η =

=:(∗)︷ ︸︸ ︷∫ −η

−∞
dω′ 1

ω′(ω′ − ω + iε)
+
∫ ∞

η
dω′ 1

ω′(ω′ − ω + iε)
, (E.2.42)

9 Alternatively, one can observe that the integral
∫ ∞
−∞ Re [σ(ω)] =

πnq2

m is independent of τ, and thus infer the presence of the
δ-function in the real part of the optical conductivity in the superconducting limit. This is an example of a sum rule; this
particular one is known as the Ferrell-Glover-Tinkham sum rule.
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which we have chosen such that I = lim
ε,η↓0

Re[Iε,η ]. Next, note that under a change of variables χ′ = −ω′,

we have

(∗) =
∫ ∞

η
dχ′ 1

χ′(χ′ + ω − iε)
, (E.2.43)

so that

Iε,η =
∫ ∞

η
dω′

[
1

ω′(ω′ − ω + iε)
+

1
ω′(ω′ + ω − iε)

]
(E.2.44)

=
∫ ∞

η
dω′ 2

ω′2 − (ω − iε)2
(E.2.45)

= −
tanh−1

(
ω′

ω−iε

)
ω − iε

∣∣∣∣∣∣
ω′=∞

ω′=η

. (E.2.46)

Taking the limit η → 0 and using lim
x→∞

tanh−1(x) = − iπ
2 , we find that

Iε := lim
η↓0

Iε,η =
π

i (ω − iε)
, (E.2.47)

the real part of which is

Re [Iε] =
πε

ω2 + ε2 , (E.2.48)

which, as ε → 0, converges to I = π2δ(ω)—this can be seen as follows for some smooth test function
f , ∫ ∞

−∞
dt f (t)

ε

t2 + ε2
t=εu
=

∫ ∞

−∞
dx f (εx)

1
1 + x2 (E.2.49)

ε→0−→ f (0)
∫ ∞

−∞
dx

1
1 + x2 (E.2.50)

= π f (0). (E.2.51)

This characteristic δ-function behaviour of the conductivity in the superconducting limit is something
we will see reproduced by our holographic model.

e.2.2.2 Maxwell Perturbations: Fluctuations of Ax in the Bulk

Consulting again the dictionary of 2.3, we see that if we want a current in our system, we need to
introduce a spatial component of our gauge field with some finite frequency ω; following [5] we pick
Ax—this is of no consequence due to the symmetry of the problem. We are interested in the zero-
momentum (in the AdS-Sch geometry, the zero-momentum assumption decouples Ax from the other
polarizations; if we did not make this assumption there would be interactions between the fluctuations
that would have to be diagonalized, see [15]) conductivity and as such we take Ax(t, r) = ax(r)e−iωt,
implying that the Maxwell equation for Ax reads:

∇µFµx = 2gxx Axφ2 =
2Axφ2

r2 , (E.2.52)

where

∇µFµx =
1√−g

∂µ

[√
−ggµνgσxFνσ

]
(E.2.53)

=
1
r2 ∂µ

[
r2gµνgxxFνx

]
(E.2.54)

=
1
r2 ∂r( f A′

x) +
ω2 Ax

r2 f
, (E.2.55)

so the full equation of motion becomes (where we have divided out the common exponential)

a′′x +
f ′

f
a′x +

(
ω2

f 2 − 2φ2

f

)
ax = 0. (E.2.56)
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To ensure causality, we must impose in-falling boundary conditions at the horizon, r = 1; this imposi-
tion of boundary conditions at the horizon implies that at the horizon, we have ax ∼ f−iω/3 (see [43,
204]). Similarly, performing the near-boundary analysis of ax, we obtain the equation (αAx + 1)αAx = 0
implying that αAx = 0, 1, and thus,

ax = A(0) +
A(1)

r
+ . . . , (E.2.57)

where Abd
x = A(0)

x is the gauge field on the boundary (the source), satisfying ∂t Abd
x = −Ex = −iωAbd

x

, where Ex is the electric field on the boundary. The other term, 〈Jx〉 = A(1)
x , represents the expectation

value of the current. From Ohm’s law, then, we obtain the following optical conductivitys

σ(ω) =
〈Jx〉
Ex

= − iA(1)
x

ωA(0)
x

. (E.2.58)

Below, we plot the conductivity as a function of the frequency. At ω = 0, a δ-function appears when
T < Tc: although it cannot be seen by the numerics, its existence may again be inferred by use of the
Kramers-Kronig relation (or, alternatively—as before—by the Ferrell-Glover-Tinkham sum rule),

Im [σ(ω)] = − 1
π
P
∫ ∞

−∞
dω′ Re [σ(ω′)]

ω′ − ω
, (E.2.59)

from which we infer, from our previous considerations, that the real part of the conductivity contains
a δ-function, Re[σ(ω)] ∼ πδω, provided that Im[σ(ω)] has a simple pole, Im[σ(ω)] ∼ − 1

ω ; this is
indeed the case [5, 6]. It is interesting to note that had we not simplified our problem by considering
the probe limit but instead considered the full AdS-RN spacetime, the δ-function is present even
when T > Tc, which seemingly presents a problem: the DC conductivity is infinite even in the normal
phase! However, this infinite conductivity is not true superconductivity but rather an artefact of the
translation invariance of the system; fixing the background the AdS-Schw in the probe limit implicitly
breaks translation invariance by decoupling electric and energy currents [6]. It is, however, possible to
break the translation invariance of the AdS-RN setup by introducing impurities—this was considered
in [205].
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Figure E.2: Conductivities for O1 (left) and O2 (right). At the origin, there is a δ-function unseen by the numerics,
hile the horizontal line is the conductivity for T = Tc.

The horizontal line in both figures represents the conductivity in the case T ≥ Tc—this is interesting
because it was shown in [15] the conductivity is independent of frequency in the normal phase is
characteristic of field theories with AdS4 duals. The following curves describe successively lower
values of the temperature with fixed charge density.
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This appendix deals with additional approaches to holographic renormalization, as advertised in the
main text. We begin by reviewing the original FG approach in section F.1 and then proceed to discuss
the dBVV ansatz method in section F.2.

f.1 fefferman-graham holographic renormalization

Following the review article [48], we describe the FG approach to holographic renormalizatoin. In this
section, we will use Euclidean signature AlAdS space (see appendix A), where the Fefferman-Graham
metric (A.2.6) assumes the form

ds2 = L2
(

dρ2

4ρ2 +
1
ρ

gij(x, ρ)dxidxj
)

, (F.1.1)

with an expansion for gij entirely analogous to (A.2.8). Suppressing all spacetime and internal indices,
a generic bulk field F (ρ, x) has a near-boundary Fefferman-Graham asymptotic expansion of the form

F (x, ρ) = ρm
(

f(0)(x) + ρ f(2)(x) + · · ·+ ρn
[

f(2n) + log(ρ) f̃(2n)(x)
]
+ · · ·

)
. (F.1.2)

Generally, the equations of motion for F (x, ρ) are second order differential equations, which gives two
independent solutions with asymptotic behaviors ρm and ρm+n—this is just a generalization of what
we saw in (2.4.9), where a similar solution arises for the scalar. Just as for the scalar case, we identify
f(0)(x), which multiplies the leading behavior, with the source for the dual operator. By solving the
equations of motion order by order in ρ (which is treated as a small parameter in the near-boundary
analysis), one obtains algebraic equations for f(2k)(x) for k < n in terms of f(0)(x) and its derivatives
up to order 2k. This procedure, however, does not determine f(2n), which is associated with the VEV
of the dual operator. In summary, the equations of motion imply that [48]

• f(0)(x) is the source of the dual field theory operator,

• f(2), . . . , f(2n−2) and f̃(2n) are uniquely determined by the equations of motion and are local
functions of f(0),

• f̃(2n) is related to conformal anomalies,

• f(2n), which is related to the VEV of the dual field theory operator, is undetermined by the
near-boundary analysis.

Thus equipped with a generic asymptotic solution to the given field equations of motion, we proceed
to calculate the on-shell value of the bulk action. In order to do so, we need to regularize: this is
implemented by restricting the range of the ρ integration, ρ ≥ ε for ε � 1. We then evaluate the
boundary terms at ρ = ε, a finite number of which will diverge in the limit ε → 0—thus, we can write
the regulated on-shell action in the following manner:

Son-shell
reg [ f(0), ε] =

∫
ρ=ε

ddx
√

g(0)
[
ε−νa(0) + ε−(ν+1)a(2) + · · · − log(ε) a(2ν) +O(ε0)

]
, (F.1.3)

where ν > 0 depends only on the conformal dimension on the dual operator, and the coefficients a(k)
are local functions of the source f(0), whereas a(2ν) is directly related to the conformal anomaly [169].
The counterterm action is then defined as the divergent (in the ε → 0 limit) part of the regularized
action,

Sct[F (x, ε); ε] = −divergent terms of Son-shell
reg [ f(0)(F (x, ε)), ε], (F.1.4)

where the divergent terms are expressed in terms of the fields F (x, ε) living at the regulated hypersur-
face ρ = ε. This is required for covariance of the counterterm action, and consequently it is necessary

136
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to invert the relation (F.1.2) up to the required order—this inversion is precisely what makes the FG ap-
proach so cumbersome. When the counterterm has been covariantized, we may define the subtracted
action,

Ssub[F (x, ε); ε] = Son-shell
reg [ f(0), ε] + Sct[F (x, ε); ε], (F.1.5)

in terms of which the renomarlized on-shell action is obtained as the limit ε → 0,

Son-shell
ren [ f(0)] = lim

ε→0
Ssub[F (x, ε); ε]. (F.1.6)

Using the renormalized on-shell action, we can define exact one-point functions (VEVs) of the field
theory operator OF dual to the bulk field F as the variation of Son-shell

ren with respect to the boundary
source, and since g(0)ij is in general non-trivial, we obtain (the subscript s stands for source)

〈OF 〉s =
1

√g(0)

δSon-shell
ren [ f(0)]

δ f(0)
. (F.1.7)

It can also be computed in terms of fields living at the regulated boundary,

〈OF 〉s = lim
ε→0

(
1

εd/2−m
1√
γ

δSsub[F (x, ε); ε]

δF (x, ε)

)
, (F.1.8)

where γij = gij(x, ε)/ε is the induced metric on the regulated surface ρ = ε. One can explicitly
evaluate this limit, which gives the result [48]

〈OF 〉s ∼ f2n + C( f(0)), (F.1.9)

where the scheme-dependent1 function C( f(0)) depends locally on f(0), while the coefficient in front
of f(2n) is scheme-independent.

f.1.1 FG Holographic Renormalization of Pure Gravity in AlAdS5

To illustrate the application of the method described above, The Einstein-Hilbert action with the
Gibbons-Hawking term2 for M = AlAdS5 with Λ = − d(d−1)

2 = −6,

S =
∫
M

d5x
√
−G

(
R(G) + 12

)
+ 2

∮
∂M

d4x
√
−γK, (F.1.10)

where γµν is the metric induced on the boundary, while K is the trace of the extrinsic curvature,
K = ∇mnm, where nm is a unit normal vector to the boundary ∂M. The AlAdS5 (with L = 1) metric
has the Fefferman-Graham form of (A.2.6),

Gmndxmdxn =
dρ̂2

4ρ̂2 +
1
ρ̂

gµν(ρ̂, x)dxµdxν, (F.1.11)

where for d = 4, the expansion (A.2.8) reads

gµν(x, ρ̂) = g(0)µν(x) + ρ̂g(2)µν(x) + ρ̂2g(4)µν + ρ̂2 log(ρ̂)h(4)µν(x) +O(ρ̂3). (F.1.12)

The boundary is located at ρ̂ = 0, and the corresponding boundary metric3, therefore, is g(0)µν(x).
The reason why we can’t use this metric immediately is, of course, that in the process of holographic
renormalization we need to introduce a cut-off hypersurface at ρ̂ = ε, so we need the full expansion.
The equations of motion from varying the action (F.1.10) produces the usual Einstein equation,

Rmn −
1
2

RGmn − 6Gmn = 0. (F.1.13)

In our calculations, we also require the inverse metric. In order to obtain it, we start with the ansatz

gµν = g̃µν

(0) + ρ̂g̃µν

(2) + ρ̂2 g̃µν

(4) + · · · , (F.1.14)

1 Since we have only subtracted the divergences, the scheme we have used to obtain (F.1.6) is, by analogy to the procedure in
quantum field theory, known as minimal subtraction.

2 The Gibbons-Hawking term is required to make the variational problem for gravity well posed, i.e. to ensure that we can
impose Dirichlet boundary conditions consistently; see [206].

3 Setting g(0)µν = ηµν corresponds to imposing AAdS5 boundary conditions.
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where g̃µν

(4) contains logarithmic terms in ρ̂. We have that Gmn is block diagonal

Gmn =

 1
4ρ̂2 0

0 1
ρ̂ gµν

 , (F.1.15)

so its inverse is

Gmn =

(
4ρ̂2 0

0 ρ̂gµν

)
, (F.1.16)

which shows that gµν(ρ̂ = cst.) acts as a metric on slices of constant ρ̂. In particular, it works for ρ̂ = 0,
implying that the expansion component g(0)µν is the metric on the boundary. Therefore, we can write

gµν = gµλgνσgλσ, (F.1.17)

we—by inserting the metric expansion (F.1.12) and the ansatz (F.1.14)—get to lowest order in ρ̂:

O(ρ̂0) : g̃µν

(0) = g̃µλ

(0) g̃
νσ
(0)g(0)λσ, (F.1.18)

implying that g̃νσ
(0)g(0)λσ = δν

λ; that is, g̃µν

(0) is the inverse of g(0)µν (as expected, since we argued that it
works as proper metric), so we’ll drop the tilde on this component. Similarly, to first order in ρ̂, we
get

O(ρ̂) : g̃µν

(2) = g̃µλ

(2)

=δν
λ︷ ︸︸ ︷

gνσ
(0)g(0)λσ +g̃νσ

(2)

δ
µ
σ︷ ︸︸ ︷

gµλ

(0)g(0)λσ +gµλ

(0)g
νσ
(0)g(2)λσ, (F.1.19)

so that

g̃µν

(2) = −gµλ

(0)g(2)λσgσν
(0), (F.1.20)

and finally,

O(ρ̂2) : g̃µν

(4) = 2g̃µν

(4) + gµλ

(0)g(4)λσgσν
(0) + gµλ

(0)g
νσ
(0) log(ρ̂)h(4)λσ + g̃µλ

(2) g̃
νσ
(2)g(0)λσ + gµλ

(0) g̃
νσ
(2)g(2)λσ + g̃µσ

(2)g
νσg(2)λσ,

(F.1.21)

which, upon insertion of the previous result for g̃µν

(2), gives:

g̃µν

(4) = −gµλ

(0)g
νσ
(0) log(ρ̂)h(4)λσ − gµλ

(0)g(4)λσgσν
(0) −

(((((((((((((((

gµα

(0)g(2)αβgβλ

(0)g
νγ
(0)g(2)γδgδσ

(0)g(0)λσ (F.1.22)

+ gµλ

(0)g
να
(0)g(2)αβgβσ

(0)g(2)λσ +(((((((((((
gµα

(0)g(2)αβgβλ

(0)g
νσ
(0)g(2)λσ (F.1.23)

= − log(ρ̂)gµλ

(0)h(4)λσgσν
(0) + gµλ

(0)g(2)λσgσβ

(0)g(2)βαgαν
(0) − gµλ

(0)g(4)λσgσν
(0), (F.1.24)

and so the inverse metric takes the full form:

gµν = gµν

(0) − ρ̂gµλ

(0)g(2)λσgσν
(0) − ρ̂2 log(ρ̂)gµλ

(0)h(4)λσgσν
(0) + ρ̂2

(
gµλ

(0)g(2)λσgσβ

(0)g(2)βαgαν
(0) − gµλ

(0)g(4)λσgσν
(0)

)
+O(ρ̂4).

(F.1.25)

Using the trace-reversed form of Einstein’s equations, the equations of motion take the form

R(G)
mn = −4Gmn. (F.1.26)

We begin by computing the Christoffel symbols Γ`
mn; there are six classes of these distinguished by

their index structure

Γλ
µν, Γρ̂

µν, Γλ
ρ̂ν, Γρ̂

ρ̂ν, Γλ
ρ̂ρ̂, Γρ̂

ρ̂ρ̂. (F.1.27)

Now, since G is block diagonal, Γλ
µν = Γ(g)λ

µν , where Γ(g)λ
µν is given entirely in terms of g. Block diago-

nality also implies that Γρ̂
ρ̂µ = 0, Γλ

ρ̂ρ̂ = 0. The others evaluate to

Γρ̂
µν = 2gµν − 2ρ̂g′µν, Γλ

ρ̂ν =
1
2

gλσ

(
g′σν −

1
ρ̂

gµσ

)
, Γρ̂

ρ̂ρ̂ = −1
ρ̂

, (F.1.28)
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where we have defined g′µν =: ∂
∂ρ̂ gµν. The (µν)-component of the Ricci tensor (for G) then assumes

the form

R(G)
µν = ∂mΓm

µν − ∂νΓ`
µ` + Γm

µνΓ`
`m − Γm

µ`Γ
`
νm (F.1.29)

= ∂ρ̂Γρ̂
µν − ∂ν

=0︷︸︸︷
Γρ̂

µρ̂ +Γρ̂
µνΓ`

`ρ̂ + Γσ
µν

=0︷︸︸︷
Γρ̂

ρ̂σ −Γρ̂
µ`Γ

`
νρ̂ − Γσ

µρ̂Γρ̂
νσ + R(g)

µν (F.1.30)

= gµνgσλg′λσ − 2g′µν + ρ̂
(

2gλσg′σµg′λν − 2g′′µν − g′µνgσλg′λσ

)
+ R(g)

µν − 4ρ̂−1gµν. (F.1.31)

This must be set equal to −4Gµν, which will just eat the last term, producing the equation

gµνgσλg′λσ + 2g′µν + ρ̂
(

2gλσg′σµg′λν − 2g′′µν − g′µνgσλg′λσ

)
+ R(g)

µν = 0, (F.1.32)

There are two other equations corresponding to the R(G)
ρ̂ρ̂ and R(G)

ρ̂µ components. They read

gµνg′′µν −
1
2

gµλg′λσgσνg′νµ = 0 (from R(G)
ρ̂ρ̂ ), (F.1.33)

gνλ
(
∇(g)

µ g′νλ −∇(g)
λ g′µν

)
= 0 (from R(G)

ρ̂µ ). (F.1.34)

Considering the Fefferman-Graham expansion to be a perturbation in the small parameter (we’re
eventually interested in the limit ρ̂ → 0) ρ̂ around g(0)µν, all indices are raised and lowered with
g(0). Plugging the Fefferman-Graham expansion into the equations of motion using the Mathematica
package xAct [88] with the subroutine xTras [108], the coefficients work out to be

g(2)µν =
1

12
R(0)g(0)µν −

1
2

R(0)µν, (F.1.35)

where R(0)µν is the Ricci tensor of the boundary metric g(0)µν. The precise form of g(4)µν is undeter-
mined by this perturbative analysis, but we can say something about the trace and the divergence
using the equation of motion (F.1.34); the full expressions can be found in [86]. The trace, however,
will be important later—it is given by

gµν

(0)g(4)µν = gµ

(4)µ =
1
4

g(2)µνgµν

(2). (F.1.36)

The coefficient h(4)µν satisfies

gµν

(0)h(4)µν = 0, (F.1.37)

∇(0)µh(4)µν = 0. (F.1.38)

The next step in the renormalization procedure is to compute the regularized on-shell action; im-
posing R(G) = −20 and K = ∇mnm with nµ = nδm

ρ̂ , so normality requires n = 2ρ̂, so that ∇mnm =
2√
−G

∂ρ̂

(
ρ̂
√
−G

)
. Further, block diagonality of G implies that

√
−G = 1

2ρ̂3
√−g, so that the regularized

Gibbons-Hawking term becomes

2
√
−γK

∣∣
ρ̂=ε

= 2ρ̂−2√−gK
∣∣∣
ρ̂=ε

=
√
−g

4ρ̂−2
√
−G

∂ρ̂

(
ρ̂
√
−G

)∣∣∣∣
ρ̂=ε

(F.1.39)

= 4ρ̂∂ρ̂

(√−g
ρ̂2

)∣∣∣∣
ρ̂=ε

(F.1.40)

= 4ρ̂−1∂ρ̂

(√
−g
)∣∣∣

ρ̂=ε
− 4ρ̂−2√−g

∣∣∣
ρ̂=ε

, (F.1.41)

which produces the on-shell action

Son-shell
reg [g, ε] =

∮
∂Mε

d4x
[
−
∫ ε

∞
dρ̂ 4ρ̂−3√−g + 4ρ̂−1∂ρ̂

(√
−g
)∣∣∣

ρ̂=ε
− 8ρ̂−2√−g

∣∣∣
ρ̂=ε

]
.

(F.1.42)

In order to identify the divergent terms, we need to expand the determinant
√−g, something we al-

ready did for the DBI action when “deriving” the AdS/CFT correspondence in section 2.3; replicating
our method, we obtain

gµν = g(0)µλ

[
δλ

ν + ρ̂gλ
(2)ν + ρ̂2gλ

(4)ν + ρ̂2 log(ρ̂)hλ
(4)ν

]
, (F.1.43)
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implying that

√
−g =

√
−g(0)

√
1 + ρ̂gλ

(2)λ + ρ̂2
[

gλ
(4)λ +

1
2

{
gλ
(2)λgν

(2)ν − gλ
(2)νgν

(2)λ

}]
+ ρ̂2 log(ρ̂)hλ

(4)λ +O(ρ̂4)

(F.1.44)

=
√
−g(0)

√
1 + ρ̂gλ

(2)λ + ρ̂2
(

1
2

gλ
(2)λgν

(2)ν −
1
4

g(2)λνgλν
(2)

)
+O(ρ̂4) (F.1.45)

=
√
−g(0)

1 +
ρ̂

2
gλ
(2)λ +

ρ̂2

8

[
gλ
(2)λgν

(2)ν − gλν
(2)g(2)λν

]
︸ ︷︷ ︸

(∗)

+O(ρ̂4) (F.1.46)

where we have used the relations (F.1.37) and (F.1.36) for h(4)µν as well as the series expansion√
1 + x = 1 + x/2 − x2/8 + O(x3). The integration over ρ̂ can now be performed, which leads to

the structure of the generic regularized action (F.1.3),

Son-shell
reg [g(0), ε] =

∫
∂Mε

d4x
√

g(0)
[
ε−2a(0) + ε−1a(2) − log(ε) a(4) +O(ε0)

]
. (F.1.47)

In particular, the log(ε) contribution comes from the term (∗) when plugged into the on-shell action
(F.1.42), from which we infer that

a(4) =
1
2

(
gλ
(2)λgν

(2)ν − gλν
(2)g(2)λν

)
. (F.1.48)

Performing the remaining integrations and derivatives and collecting orders of ε, we find that

a(0) = −6, a(2) = 0. (F.1.49)

This is in agreement with [86]. Next, we determine the counterterm action, which, in order to ensure
covariance, requires us to express quantities at the boundary in terms of quantities on the regularized
hypersurface ρ̂ = ε, which has metric γµν = ε−1gµν(x, ε). Inverting the expression for

√−g (F.1.46),
we find that √

−g(0) =
√
−g
(

1 − ε

2
gλ
(2)λ +

ε2

8

(
gλ
(2)λgν

(2)ν + gλ
(2)νgν

(2)λ

))
+O(ε4) (F.1.50)

=
√
−γε2

(
1 − ε

2
gλ
(2)λ +

ε2

8

(
gλ
(2)λgν

(2)ν + gλ
(2)νgν

(2)λ

))
+O(ε4). (F.1.51)

Furthermore, taking the trace of (F.1.35) gives us the relation

gλ
(2)λ = −1

6
R(0), (F.1.52)

so we now need to express R(0) in terms of R(γ). We can now do a series expansion in ρ̂, and contract
the resulting expression using the inverse hypersurface metric (F.1.25), in which case we find that

gλ
(2)λ =

1
6

1
ε

(
R(γ) +

1
2

[
R(γ)

µν R(γ)µν − 1
6

(
R(γ)

)2
])

+O
((

R(γ)
)3
)

, (F.1.53)

where terms cubic in curvatures do not contribute4. A similar analysis reveals that

gλ
(2)νgν

(2)λ =
1
ε2

1
4

(
R(γ)

µν R(γ)µν − 2
9

(
R(γ)

)2
)
+O

((
R(γ)

)3
)

. (F.1.54)

Using this, the counterterm action assumes the form

Sct[g(x, ε); ε] = −
∫

∂Mε

d4x
√
−γ

−6 +
1
2

R(γ) − log(ε)

R(γ)2

12
−

R(γ)µνR(γ)
µν

4

 . (F.1.55)

This allows us to immediately compute various quantities such as one-point functions (VEVs) and
Ward identities (see e.g. [95] for details on how to do this in a FG framework).

4 This statement is valid in dimensions below six.
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f.2 the dbvv ansatz approach

Developed in [49] by de Boer and the Verlinde twins (hence the name, dBVV) and reviewed in e.g. [89,
207, 208], this method is the precursor of the approach discussed in chapter 3. It also makes use of
the fact that the radial direction of AlAdS normal to the boundary allows us to foliate the space into
slices of constant radius (at least near the boundary), which can be used to set up a radial analogue
of the ADM formalism [98, 209]. This method can be extended to Lifshitz space-times: starting from
a Einstein-Proca model, this was pursued in [25]. The drawback of this method, however, is the need
to specify a counterterm ansatz, and it is generically very difficult to specify a sufficiently general
ansatz.

f.2.1 Setting up the ADM Hamiltonian and the Hamilton-Jacobi Equation

For AlAdS manifolds (see appendix A, in particular (F.2.14)), we use the radial coordinate r, which
is normal to the boundary, to foliate the manifold into radial hypersurfaces (leaves) Σr defined by
r = const.; these slices are diffeomorphic to the conformal boundary. Disregarding pathological topo-
logical complications, this is always possible (at least in the neighbourhood of the conformal bound-
ary). The normal vector to Σr, which points in the direction of increasing r, can be written as nm = nδm

r ,
where the normalization is fixed by requiring gmnnmnn = 1, allowing us to define a hypersurface pro-
jector hmn = gmn − nmnn projecting onto Σr. Restricting the indices on the projector also gives us the
induced metric, we may decompose the (Euclidean) metric as

ds2 = gmndxmdxn = N2dr2 + hµν (dxµ + Nµdr) (dxν + Nνdr) , (F.2.1)

where N is the shift and Nµ the lapse. The (Euclidean) Einstein-Hilbert action on a (d+ 1)-dimensional
manifold M (with AlAdS boundary condition) and boundary Σr = ∂M|r is given by,

S[g, h] =
∫
M

dd+1x
√

g
(

R(g) − 2Λ
)
− 2

∫
Σr

ddx
√

hK, (F.2.2)

where K is the trace of the extrinsic curvature on Σr. The ADM-parametrized version of this reads,

S[h, N] =
∫ ∞

r
dr′

∫
ddx

√
hN
(

R(h) − 2Λ + KµνKµν − K2
)

, (F.2.3)

where the Gibbons-Hawking cancels out by partial integration of second derivative terms in the
expansion of the Ricci scalar. Classically, the action above is equivalent to the following action,

S[πµν, N, Nµ] =
∫

dr
∫

ddx
√

h
[
πµν∂rhµν + NH− NµHµ

]
, (F.2.4)

where
√

hπµν is the canonical momentum conjugate to the induced metric hµν on Σr, whereas

H = R(h) − 2Λ + πµνπµν −
1

d − 1
π2, Hµ = 2Dνπµν, (F.2.5)

where Dν is the covariant derivative on the hypersurface Σr. On a general hypersurface Σ, such
a derivative is defined via DmTn...

`... = hn
k · · · hj

` · · · hi
m∇iTk...

j... for Tk...
j... ∈ Σ and satisfies, in

particular, metric compatibility with the hypersurface projector, Dmhn` = 0. Upon noting that the Wick
rotated Legendre transformation changes sign—schematically H = ∑i pi q̇i + L—we may construct the
radial Hamiltonian on an equal-r slice Σr as follows,

H =
∫

Σr
ddx

√
h
(

NH+ NµHµ

)
, (F.2.6)

The radial Hamilton-Jacobi equation then takes the form

∂rS + H = 0, πµν =
1√
h

δS
δhµν

, (F.2.7)

where S is the on-shell action—which is known as Hamilton’s principal function in analytical me-
chanics (see [91])—where it is understood that the value of πµν given above is inserted into the HJ
equation. Since S cannot depend on r (see [207]), the HJ equation reduces to

H = 0, (F.2.8)
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implying the Hamiltonian constraint and the momentum constraint

H = 0, Hµ = 0. (F.2.9)

Alternatively, these are the equations of motion obtained from (F.2.4) by varying with respect the
Lagrange multiplicators5 N and Nµ—a point of view favoured in [51]. Note that the momentum πµν

is directly related to the Brown-York stress tensor (see [210]) on Σr,

T̂µν = πµν. (F.2.10)

f.2.2 Counterterm Action Ansatz

As in the FG approach, we write the renormalized on-shell action as Sren = S + Sct, where the coun-
terterm action is specified by the following locally covariant ansatz6

Sct =
∫

Σr
ddx

√
h
[
c0 + c1R(h) + c(1)2 R(h)2

+ c(2)2 R(h)
µν R(h)µν (F.2.11)

+ c(3)2 R(h)
µνρσR(h)µνρσ +O(R3)

]
, (F.2.12)

which, by (F.2.7), implies that the momentum splits up as πµν = π
µν
ren − π

µν
ct , which is useful since

covariance of our ansatz means that the momentum constraint associated with the counterterm van-
ishes identically by covariant conservation of the associated Brown-York (quasi.local) stress tensor,
Dµπ

µν
ct = DµT̂µν

ct . Thus, the momentum constraint reduces to the d-dimensional diffeomorphism Ward
identity on Σr,

0 = Hµ = DµT̂µν
ren. (F.2.13)

Employing domain-wall coordinates7, where the pure AdS metric reads ds2 = dr2 + e2r (ηµνdxµdxν
)
,

we see that the AlAdS boundary condition on the induced metric reads

∂rhµν = 2hµν +O
(
e−r) . (F.2.14)

Now, following [49], we use the diffeomorphism invariance to gauge fix N = 1 and Nµ = 0; when this
is done, the imposition of the asymptotic behaviour (F.2.14) is achieved via the Hamilton equation,

∂rhµν =
1
√

g
δH

δπµν = 2πµν −
2

d − 1
πhµν. (F.2.15)

Now, want to impose (F.2.14), which is, of course, an asymptotic condition. Near the boundary,
therefore—by assumption—only the counterterm action gives a contribution to πµν; in particular,
by varying (F.2.12), we obtain:

πµν = − 1√
h

δSren

δhµν +O
(
e−r) (F.2.16)

=
1
2

hµνc0 +O
(
e−r) , (F.2.17)

where none of the curvatures contribute, that is, we effectively only vary
∫

ddx
√

hc0. This means that

∂rhµν = hµνc0 −
c0

d − 1
hλρhλρhµν = hµνc0

(
d − 1 − d

d − 1

)
= − c0

d − 1
hµν. (F.2.18)

The asymptotic boundary condition of (F.2.14) thus requires that:

c0 = −2(d − 1). (F.2.19)

Let’s just check the variation of the next term,
∫

ddx
√

hR, which becomes

δ
(√

hR(h)
)
= −1

2

√
hhµνδhµνR(h) + R(h)

µν δhµν√g, (F.2.20)

implying that the contribution to πµν takes the form

π
(R)
µν = −1

2
R(h)hµν + R(h)

µν = (R +K) hµν ∼ e−2rhµν, (F.2.21)

where K is a constant, so this will not contribute. The same goes for the higher order curvatures.

5 That is, non-dynamical (no kinetic terms).
6 This expression becomes more involved if we were to include more fields in our model.
7 The boundary in domain-wall coordinates is located at r → ∞ since it is obtained from the usual Poincaré patch metric by

r → e−r ; in Poincaré coordinates, the boundary is located at r = 0.
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f.2.3 The DeWitt Bracket

Having fixed the asymptotic boundary condition, which determined c0, we’re now ready to solve the
Hamiltonian constraint, H = 0. In order to accomplish this, it is convenient to introduce the following
piece of notation—which we shall call the DeWitt bracket which is symmetric and bilinear—for the
kinetic part of H,

{S, S}DW := Gµνρσ
δS

δhµν

δS
δhρσ

, (F.2.22)

where Gµνρσ is the DeWitt metric, given by

Gµνρσ =
1
h

(
hµ(ρhσ)ν −

1
d − 1

hµνhρσ

)
. (F.2.23)

In terms of the DeWitt bracket, the Hamiltonian constraint in our gauge takes the form

H = {S, S}DW + R(h) − 2Λ. (F.2.24)

Bilinearity and symmetry of the DeWitt bracket implies that upon writing S = Sren + Sct, the Hamil-
tonian constraint becomes

H = {Sren, Sren}DW + {Sct, Sct}DW + 2 {Sct, Sren}DW + R(h) − 2Λ = 0. (F.2.25)

The next step is to sort the Hamiltonian H by the number of radial derivatives n; schematically

H = ∑
n≥0

H(2n). (F.2.26)

As before, this means that each H(n) vanishes in isolation. An analogous derivative expansion for√
gLct gives us that, in domain-wall coordinates, the asymptotic radial scaling for AlAdS geometries

depends on the number of derivatives n as

√
gL(n)

ct ∼ e(d−n)r. (F.2.27)

As before—by assumption—the renormalized action Sren has a finite limit as r → ∞; thus the relevant
DeWitt brackets scale asymptotically as{

S(m)
ct , S(n)

ct

}
DW

∼ e−(m+n)r, (F.2.28){
S(n)

ct , Sren

}
DW

∼ e−(d+n)r, (F.2.29)

{Sren, Sren}DW ∼ e−2dr. (F.2.30)

The lowest-order Hamiltonian constraint, therefore, takes the form

0 = H(0) =
{

S(0)
ct , S(0)

ct

}
DW

− 2Λ. (F.2.31)

In particular, we find that{
S(0)

ct , S(0)
ct

}
DW

=
c2

0
h

(
hµ(ρhσ)ν −

1
d − 1

hµνhρσ

)
1
4

hhµνhρσ (F.2.32)

=
c2

0
4

(
hµ(ρhσ)ν −

1
d − 1

hµνhρσ

)
hµνhρσ (F.2.33)

=
c2

0
4

(
1
2
(
hµρhσν + hµσhρν

)
hµνhρσ − d2

d − 1

)
(F.2.34)

=
c2

0
4

(
d − d2

d − 1

)
(F.2.35)

=
c2

0
4

(
d2 − d
d − 1

− d2

d − 1

)
(F.2.36)

= −
c2

0d
4(d − 1)

. (F.2.37)
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This should be equal to

2Λ = −d(d − 1), (F.2.38)

implying that

c0 = ±2(d − 1), (F.2.39)

which agrees with our previous boundary condition analysis, provided we choose the negative solu-
tion. It is amusing to note that this only fixes the square of c0; we need the boundary conditions to
fix the sign. The next Hamiltonian constraint (assuming d > 2—if we did not assume this, there’d be

additional contributions from
{

S(0)
ct , Sren

}
DW

; we’ll have more to say about this later when discussing
the holographic Weyl anomaly), which has two derivatives, consequently reads

0 = H(2) = 2
{

S(0)
ct , S(2)

ct

}
DW

+ R(h), (F.2.40)

where8

2
{

S(0)
ct , S(2)

ct

}
DW

= − c0c1(d − 2)R(h)

2(d − 1)
= c1(d − 2)R(h), (F.2.41)

implying that

c1 =
1

d − 2
. (F.2.42)

The next constraint reads:

0 = H(4) = 2
{

S(0)
ct , S(4)

ct

}
DW

+
{

S(2)
ct , S(2)

ct

}
DW

. (F.2.43)

The first of these brackets work out to be,

2
{

S(0)
ct , S(4)

ct

}
DW

9 =c0
(4 − d)

2(d − 1)

(
c2R(h)2

+ c3R(h)
µν R(h)µν + c4R(h)

µνρσR(h)µνρσ
)

(F.2.44)

+
c0

d − 1

(
[2(1 + d)c2 + c3]∇

(h)
µ ∇(h)µR(h) + [4c4 + c3(d − 2)]∇(h)

µ ∇(h)
ν R(h)µν

)
,

(F.2.45)

while the second takes the form:

{
S(2)

ct , S(2)
ct

}
DW

= c2
1

(
R(h)

µν R(h)µν − dR(h)2

4(d − 1)

)
. (F.2.46)

From these, we immediately infer the equations

c2 =
d

4(d − 4)(d − 1)(d − 2)2 , c3 = − 1
(d − 4)(d − 2)2 , c4 = 0. (F.2.47)

Setting d = 4, we reassuringly obtain the result we also got the the FG approach to holographic
renormalization. It is worth noting, however, that the above is not the whole story. We have ignored
certain additional terms involving covariant derivatives (produced by xAct), which do not cancel,
suggesting that the ansatz employed is not sufficiently general. Curiously, the authors of [207] find
similar terms, but claim that they cancel precisely.

f.2.4 Holographic Weyl Anomalies

In the Hamilton-Jacobi approach to holographic renormalization, a d-dimensional Weyl anomaly10

appears when
{

S(0)
ct , S(d)

ct

}
DW

vanishes identically, which is the case when d is even. However, since

8 These variations are now somewhat tedious to perform, but they can be evaluated efficiently in xAct, which turns out to be
admirably suited for this.

10 For a cool cohomological approach to Weyl anomalies, see [211, 212].
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{
S(0)

ct , Sren

}
DW

∼ e−dr, the Hamiltonian constraint H(d) = 0 is non-trivial, and, in particular, involves
the Weyl anomaly via

−2
{

S(0)
ct , S(d)

ct

}
DW

=
2√
h

δSren

δhµν
hµν = hµνTµν

ren. (F.2.48)

In two and four dimensions, the Hamiltonian constraints read

0 = H(2) = R − 2
{

S(0)
ct , Sren

}
DW

(d = 2) (F.2.49)

0 = H(4) =
{

S(2)
ct , S(2)

ct

}
DW

− 2
{

S(0)
ct , Sren

}
DW

(d = 4), (F.2.50)

which gives us, straightforwardly, the Weyl anomaly in the dimensions considered above,

hµνTµν
ren = −R(h) (d = 2) (F.2.51)

hµνTµν
ren = −1

4

(
R(h)

µν R(h)µν − R(h)2

3

)
(d = 4). (F.2.52)

(F.2.53)
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g.1 holographic renormalization of einstein-proca theory with lifshitz bound-
ary conditions

It is the purpose of this appendix to describe the process of holographic renormalization applied to
Lifshitz space-times arising from Einstein-Proca models. The notation differs slightly from the one
used in the main text (cf. chapter 3); we hope this will not cause any confusion.

g.1.1 The Einstein-Proca ADM Hamiltonian

The Lifshitz space-time arises as a solution to the Einstein-Proca action with a Gibbons-Hawking term,

S =
∫

dd+1x
√

g
(

R̂ − 2Λ − 1
4

F̂2 − 1
2

M2 Â2
)
− 2

∫
Σr

ddx
√

hK, (G.1.1)

where we have used hats to distinguish (d + 1)-dimensional quantities from d-dimensional ones. In
domain-wall coordinates, the pure Lifshitz solution has the form

ds2 = dr′2 − e2zr′dt2 + e2r′d~x2. (G.1.2)

Since the FG theorem does not apply to asymptotically locally Lifshitz, we must use either (i) the
dBVV-deWitt method, which was done in [25], or (ii) the HJ approach described in chapter 3—this
was done in [27, 96]. It is to this second approach that we will now turn our attention.

First, we sketch the derivation of the Einstein-Proca ADM Hamiltonian, starting from (G.1.1). First,
we’ll need to set up a codimension-1 foliation of M = AlLif in terms of radial hypersurfaces (as we
pointed out when renormalizing AlAdS, it is sufficient to assume this can be done in a neighbourhood
of the boundary). In general [213, 214], a non-zero one-form ω on M generates a codimension-1
foliation of M if and only if it is integrable, that is, it satisfies the Frobenius condition,

ω ∧ dω = 0. (G.1.3)

which, in particular is satisfied by vectors n normal to some hyperplane, n ∧ dn = 0. In our case, the
vector normal to Σr—which is defined by r = const.—is1 nµ̂ = ∇̂µ̂r∣∣∇̂ν̂r∇̂ν̂r

∣∣1/2 , and the foliation one-form

constructed from the normal vector is

nµ̂ = gµ̂ν̂nν̂ = N∇̂µ̂r, (G.1.4)

where the normalization N is the lapse function. The hypersurface projector, which pulls back tensors
on M onto Σr, is given by,

hµ̂ν̂ = gµ̂ν̂ − nµ̂nν̂, (G.1.5)

whereas nµ̂nν̂ projects onto Σ⊥
r . The Proca field is thus decomposable in the following manner,

Âµ̂ = Φnµ̂ + Aµ̂, Φ = nν̂ Âν̂, Aµ̂ = h ν̂
µ̂ Âν̂. (G.1.6)

Next, we introduce the flow vector rµ̂ defined implicitly via rµ̂nµ̂ = N. The hypersurface tangential

part of the flow vector is called the shift function, Nµ̂ = hµ̂
ν̂rν̂, which means that the flow vector is

decomposable as

rµ̂ = Nnµ̂ + Nµ̂. (G.1.7)

Eventually, we’ll want to express the action (G.1.1) in terms of canonical velocities. We define these as
the Lie derivative along rµ̂,

ḣµ̂ν̂ = £rhµ̂ν̂, Ȧµ̂ = £r Aµ̂. (G.1.8)

1 In principle, one has to be careful about the sign, but Σr is time-like, i.e. nmnm = +1.
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If rµ̂ = δ
µ̂
r , as will be the case eventually when imposing radial gauge on the shift and lapse, the Lie

derivative reduces to the radial derivative. The extrinsic curvature Kµ̂ν̂ of Σr is given by

Kµ̂ν̂ =
1
2

£nhµ̂ν̂ = h λ̂
µ̂ ∇̂λ̂nν̂. (G.1.9)

Carrying on these calculations (see Appendix A of [25]) to the end and imposing the Gauss-Codazzi
equations, we get the familiar expression

H =
∫

Σr
ddx

√
h
(

NH+ NµHµ

)
. (G.1.10)

Diffeomorphism invariance allows us to gauge fix N = 1,N µ = 0, leading to the result

H =
∫

Σr
ddx

√
h
[(

Kµνπµν +
1
2

QµQµ

)
+ R − 2Λ − 1

4
FµνFµν +

M2

2

(
Φ2 − Aµ Aµ

)]
, (G.1.11)

where Φ is the radial component of the Proca one-form, Â = Φdr + Aµdxµ and is constrained by the
Proca constraint,

Φ = − 1
M2 DµQµ. (G.1.12)

Note that in domain-wall coordinates, the Proca field supporting the vanilla Lifshitz solution has the
form [22]

Â = αezrdt, (G.1.13)

for some constant α, which depends on both d and z. When considering the Proca field on a radial
hypersurface Σr, the hypersurface tangential part of has the form A = α̃dt. Restricting our attention
to timelike Proca fields, we introduce an auxiliary field ψ, which measures the deformation away from
the pure Lifshitz Proca field value, that is,

A = (α̃ + ψ)dt. (G.1.14)

ψ corresponds to the source of a relevant operator for 1 < z < ds; for ds = z, it becomes marginally
relevant [215]. The canonical momenta are given by the usual relations:

πµν =
1√
h

δS
δhµν

, Qµ =
1√
h

δS
δAµ

. (G.1.15)

Note that any AlLif metric may be written as (in domain-wall coordinates)

ds2 = dr2 + hµν(r, x)dxµdxν, (G.1.16)

which, in order to set up the ADM Hamiltonian (G.1.11), was decomposed in a radial ADM-manner,
i.e. by writing

ds2 = N 2dr2 + hµν(r, x) (dxµ +N µdr) (dxν +N νdr) , (G.1.17)

where N is the radial lapse function, whereas N µ is the radial shift. We shall as in the case of AlAdS,
we will gauge-fix—by means of foliation preserving diffeomorphisms—the shift and set the lapse
equal to one. On the leaves Σr of the radial foliation, we introduce a temporal foliation, allowing us
to write the induced metric on Σr as

hµν(r, x)dxµdxν = −N2dt2 + γij

(
dxi + Nidt

) (
dxj + N jdt

)
, (G.1.18)

where N is the temporal lapse on Σr and Ni the temporal shift. We use indices from the middle of
the Latin alphabet, i, j, k, l, m, n to denote spatial directions on Σr. The validity of such a foliation in
terms of leaves of constant (absolute) time ties in nicely with our non-relativistic interpretation of the
boundary theory. The gravity field multiplet then consists of the fields,

N, Ni, γij, (G.1.19)

More information about this double-foliation scheme may be found in [96]. Note that foliation pre-
serving diffeomorphisms on Σr allows us to set Ni = 0, while we choose to keep N general. This,
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then, allows us to introduce the following vielbeine, where we use lower-case Latin letters from the
beginning of the alphabet to denote flat indices, i.e. a, b, c, d. Since we’ll be working with vielbeine for
the most part, it is convenient to introduce the following objects

Tµ
a =

1√
h

δS
δea

µ
, πψ =

1√
h

δS
δψ

. (G.1.20)

We now proceed to derive a couple of useful relations involving the objects above. Writing e =
√

h,
we see that

Ta
b = ea

µTµ
a = ea

µ
1
e

δS
δeb

µ

, (G.1.21)

so, writing

Aρ = ec
ρ Ac, (G.1.22)

we find by virtue of the functional chain rule (note that r is fixed!),

ea
µ

1
e

δS
δeb

µ

= ea
µ(x, r)

1
e(x, r)

∫
ddx′

(
δS

δhρσ(x′)
δhρσ(x′)
δeb

µ(x)
+

δS
Aρ(x′)

Aρ(x′)
δeb

µ(x)

)
(G.1.23)

=
∫

ddx′δ(d)(x′ − x)
(

ea
µ(x)πρσ(x′)ηcd

(
δc

bδ
µ
ρ ed

σ(x′) + δd
b δ

µ
σ ec

ρ

)
+ ea

µ(x)Qρ(x′)Ac(x′)δc
bδ

µ
ρ

)
(G.1.24)

= 2πadηdb + Qa Ab (G.1.25)

= 2πa
b + Qa Ab, (G.1.26)

so that,

Ta
b = 2πa

b + Qa Ab. (G.1.27)

Now, since δAµ = δψδ0
µ, we get

Qµ = πψδ
µ
0 , (G.1.28)

which means that

Qa = πψea
µδ

µ
0 = πψea

0. (G.1.29)

g.1.2 Boundary Conditions & the δD Expansions

We now introduce spatial flat indices as ā. There are now two ways of imposing boundary conditions.
Either we linearise the field equations as done in [27, 131], in which case we find the asymptotic
behaviour for the vielbeine and the Proca deformation field2,

e0
µ = ezre(0)0µ + · · · , (G.1.30)

eā
µ = ere(0)ā

µ + · · · , (G.1.31)

ψ = e−∆−rψ(0) + · · · , (G.1.32)

where

∆− =
1
2

(
z + D −

√
(z + d − 1)2 + 8(z − 1)(z − d + 1)

)
. (G.1.33)

Using the chain rule, we find that

δr =
∫

Σr
ddx

(
ė0

µ
δ

δe0
µ
+ ėā

µ
δ

δeā
µ
+ ψ̇

δ

δψ

)
, (G.1.34)

2 Note that these conditions differ from those in [27, 96] due to our usage of domain-wall coordinates.
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where a dot denotes radial differentiation. Similarly, the dilatation operator becomes

δD =
∫

Σr
ddx

(
λ1e0

µ
δ

δe0
µ
+ λ2eā

µ
δ

δeā
µ
− ∆−ψ

δ

δψ

)
, (G.1.35)

where the coefficients in front of the various terms in δD are the leading scaling behaviour of the field,
and will be fixed by imposing the HJ equation. Now we’ll want to impose the asymptotic boundary
condition δr = δD, but before we do that we’ll rewrite both δr and δD, using that 2Kµν = 1

2 ∂rhµν

δr =
∫

Σr
ddx

√
h

(
2Kab

ea
ρeb

σ√
h

δ

δhρσ
+ Qa

ea
ρ√
h

δ

δAρ

)
, (G.1.36)

which is identical to (G.1.34), since

2Kabea
ρeb

σ
δ

δhρσ
=
(

eµ
a ėµb + eµ

b ėµa

)
ea

ρeb
σ

δ

δhρσ
=
(

δ
µ
ρ ėµbeb

σ + δ
µ
σ ėµaea

ρ

) δ

δhρσ
(G.1.37)

= 2ėµaea
ρ

δ

δhµρ
= ηab ėa

µ2eb
ρ

δ

δhµρ
= ėa

µ(x)
∫

Σr
ddx′

δhνρ(x′)
δea

µ(x)
δ

δhνρ(x′)
(G.1.38)

= ėa
µ

δ

δea
µ

. (G.1.39)

Note also that

2ėµaea
ρ

δ

δhµρ
= ḣµρ

δ

δhµρ
, (G.1.40)

which shows how δr in (G.1.34) is obtained from the corresponding expression involving the metric
rather than vielbeine in the first place. Now, the relation

Aa = (α + ψ) δ0
a , (G.1.41)

implies that the implicit radial derivative reads

δr =
∫

Σr
ddx

√
h
(

2Kabea
ρeb

σ
1√
h

δ

δhρσ
+ Ȧµ

1√
h

δ

δAµ

)
(G.1.42)

=
∫

Σr
ddx N

√
γ

(
2Kabea

ρeb
σ

1√
h

δ

δhρσ
+

1√
h

Qµ
δ

δAµ

)
(G.1.43)

=
∫

Σr
ddx N

√
γ

(
2Kabea

ρeb
σ

1√
h

δ

δhρσ
+

1√
h

Qa
δ

δAa

)
(G.1.44)

=
∫

Σr
ddx N

√
γ

(
2Kabea

ρeb
σ

1√
h

δ

δhρσ
+ Q0

1√
h

δ

δψ

)
(G.1.45)

=
∫

Σr
ddx N

√
γ
(

2Kabπ̂ab + Q0π̂ψ

)
, (G.1.46)

and thus,

π̂ab =
1
2

(
T̂ab − AbQ̂a

)
=

1
2

(
T̂ab − ηbc Acδa

0π̂ψ

)
(G.1.47)

=
1
2

(
T̂ab − ηbc(α + ψ)δ0

c δa
0π̂ψ

)
(G.1.48)

=
1
2

(
T̂ab + (α + ψ)δb

0δa
0π̂ψ

)
. (G.1.49)

With this, we obtain the result with all indices flat:

δr =
∫

Σr
ddx N

√
γ
(

KabT̂ab + [Q0 + (α + ψ)K00] π̂ψ

)
. (G.1.50)

Now, the asymptotic boundary conditions are implemented as

δr = δD. (G.1.51)
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The non-derivative part of the counterterm action must [25], due to general covariance, necessarily be
of the form

S =
∫

Σr
ddx

√
hU(ψ) + derivative terms. (G.1.52)

Now, the next thing we require is a way to relate the quantities above to the extrinsic curvature. This
is achieved through the relation

πµν = Kµν − hµνK, (G.1.53)

the flat version of which simply reads

πab = Kab − ηabK. (G.1.54)

In particular, we have that

π = K(1 − (ds + 1)) = dsK, (G.1.55)

and thus

πab = Kab − ηab π

ds
⇒ Kab = πab + ηab π

ds
. (G.1.56)

Now, we use that

πab =
1
2

(
Tab − Qa Ab

)
=

1
2

(
Tab + U′(ψ)(α + ψ)δa

0δb
0

)
. (G.1.57)

In particular, we have that

Tµ
a =

1√
h

δS
δea

µ
= eµ

a U(ψ), (G.1.58)

where we have used that δe = eeµ
a δea

µ, implying that

Tab = ηabU(ψ), (G.1.59)

and thus

πab =
1
2

(
ηabU(ψ) + U′(ψ)(α + ψ)δa

0δb
0

)
. (G.1.60)

Now, we can find the extrinsic curvature,

πab = Kab + ηab π

ds
, (G.1.61)

where

π =
1
2
(
(ds + 1)U(ψ)− U′(ψ)(α + ψ)

)
, (G.1.62)

so that

Kab = πab − ηab π

ds
= − ηab

2ds
U(ψ) +

U′(ψ)(α + ψ)

2

(
δa

0δb
0 +

ηab

ds

)
(G.1.63)

=
U(ψ) + (ds − 1)U′(ψ) (α + ψ)

2ds
δa

0δb
0 +

−U(ψ) + (α + ψ)U′(ψ)

2ds
δāb̄δa

āδb
b̄ . (G.1.64)

Next, note that

Qa =
1√
h

δS
ψ

δa
0 = U′(ψ)δa

0 ⇒ Q0 = −U′(ψ). (G.1.65)

We now want impose the boundary conditions, which implies that

r→∞︷ ︸︸ ︷
KabT̂ab + (Q0 + (α + ψ)K00)π̂ψ = zT̂0

0 + T̂ ā
ā − ∆−ψπ̂ψ. (G.1.66)
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Comparing scaling weights and writing KabT̂ab = Kb
aT̂a

b writing out scaling expansions in terms of

dilatation weights, e.g. Q0 = ∑w Q(w)
0 with δDQ(w)

0 = −wQ(w)
0 . This procedure immediately gives us

K(0)b
aT̂a

b = zT̂0
0 + T̂ ā

ā ⇒ K(0)
ab = −zδ0

a δ0
b + δāb̄δā

aδb̄
b , (G.1.67)

and, similarly,

Q(0)
0 + αK(0)

00 = 0, (G.1.68)

ψK(0)
00 + αK(∆−)

00 + Q(∆−)
0 = −∆−ψ. (G.1.69)

To proceed, we write U(ψ) as a series in ψ:

U(ψ) =
nmax

∑
n=0

unψn, (G.1.70)

and thus we find for the quantities above, using (G.1.64)

K(0)
00 =

u0 + α(ds − 1)u1

2ds
, K(∆−)

00 = ψ
u1 + (ds − 1)(2αu2 + u1)

2ds
(G.1.71)

K(0)
āb̄ =

−u0 + αu1

2ds
δāb̄, Q(0)

0 = −u1, Q(∆−)
0 = −2u2ψ. (G.1.72)

Combining the results above with eqs. (G.1.67)–(G.1.69) then gives us—since K(0)
00 = −z

Q(0)
0 + αK(0)

00 = 0 ⇒ u1 = −αz, (G.1.73)

which we can plug into the relation K(0)
āb̄ = δāb̄ to obtain for u0 the expression

u0 = −α2z − 2ds. (G.1.74)

Similarly, plugging the value of u1 into the relation K(0)
00 = −z gives us the equality u0 = −2zds +

α2(ds − 1)z. Equating the two expression for u0 gives us the following result for α:

α =

√
2(z − 1)

z
, (G.1.75)

which we in turn can plug into (G.1.74) to obtain:

u0 = −2(z + ds − 1). (G.1.76)

Finally, plugging all the above results into (G.1.69), we obtain

u2 = − zds (2z − 1 − ∆−)

2 (z + ds − 1)
, (G.1.77)

which implies that the first couple of (non-derivative) counterterms are given by

Sct =
∫

Σr
ddx

√
h
(
−2(z + ds − 1)− zαψ − zds (2z − 1 − ∆−)

2 (z + ds − 1)
ψ2 + · · ·

)
. (G.1.78)

Expanding the Hamiltonian density H extracted from (G.1.11), we can expand H in scaling weights,
H = ∑w H(w) with δDH(w) = −wH(w). Note the symmetry property (which we derived in chapter 3)

K(n)
ab π(m)ab = K(m)

ab π(n)ab, (G.1.79)

which has to be taken into account when writing

H(w) = ∑
n+m=w

(
K(m)

ab π(n)ab +
1
2

Q(n)
a Q(m)a − M2

2
Φ(n)Φ(m)

)
+ V (w), (G.1.80)

where V (w) is the part of

V = R − 2Λ − 1
2

FabFab − M2

2
Aa Aa (G.1.81)
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with dilatonic scaling weight w. With this at hand, we can solve the Hamiltonian constraint recursively
as we did for AlAdS boundary conditions3. The next step will be to determine a useful relation, which
allows us to find the terms of the on-shell Lagrangian L. The idea is to do exactly the same as we did
for AlAdS boundary conditions in chapter 3: we expand the (unknown) counterterm Lagrangian in
eigenmodes of δD and relate the terms to the Hamiltonian constraint. We follow the approaches taken
by [27, 96]. By the same arguments as for AlAdS boundary conditions, we must now include a linear
term (logarithmic in Poincaré-type coordinates), i.e.

Lct = − ∑
0≤λ<z+ds

L(λ) − L̃(z+ds)r. (G.1.83)

As before, the individual terms satisfy the scaling relations:

δDL(w) = −wL(w), w 6= z + ds, (G.1.84)

δDL(z+ds) = −(z + ds)L(z+ds) + L̃(z+ds), (G.1.85)

δDL̃(z+ds) = −(z + ds)L̃(z+ds). (G.1.86)

As we have seen:

(z + ds + δD)L = zT0
0 + T ā

ā − ∆−ψπψ, (G.1.87)

which we can expand in scaling weights to get

(z + ds − w)L(w) = zT(w)0
0 + T(w)ā

ā − ∆−ψπ
(w−∆−)
ψ , w 6= z + ds, (G.1.88)

while for w = z + ds, we get instead

(z + ds + δD)L(z+ds) = L̃(z+ds) = zT(z+ds)0
0 + T(z+ds)ā

ā − ∆−ψπ
(z+ds−∆−)
ψ . (G.1.89)

Now the Hamiltonian constraint, which we have now seen multiple times, is obtained by varying the
bulk action with respect to N (before setting it equal to one). In particular, using πab = Kab − ηabK
and the Proca constraint for Φ (recall Â = Φdr + Aµdxµ), which reads Φ = − 1

M2 ∇µQµ, we can write
rewrite the Hamiltonian constraint as

K2 − KabKab − 1
2

QaQa − 1
2M2 (∇aQa)2 = R − 2Λ − 1

2
FabFab − M2

2
Aa Aa, (G.1.90)

which we can expand dilatation weights and plus into (G.1.89), culminating in the following expres-
sion, valid for all w /∈ {0, ∆−, 2∆−}

(z + ds − w)L(w) = Q(w) +S(w), (G.1.91)

where the quadratic term Q(w) has the form

Q(w) = ∑
0<λ<w/2

w/∈{∆− ,2∆−}

[
2K(λ)

ab π(w−λ)ab + Q(λ)
a Q(w−λ)a +

1
M2 (∇aQa)(λ) (∇aQa)(w−λ)

]
(G.1.92)

+
[
K(∆−)

ab T(w−∆−)ab + K(∆−)
00 Q(w−2∆−)0ψ + Q(∆−)

ā Q(w−∆−)ā
]

(G.1.93)

+

[
K(w/2)

ab π(w/2)ab +
1
2

Q(w/2)
a Q(w/2)a +

1
2M2 (∇aQa)(w/2) (∇aQa)(w/2)

]
(G.1.94)

where we have conveniently grouped terms in accordance to general scaling behaviour; i.e. the terms
in the first bracket involve λ but not ∆−, the next involves ∆− but not λ, while the last involves neither.
The contribution from the source term is the part of

S = R − 2Λ − 1
2

FabFab − M2

2
Aa Aa, (G.1.95)

3 A good consistency would have been to take ∆− = ∆ to be general and then combining δr = δD along with the Hamiltonian
constraint. Doing this, one finds that H(0) and H(∆) vanish identically, while H2∆ only vanishes when

∆± =
1
2

(
z + ds ±

√
(z + ds)2 + 8(z − 1)(z − ds)

)
, (G.1.82)

where we must pick max(−∆±) = ∆−, since it will be leading.



G.1 holographic renormalization of einstein-proca theory with lifshitz boundary conditions 153

with scaling weight w. For w ∈ {0, ∆−, 2∆−}, we find instead

(z + ds)L(0) = 2L(0), (G.1.96)

(z + ds − ∆−)L(∆−) = (∆− − z)ψπ
(0)
ψ +S(∆−), (G.1.97)

(z + ds − 2∆−)L(2∆−) = (∆− − z)ψπ
(∆−)
ψ + K(∆−)

ab π(∆−)ab +
1
2

Q(∆−)
a Q(∆−)a +S(2∆−). (G.1.98)

Now, expanding S in dilatation weights, we find that R has terms of weight 2 and 2z, FabFab has
terms of order 2, 2 + ∆−, 2 + 2∆−, whereas Aa Aa has components of order 0, ∆−, 2∆−:

S(0) = −2Λ +
M2

2
α2 = (z + ds)(z + ds − 1), (G.1.99)

S(2) = R(2) − 1
4

(
FabFab

)(2)
= R(γ) − 2∇2N

N
+

α2

2

(
∇N
N

)2
, (G.1.100)

S(2z) = R(2z) = Kij Kij − (K)2 + total derivatives, (G.1.101)

S(∆−) = M2αψ = dszαψ, (G.1.102)

S(2∆−) =
M2

2
ψ2 =

dsz
2

ψ2, (G.1.103)

S(2+∆−) = −1
4

(
FabFab

)(2+∆−)
=

α∇i N∇i(Nψ)

N
, (G.1.104)

S(2+2∆−) = −1
4

(
FabFab

)(2+2∆−)
=

∇i(Nψ)∇i(Nψ)

N
. (G.1.105)

Note that we have already determined L(∆−) and L(2∆−) by imposing the asymptotic equality δr = δD.

g.1.3 Finding the Counterterms

The considerations above have enabled us to finally begin extracting the actual counterterms. In par-
ticular, at the non-derivative level at zero weight, we get

L(0) =
2S(0)

z + ds
= 2(z + ds − 1), (G.1.106)

in agreement with our previous findings. Reassuringly, the terms L(∆−) and L(2∆−) also give what we
found by imposing the asymptotic equality δr = δD, although this way of determining them is rather
more cumbersome. Noting that a weight two, the quadratic term vanishes, i.e. Q(0) = 0, we find that

L(2) =
1

z + ds − 2

(
R(γ) +

α2∇i N∇i N
2N2

)
. (G.1.107)

In this manner, all the counterterms can be calculated. For details, see the appendices of [96], which
presents extensive calculations of the counterterms.



H D I M E N S I O N A L R E D U C T I O N

In this appendix, we describe Kaluza-Klein reduction and Scherk-Schwarz reduction. We then apply
the Scherk-Schwarz reduction to the uplift: a five-dimensional Einstein-Dilaton theory that reduces to
a four-dimensional EPD model admitting z = 2 Lifshitz solutions. The uplift is the precursor of the
electromagnetic uplift discussed in chapter (6).

h.1 kaluza-klein reduction

Kaluza-Klein (KK) reduction was originally introduced by Kaluza and Klein [216, 217] as a way to
unify gravity and electromagnetism. They showed that by compactifying a fifth dimension, it was
possible to obtain gravity coupled to electromagnetism with a small caveat: this produced an addi-
tional scalar particle, the dilaton. In this section, we describe the generalities of the method, following
[218–220].

Starting from a generic theory containing gravity ĝµ̂ν̂ (indices µ̂, ν̂ = 1, . . . , D + 1) and matter fields
collectively denoted Φ̂, described by the Lagrangian

L =
√
−ĝR̂ + · · · , (H.1.1)

we assume that (D + 1)-dimensional spacetime can be written as a direct product MD+1 = Qd+1 ×
CD−d with CD−d a compact manifold. This product manifold will thus be a solution to the equations
of motion obtained from (H.1.1), exhibiting what [220] terms spontaneous compactification, which just
means that the metric respects the product structure

ĝ(x, y) =

(
g̊µν(x) 0

0 g̊mn(y),

)
(H.1.2)

where xµ are the coordinates on the Lorentzian Qd+1 and ym the coordinates on the compact Rie-
mannian manifold CD−d. The metric is naturally dynamical, so the metric above is the background
ground state solution of the theory. Generally, the fields on Qd+1 are taken to depend trivially on the
coordinates of CD−d, as we see happens automatically in (H.1.2). The fields on CD−d, on the other
hand, must be truncated in a consistent manner. Typically, this involves keeping only certain modes
of a Fourier-like expansion. To be specific, let the compact manifold be S1, in which case we have the
decomposition MD+1 = QD × S1. Let y be the compactified coordinate, which is thus periodically
identified,

y = y + 2πL, (H.1.3)

with L the radius of the circle, which is usually assumed to be small. In this case, a generic field
(including the metric) of our theory can be expanded in Fourier-like modes on S1,

Φ̂(x, y) = ∑
n

Φ(n)(x)einy/L. (H.1.4)

The modes n 6= 0 correspond to massive fields, while the mode n = 0 represents a massless field, as
can be realized by considering a massless scalar φ̂ on flat (D + 1)-dimensional space, which satisfies
the Klein-Gordon equation,

�̂φ̂ = 0, (H.1.5)

where �̂ = ∂µ̂∂µ̂, which, when compactified on S1, admits an expansion of the form (H.1.4), φ̂ =

∑n φ(n)einy/L, so the Klein-Gordon equation implies that

0 = ∂µ̂∂µ̂φ̂ = ∑
n

(
�φ(n) − n2

L2

)
einy/L, (H.1.6)

so linear independence of the exponentials implies that the mass of the n’th mode is

mn =
|n|
L

, (H.1.7)

154
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which, due to the infinity of every increasing masses, is known as the Kaluza-Klein tower of states.
Thus, when L � 1 (in practice, one takes L to be of the order of the Planck length), the non-zero
modes will be immensely heavy and can be safely neglected. This corresponds, as we claimed, to only
keeping the zero-mode of the generalized Fourier expansion and thus truncates the Kaluza-Klein
spectrum. This is sometimes known as the Kaluza-Klein reduction ansatz, since, generally1, we have
to worry about the consistency of our truncation, that is, whether ours setting all massive modes equal
to zero solves the (D+ 1)-dimensional equations of motion. In general, if the fields in the Kaluza-Klein
expansion (H.1.4) have a global symmetry group G, then the truncation will be consistent if we keep
all G-singlets (that is, modes that do not transform under G). Clearly, in the case of the massless
field on flat space, the expansion φ̂ = ∑n φ(n)einy/L and spectrum (H.1.7) has a G = U(1) symmetry
rotating modes n = ±m into each other, implying that only the n = 0 mode is invariant under G, and
thus our truncation is consistent. See [44] for more details.

h.1.1 Kaluza-Klein Reduction of Pure Gravity & the EMD Model

Now, let’s try our hand at an explicit example: let’s compactify (d + 1)-dimensional pure gravity over
S1, following the analysis in [218]. Heuristically, the reduction of ĝµ̂ν̂ results in the following fields

• ĝµν, which is the metric of the reduced theory,

• ĝµy, a one-form, which seems likely to become a U(1) gauge field,

• a scalar ĝyy.

In order to perform the reduction, we employ the following KK ansatz for the (D + 1)-dimensional
metric,

dŝ2 = e2αφds2 + e2βφ(dy +A)2, (H.1.8)

where α, β are constants that we’ll choose in a convenient matter shortly, and A = Aµdxµ. The reduced
fields we discussed earlier may then be expressed in terms of the quantities appearing in (H.1.8) in
the following manner,

ĝµν = e2αφgµν + e2βφAµAν, ĝµy = e2βφAµ, ĝyy = e2βφ. (H.1.9)

The metric (H.1.8) is admits the following description in terms of vielbeine,

êa = êa
µdxµ = eαφea, êz = eβφ(dy +A). (H.1.10)

where Latin letters represent D-dimensional flat indices. Introducing capital Latin letters for (D + 1)-
dimensional flat indices, we can write our vielbeine in matrix form,

êA
µ̂ =

(
eβφ eβφ Aµ

0 eαφea
µ

)
. (H.1.11)

Noting that this matrix is triangular, the determinant is just the product of the diagonal elements, i.e.√
−ĝ = ê = e(Dα+β)e. Requiring that we be in Einstein-Frame (i.e., that the Einstein-Hilbert action

retains its canonical form, S ∼
∫ √−gR), we should choose β = −α(D − 2), since, as we shall shortly,

the Ricci scalar carries a factor e−2αφ. Similarly, by requiring that the kinetic scalar term, which comes
from the reduced Ricci scalar, is canonically normalized, we get

α2 =
1

2(D − 1)(D − 1)
, β = −(D − 2)α. (H.1.12)

Now we proceed to calculate the Ricci scalar. Since our connection is symmetric, the spin connection
is determined via

dêA + ω̂A
B ∧ êB = 0, (H.1.13)

1 Except for the case of compactification over tori, where keeping only the massless mode is always consistent, note in particular
the (trivial) isomorphism T1 ' S1, so that keeping only massless modes
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which gives us

ω̂ab = ωab + αe−αφ
(

∂bφêa − ∂aφêb
)
− 1

2
F abe(β−2α)φ êy, (H.1.14)

ω̂ay = −βe−αφe−αφ∂aφêy − 1
2
F a

be(β−2α)φ êb, (H.1.15)

where F = dA. Now, the curvature two form is given by

R̂AB = dω̂AB + ω̂AC ∧ ω̂C
B, (H.1.16)

the trace of which can be computed using the explicit results for the spin connections (H.1.14)–(H.1.15);
the result is [218]

R̂ = e−2αφ

[
R − 1

2
(∂φ)2 + (D − 3)α�φ

]
− 1

4
e−2DαφF 2, (H.1.17)

and thus, combining our findings, we obtain the reduced action2

S =
∫

dD√−g
(

R − 1
2
(∂φ)2 − 1

4
e−2(d−1)αφFµνFµν

)
, (H.1.18)

for which we can readily determine the equations of motion; they read

Rµν =
1
2

∂µφ∂νφ +
1
2

e−2(D−1)αφ

(
FµλFνρgρλ − 1

2(D − 2)
F 2gµν

)
, (H.1.19)

0 = ∇µ
(

e−2(D−1)αφFµν

)
, (H.1.20)

�φ = −1
2
(D − 1)αe−2(D−1)αφF 2. (H.1.21)

In particular, we note that the equation of motion for φ, (H.1.21) implies that setting φ = 0 would be
an inconsistent truncation.

Thus, reducing pure gravity in (D + 1) dimensions results in D-dimensional Einstein-Maxwell-
Dilaton theory.

h.2 scherk-schwarz reduction

The Scherk-Schwarz reduction3, which was introduced in [221, 222], is a generalization of the KK
method. The main idea of Scherk-Schwarz reduction is use certain symmetries of the higher-dimensional
theory to generate masses in the reduced theory.

This is achieved by allowing the higher-dimensional fields to depend on the compact direction4 u
in a manner consistent with the symmetries of the higher-dimensional action, which ensures that the
u–dependence drops out of the equations of motion of the reduced action. These symmetries fall into
two categories

• Global/internal symmetries: phase, scale and shift symmetries etc.

• Local/external symmetries: space-time symmetries, e.g. translations or rotations in the compact
manifold.

We will deal only with symmetries of the first kind.
Consider a global U(1) symmetry acting on the fields as Φ̂ → eiΛΦ̂ for some Λ ∈ R. The general-

ization of the periodicity condition (H.1.3) then reads

Φ̂(x, u + 2πL) =

∈U(1)︷ ︸︸ ︷
e2πimL Φ̂(x, u), m ∈ R, (H.2.1)

i.e. we identify the two fields up to a global phase transformation, which is sometimes known as a
twist. By using this twisted periodicity, we may obtain the following Fourier decomposition

Φ̂(x, u) = eimu ∑
n

Φn(x)einu/L. (H.2.2)

2 We ignore the extra factor of 2πL arising from the integeation over the compact dimension.
3 Sometimes the procedure is known as generalized dimensional reduction or twisted reduction, for reasons we will see shortly.
4 We change our notation in this section so as to match the one used in chapter 6—we hope that this will not cause any confusion.
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In the limit L → 0—just as for the KK case—the massive modes decouple (i.e. become infinitely
massive and can be ignored), leaving us with the ansatz,

Φ̂(x, u) = eimuΦ0(x), (H.2.3)

which is a local U(1) transformation (Λ = mu) acting on the zero-mode; in this way, the global
U(1) has been gauged. This allows us to unravel the general structure (see also [223]): if the higher-
dimensional action has a global symmetry group G acting on the fields as Φ̂ → g(Φ̂) for g ∈ G, The
generalization of the reduction ansatz (H.2.3) then involves an element gu = g(u) ∈ G with an explicit
dependence on the compact direction u, i.e., schematically,

Φ̂(x, u) = gz(Φ(x)), (H.2.4)

where it can (and usually will; cf. (H.2.3)) happen that only certain modes are included on the right-
hand side. This results in a reduced theory independent of u and, as we saw in the case of global U(1)
symmetry, gauges the group G. Now, since g(u) is not periodic, going around the compact coordinate
results in a twist, also in this context known as the monodromy,

G 3 M(gu) := g(2πL) (H.2.5)

which is just the generalization of the twist in (H.2.2). The exponential map allows us to express gu in
terms an element M of the Lie algebra g of G,

g(u) = e
Mu
2πL , M ∈ g. (H.2.6)

M ∈ g spans a one-dimensional subgroup H of G. These considerations imply that the monodromy
may be expressed as

M(g) = eM, (H.2.7)

whereas M, which is in fact the mass matrix of the reduced theory, can be written as

M = 2πLg−1∂ug. (H.2.8)

By demanding that M does not depend on u, it is possible to determine the function g.

h.2.1 Scherk-Schwarz Reduction of the Uplift

In this section, we give the details of the reduction alluded to in section 6.2.1. Consider a five-
dimensional Einstein-Dilaton model of the form

S5d =
1

2κ2
5

∫
d5x

√
−G

(
R(G) + 12 − 1

2
∂Mψ∂Mψ

)
, (H.2.9)

with κ2
5 = 8πG5 and M = (u, M). The reduction ansatz is the one we used in chapter 6; it reads

ds2
5 = GMN dxMdxN =

dr2

r2 + γABdxAdxB =

Form we’ll be using for the reduction︷ ︸︸ ︷
e−ΦgMNdxMdxN + e2Φ

(
du + AMdxM

)2

(H.2.10)

= e−Φ
(

eΦ dr2

r2 + hµνdxµdxν

)
+ e2Φ (du + Aµdxµ

)2 , (H.2.11)

ψ = 2u + 2Ξ, (H.2.12)

where the four dimensional fields gMN , AM, Ξ and Φ do not depend on the compactified u–direction,
which—since we’re reducing on a circle of radius L—is periodically identified, u ∼ u+ 2πL. Note also
that since our normalization is such that 1

16πG4
= 1, the five-dimensional Newton constant satisfies

2πL
16πG5

= 1.
The renormalized on-shell four-dimensional EPD z = 2 action has the schematic form

Sren = S + Sgh + Sct, (H.2.13)
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where Sgh = 2
∫

d3x
√
−hK is the Gibbons-Hawking boundary, which, as per usual, is required to

make the variational problem well posed, while the counterterm is the dimensionally reduction of the
expression found in section 3.2.1 with the additional Maxwell field set to zero.

The reduction ansatz reads in components:

GMN = e−ΦgMN + e2Φ AM AN , GMu = e2Φ AM, Guu = e2Φ, (H.2.14)

while the inverse becomes

GMN = eΦgMN , GMu = −eΦ AM, Guu = e−2Φ + eΦ AM AM, (H.2.15)

as we now demonstrate. The requirement GMRGRN = δNM is equivalent to

GMMGMN = δN
M, GuMGMu = 1, GuMGMM = 0. (H.2.16)

To check this, we observe that

GMMGMN = GMRGRN + GMuGuN (H.2.17)

=
(

e−ΦgMR + e2Φ AM AR

)
eΦgRN − e3Φ AN AN (H.2.18)

= gMRgRN (H.2.19)

= δN
M, (H.2.20)

and

GuMGMu = GuuGuu + GuMGMu (H.2.21)

= e2Φ
(

e−2Φ +�����eΦ AM AN
)
−�����

e3Φ AM AM (H.2.22)

= 1, (H.2.23)

and finally,

GuMGMM = GuuGuM + GuNGNM (H.2.24)

= −e3Φ AM + e3Φ AN gMN (H.2.25)

= 0. (H.2.26)

So what we have found is indeed the inverse. Alternatively, we could have used the block matrix
inversion identity(

A B
C D

)−1

=

( (
A − BD−1C

)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1

)
. (H.2.27)

In a similar vein, 2 × 2 block matrices for invertible D satisfy the following determinant relation,

det

(
A B
C D

)
= det(D)det

(
A − BD−1C

)
, (H.2.28)

implying that

det(−G) = e2Φ det
(
−e−ΦgMN((((((((((((

−e2Φ AM AN + e2Φ AM AN

)
= e−2Φ det(−g), (H.2.29)

i.e.
√
−G = e−Φ√−g. (H.2.30)

From this, we may immediately identify the KK scalar k (in the language of [219]),

k = e−Φ. (H.2.31)

Following [219], we now proceed with the reduction of the Ricci scalar; starting off with the Christoffel
symbols, we find that

ΓR
MN =

1
2
GRS (∂MGNS + ∂N GMS − ∂SGMN ) , (H.2.32)
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so

ΓR
MN =

1
2
GRS (∂MGNS + ∂NGMS − ∂SGMN) (H.2.33)

=
1
2
GRS (∂MGNS + ∂NGMS − ∂SGMN) +

1
2
GRu (∂MGNu + ∂NGMu) . (H.2.34)

This means that the five-dimensional Ricci can be decomposed in the following manner [219],

R(G)
uu = −e3Φ�(g)Φ +

1
4

e6ΦFMN FMN , (H.2.35)

R(G)
uM = R(G)

uu AM +
1
2
∇N

(
e3ΦFMN

)
, (H.2.36)

R(G)
MN = AMR(G)

uN + AN R(G)
uM − AM AN R(G)

uu + R(g)
MN − 3

2
∂MΦ∂NΦ +

1
2

gMN�(g)Φ − 1
2

e3ΦFMPFN
P.

(H.2.37)

Hence, the five-dimensional Ricci scalar can be written as

R(G) = GMN R(G)
MN = GuuR(G)

uu + 2GuMR(G)
uM + GMN R(G)

MN . (H.2.38)

We compute these contributions individually. First up is

GuuR(G)
uu =

(
e−2Φ + eΦ AM AM

)(
−e3Φ�(g)Φ +

1
4

e6ΦFMN FMN
)

, (H.2.39)

whereas

2GuMR(G)
uM = −2eΦ AM AM

(
−e3Φ�(g)Φ +

1
4

e6ΦFMN FMN
)
− eΦ AM∇N

(
e3ΦFMN

)
, (H.2.40)

and, finally,

GMN R(G)
MN = �2eΦ

(
−e3Φ�(g)Φ +

1
4

e6ΦFMN FMN
)

AM AM + eΦ AM∇N
(

e3ΦFMN

)
(H.2.41)

−
(((((((((((((((((((

eΦ AM AM

(
−e3Φ�(g)Φ +

1
4

e6ΦFMN FMN
)
+ eΦR(g) − 3

2
eΦ∂MΦ∂MΦ (H.2.42)

+ 2eΦ�(g)Φ − 1
2

e4ΦFMN FMN (H.2.43)

= eΦ
(
−e3Φ�(g)Φ +

1
4

e6ΦFMN FMN
)

AM AM + eΦ AM∇N
(

e3ΦFMN

)
(H.2.44)

+ eΦR(g) − 3
2

eΦ∂MΦ∂MΦ + 2eΦ�(g)Φ − 1
2

e4ΦFMN FMN . (H.2.45)

Combining everything, we obtain

R(G) = eΦR(g) − 3
2

eΦ∂MΦ∂MΦ − 1
4

e4ΦFMN FMN + eΦ�(g)Φ. (H.2.46)

Next, we consider the reduction of the scalar term, for which the ansatz (H.2.12) gives us

−1
2

∂Mψ∂Mψ = −1
2
Guu∂uψ∂uψ − GuM∂uψ∂Mψ − 1

2
GMN∂Mψ∂Nψ (H.2.47)

= −2Guu − 4GuM∂Mψ − 2GMN∂Mψ∂Nψ (H.2.48)

= −2
(

e−2Φ + 4eΦ AM AM

)
+ 4eΦ AM∂MΞ − 2eΦ∂MΞ∂MΞ (H.2.49)

= −2BMBM − 2e−2Φ, (H.2.50)

where BM = AM − ∂MΞ.
Turning our attention to the Gibbons-Hawking term, we note that, first of all

KAB = −1
2

£nγAB, (H.2.51)
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where nM = −rδMr is the normal vector to radial slices. From the definition of the Lie derivative, this
gives us

KAB =
1
2

nM∂MγAB =
r
2

∂rγAB. (H.2.52)

The trace of the extrinsic curvature is given by

K = γABKAB. (H.2.53)

To determine the inverse metric γAB, we apply the inversion identity (H.2.27): since

γAB =

(
e−Φhµν + e2Φ Aµ Aν e2Φ Aν

e2Φ Aµ e2Φ

)
, (H.2.54)

we get

γAB =

(
eΦhµν −eΦ Aν

−eΦ Aµ e−2Φ + eΦ Aµ Aµ

)
. (H.2.55)

Therefore, we find that

K =
r
2

γAB∂rγAB =
[ r

2
γµν∂rγµν

]
+
{

rγµu∂rγµu
}
+
( r

2
γuu∂rγuu

)
(H.2.56)

=

[
−3r

2
∂rΦ +

r
2

hµν∂rhµν +�������
re3Φ Aµ Aµ∂rΦ +������re3Φ Aµ∂r Aµ

]
(H.2.57)

−
{
(((((((
2re3Φ Aµ Aµ∂rΦ +������re3Φ Aµ∂r Aµ

}
(H.2.58)

+
(

r∂rΦ +
�������
re3Φ Aµ Aµ∂rΦ

)
(H.2.59)

= − r
2

∂rΦ +
r
2

hµν∂rhµν, (H.2.60)

and so

2
√
−γK =

√
−h
(
−nM∂MΦ + 2K(h)

)
, (H.2.61)

where nM = e−Φ/2δM
r . We note that the first term precisely cancels out out the boundary term pro-

duced by the Laplacian term present in the expression for the reduced Ricci scalar (H.2.46).
The reduction of the counterterm proceeds completely analogously, and gives the result

Sct = 2
∫

∂M
d3x

√
−h
(
−1

4
eΦ/2

[
R[h]− 3

2
∂µΦ∂µΦ − 1

4
e3ΦFµνFµν − 2BµBµ + 10e−Φ

])
(H.2.62)

− log r
∫

∂M
d3x

√
−he−Φ/2A. (H.2.63)

Combining our findings, the reduced renormalized action becomes—after integration over the com-
pact direction u and using 2πL

2κ2
5
= 1

Sren =
∫

d4x
√
−g
(

R[g]− 3
2

∂MΦ∂MΦ − 1
4

e3ΦFMN FMN − 2BMBM − V(Φ)

)
(H.2.64)

+ 2
∫

d3x
√
−hK + Sct, (H.2.65)

where

V(Φ) = 2e−3Φ − 12e−Φ. (H.2.66)
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