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In a nanoscale system out of thermodynamic equilibrium, it is important to account for thermal fluctuations.
Typically, the thermal noise contributes fluctuations, e.g., of distances that are substantial in comparison to the
size of the system and typical distances measured. If the thermal fluctuations are ignored, misinterpretation of
measured quantities such as interaction forces, potentials, and constants may result. Here, we consider a
particle moving in a time-dependent landscape, as, e.g., in an optical tweezers or atomic force nanoscopic
measurement. Based on the Kramers equation �H. A. Kramers, Physica 7, 284 �1940��, we propose an ap-
proximate but quantitative way of dealing with such an out-of-equilibrium system. The limits of this approxi-
mate description of the escape process are determined through optical tweezers experiments and comparison to
simulations. Also, this serves as a recipe for how to use the proposed method to obtain knowledge about the
underlying energy landscape from a set of experimental measurements. Finally, we perform estimates of the
error made if thermal fluctuations are ignored.
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I. INTRODUCTION

Most of our knowledge about the physical world origi-
nates from systems in thermodynamic equilibrium. However,
with the increased interest in nanoscale systems and the
advance of nanoscopic techniques such as atomic force
microscopy or optical tweezers, it becomes increasingly im-
portant to know how to deal quantitatively with systems that
are not in thermal equilibrium and for which thermal fluc-
tuations cannot be ignored. The equations of Jarzynski �1�
and Crooks �2� relate the nonequilibrium state of a system to
equilibrium thermodynamics and have been tested, e.g.,
through studies of biological processes �3,4�. Here, we
demonstrate an alternative method based on the Kramers
equation �5�.

We address the situation where a micro- or nanoscale sys-
tem is caught in a local energy minimum with a time-
evolving energy barrier and we study the transition from the
metastable state to the equilibrium configuration. A funda-
mental problem in this type of experiment is that the system
is not in thermal equilibrium and hence it is not well de-
scribed by conventional thermodynamics. Experimentally,
we consider a particle trapped by optical tweezers while ap-
proaching an attractive wall until the particle escapes the
optical trap and jumps to the surface. This scenario consti-
tutes a time-evolving bistable energy landscape with the op-
tical tweezers potential as a metastable state; the closer the
optical trapping position is to the wall, the lower the energy
barrier separating the two states. Based on Kramers theory
we investigate this situation, and show how to obtain infor-

mation about the underlying interaction forces. The validity
of this approach is tested by simulations and by comparison
to experiments. Most importantly, our work provides a test
bed for a quantitative treatment of small-scale systems out of
equilibrium, systems for which thermal fluctuations play a
crucial role. This work is particularly important for single-
molecule biophysics, cell biology, and the nanosciences in
general.

II. EXPERIMENTS

The experimental test system was a colloid held by opti-
cal tweezers and gradually approaching a glass surface. Due
to the attractive van der Waals force, the colloid and glass
surface experienced an attractive interaction. The colloid was
of polystyrene with diameter 1.07 �m suspended in 10 mM
NaCl solution. Eventually, the colloid would escape the trap
and jump to the surface. A typical jump event is depicted in
Fig. 1�a�. The jump is observed at t�9 s. The equilibrium
position of the trapping potential is denoted z0 and z is the
distance from the bead to the surface. The length of the jump
�157 nm for the data shown� is defined as the value of z0 at
the time of the jump. Before the jump, the colloid underwent
thermal fluctuations within the trapping potential. After the
jump, the thermal motion of the bead was greatly reduced.
We interpret this as the bead being irreversibly bound to the
glass surface. The approach speed of the optical trap is con-
stant and denoted v. The trap constitutes a three-dimensional
harmonic potential and lateral fluctuations of the bead do not
change its escape probability in the axial direction. The op-
tical tweezers setup is described in Refs. �6,7� and the
colloid-surface measurements are described in Ref. �8�. The
force constant in the escape direction �=0.0092 pN/nm is
found using the methods described in Refs. �8,9�.

In order to investigate how the lengths of the jumps de-
pend on approach velocity, experiments were performed at
different approach velocities: v=10,20,40,80 nm/s. For
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each velocity, 10–20 jumps were recorded, using a new bead
for each experiment. The average jump length for each ap-
proach velocity is shown in Fig. 1�b�. Here, the typical jump
length is found to depend on the approach velocity. This
illustrates the probabilistic nature of the escape process.

III. THEORETICAL MODEL

To gain detailed understanding of the escape process, the
experimental observations are compared to computer simu-
lations and approximative analytical considerations. We as-
sumed the total energy landscape experienced by the particle
to be given as

V�z� =
�

2
�z − z0�2 −

AR

6z
. �1�

The first term is the harmonic potential of the optical trap; �
denotes the stiffness of the optical trap. The second term is
the interaction potential between the surface and the particle
as given by the Derjaguin approximation �10�. The Hamaker
constant A is on the order of 10−20 J and R is the radius of the
bead. For z0 larger than a critical value denoted zc, both a
local minimum, denoted z1, and a local maximum, denoted
z2, exist. The value of zc is calculated below.

The total energy landscape experienced by the trapped
particle is shown by a solid line in Fig. 2 in a case where
z0�zc. The apparatus and interaction contributions to the
energy are shown as dotted and dashed lines, respectively.
The escape process of the particle is a transition from the
local minimum z1 over the energy barrier z2 to the ground
state at z=0.

In order to determine zc, we rewrite Eq. �1� in terms of the
force exerted on the particle,

F�z� = − ��z − z0� −
AR

6z2 , �2�

as a function of the position z. At the bottom of the local
energy minimum z1 and at the peak of the energy barrier z2
the total force vanishes. Solving for F�z�=0 is equivalent to
solving the third-order polynomial equation

P�z� = z3 − z0z2 + � = 0, �3�

with � shorthand for AR
6� . For high values of z0 this equation

has three real roots, two of which correspond to z1 and z2 in
Fig. 2. The third solution z3 is negative and has no physical
significance. However, for z0 below zc, the solutions to Eq.
�3� are complex. Instead of solving Eq. �3� for arbitrary val-
ues of z0 and �, we seek the special case when z0=zc. This is
the case where the energy barrier has just vanished and the
two roots z1 and z2 have merged together into a double root
denoted �. Formally, we may rewrite P�z� in the form

z3 − z0z2 + � = �z − ��2�z − z3� + R�z� . �4�

The remainder is given as

R�z� =
Az + B

�z − ��2 �5�

and with A=2��2�−z0�−�2 and B=−�2�−z0��2+�. In the
case when z0=zc, the polynomial of Eq. �3� has a double root
located in � and hence R�z� must be 0 for all z. This, in turn,
leads to A=B=0. From these two equations, the unknowns �
and zc can be deduced. The result is

� =
2

3
zc, �6�

zc = �9AR

8�
�1/3

. �7�

Using the experimentally determined values of A and �, we
get zc�100 nm.

FIG. 1. �a� An optically trapped colloid approaching a surface.
The measured height of the colloid over the surface is shown as a
function of time. A 157 nm jump from the equilibrium position of
the trap to the surface is observed at t�9 s. �b� Average jump
length as function of approach velocity.

FIG. 2. The interaction potentials used in Eq. �1�, with
�=0.01 pN/nm, and AR /6=1440 pN nm2. Dotted line: Harmonic
potential of the measurement apparatus. Dashed line: van der Waals
surface interaction energy between a colloid and a planar surface.
Solid line: Total interaction energy from Eq. �1�, sum of dotted and
dashed lines.
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IV. SIMULATIONS

The simulations of the approach process were based on
the Langevin equation. In each time step �t=1 ms, the posi-
tion zi of the particle was updated according to

zi+1 = zi + 	−
AR

6
zi

−2 − ��zi − �Z0 − vt�� + Fi
�t

�
. �8�

Here, we have substituted z0�t�=Z0−vt for the position of the
apparatus at time t where Z0 is the initial position, which was
set to 450 nm. The random driving force Fi is drawn from a
Gaussian distribution with �Fi

2� in accordance with the
fluctuation-dissipation theorem. The viscous drag coefficient
� is found from Stokes law with corrections depending on
the distance from the particle to the surface �11�.

The aim is to extract information about the underlying
interactions from the jump data and the escape probability
must be related to the features of the energy landscape. A
simple quantitative description of this scenario is given by
Kramers formula �5� where the escape rate r is given by

r = f0 exp�− 	V� . �9�

Here, 	V=V�z2�−V�z1� is the height of the energy barrier in
units of kBT where kB is Boltzmann’s constant and T is the

absolute temperature. The attempt frequency f0 equals
k1k2

2
�
where k1 and k2 are the curvatures of V evaluated in z1 and
z2.

We now consider a situation where z0 decreases linearly,
corresponding to the experiment. Initially, the probe is
trapped in the local energy minimum located far from the
surface where r→0. In the experiment the minimum of the
trapping potential continuously approaches the surface, i.e.,
z0 decreases. Therefore, 	V is decreasing as function of time
and the escape probability gradually increases until, finally,
the probe escapes from the local minimum and jumps to the
surface. To find the distribution of jumps, Kramers equation
is integrated numerically. As an alternative to the numerical
integration, we also consider an approximation of the energy
landscape; this is described below.

V. SOLVING KRAMERS EQUATION

The Kramers equation cannot be integrated analytically in
the time-evolving energy landscape. In order to find an ap-
proximate analytical solution, we linearize the activation en-
ergy around the most likely escape distance z*,

	V�z0� � ��z0 − z*� + 	V�z*� � ��z0 − z*� + 	V*. �10�

The constant � describes how many units of kBT the activa-
tion energy 	V decreases when z0 decreases by one unit of
length. Further, f0 is assumed to be constant and we have
introduced the shorthand notation 	V* for 	V�z*�. With this
approximation, the time-evolving Kramers problem is solved
as follows.

The dynamical change in the energy landscape is given by
z0�t�=−vt where v�0 is the constant approach speed. The
probability of not escaping the local minimum at time t is
denoted P�t�. It satisfies

dP

dt
= − r�t�P�t� . �11�

The escape rate r is given by the Kramers equation Eq. �9�.
The evolving energy landscape continuously changes the es-
cape probability r. Equation �11� can be rewritten in terms of
the apparatus position z0:

H�z0� �
dP

dz0
= v−1r�z0�P�z0� . �12�

Thus, P�z0� now denotes the probability of not having es-
caped the local minimum when the optical trap has reached
position z0. H�z0� is then the probability distribution of jump
lengths.

The most general solution to Eq. �12� is the integral

P�z0� = exp�v−1�
+�

z0

r�z�dz� . �13�

Since the general z dependence of r is complicated, this in-
tegral cannot be solved without simplifying assumptions. We
use the linearization assumption Eq. �10� as ansatz and the
Kramers equation Eq. �9� becomes

r�z0� = f0 exp�− ��z0 − z*� − 	V*� . �14�

This relation expresses the escape probability r as function of
trap position z0 and of the parameters of the energy land-
scape. We note that Eq. �14� does not involve the dynamical
change brought in by z0=−vt. However, z* and � refer to
observables from a dynamic measurement and depend on v,
as will be shown below. Using the linearized expression in
Eq. �14�, the integral in Eq. �13� can be solved and P�z0�
becomes

P�z0� = exp�−
f0

v�
e−��z0−z*�−	V*� . �15�

Differentiating with respect to z0 gives the distribution of
jump lengths,

H�z0� =
f0

v
exp�−

f0

v�
e−��z0−z*�−	V*

− ��z0 − z*� − 	V*� .

�16�

This expression may be simplified further: Since z* is defined
as the most likely jump length, it must satisfy

� �H�z0�
�z0

�
z0=z*

= 0. �17�

From Eq. �16�, we find

�H

�z0
= H�z0�� f0

v
e−��z0−z*�−	V*

− �� . �18�

Equation �17� can only be satisfied if

e−	V*
=

v�

f0
�19�

or equivalently
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	V* = ln
f0

v�
, �20�

thus the typical energy barrier at the time of the escape is
seen to depend directly on the approach velocity v.

	V�z0� varies as �z0; therefore Eq. �20� implies that

z*  −
1

�
ln v �21�

when the variation of z* is small.
Substitution of Eq. �20� into Eq. �16� yields the probabil-

ity distribution of the jump lengths as function of trap posi-
tions, H�z0�, expressed by the parameters � and z*:

H�z0� � � exp�− ��z0 − z*� − e−��z0−z*�� . �22�

The distribution in Eq. �22� is known as the Fisher-Tippet-
Gumbel distribution and is also connected with the distribu-
tion of the extreme values of the particle’s energy in a certain
time interval. For a particle trapped in a harmonic potential,
the autocorrelation time is given by �= �

� . From extreme
value statistics it is known that the most likely value of the
largest energy fluctuation of the particle in a time series of
length T�� is given by �12�

Emax = ln�T/�� . �23�

Here, we assume that data points recorded at times larger
than a time interval � apart are statistically independent.
Equation �23� may be compared to Eq. �20�. If we identify
the attempt frequency with the inverse of �, f0��−1, we
find that the typical height of the energy fluctuation that
carries the particle over the energy barrier is equal to the
typical extreme value of the energy in a time interval of
length T*= ��v�−1. This characteristic time is the time it takes
	V to decrease by kBT.

Alternatively, H�z0� can be mapped directly into the dis-
tribution of extreme energy fluctuations in this time interval
using the linear mapping of Eq. �10�.

VI. COMPARING EXPERIMENT, SIMULATION, AND
MODEL

A comparison between the Langevin simulation Eq. �8�,
Kramers equation Eq. �9�, and the approximation Eq. �22�, is
shown in Fig. 3. The circles represent a histogram of jump
lengths obtained from Langevin simulations at v=20 nm/s.
The solid line indicates the distribution obtained by numeri-
cal integration of Kramers equation. This result is obtained
using no free parameters and is overall in good agreement.
The dashed line shows a fit of Eq. �22� with z*=121 nm and
��0.18 nm−1. The numerically integrated result peaks at
z*=123 nm. Similarly, Eq. �22� was used to find z* from
other simulated data sets for a range of approach velocities
from 1 to 160 nm/s. The inset of Fig. 3 shows a comparison
between z* obtained from a numerical integration of Kramers
equation and z* obtained from the Langevin simulation; at
low velocities the agreement is excellent. However, at in-
creasing v, Kramers equation tends to overestimate the jump
length: At v=160 nm/s the deviation is �10 nm and is simi-

lar to the experimental uncertainty. This reflects that Kramers
equation is derived under the assumption of quasi-
stationarity. Thus, Eq. �9� only holds when 	V�1, that is,
when the approach velocity is sufficiently low.

A histogram of jumps lengths obtained experimentally is
shown in Fig. 4. The solid line shows a fit using Eq. �22�
with parameters z*=132 nm and �=0.09 nm−1. The dashed
line represents a Gaussian fit with mean 137 nm and stan-
dard deviation 14 nm. Calculations of �2=1.0 for the fit of
Eq. �22� and for a Gaussian fit ��2=1.4� show that Eq. �22� is
slightly better. This, in addition to the fact that the variation
of z* with the logarithm of v from the experiment �circles in
the inset of Fig. 4� appears linear, as predicted by Eq. �21�,
constitutes a comparison between the experiments and
model. The agreement is definitely satisfactory for the ve-

FIG. 3. Predictions of the jump distances using
�=0.01 pN/nm, and AR /6=1440 pN nm2 �as in Fig. 2�. Circles
show a histogram of jump lengths from a Langevin simulation with
v=20 nm/s. Solid line: Numerical integration of Kramers equation
Eq. �9�. Dashed line: Fit of Eq. �22� to the simulation data. Inset:
Most likely jump length z* as function of approach velocity.
Squares indicate numerical integration of Kramers equation and
circles Langevin simulation.

FIG. 4. Histogram �bin width=20 nm� of jumps at approach
speed 20 nm/s. The solid line shows a fit of Eq. �22�. For compari-
son, a Gaussian fit �dashed line� is also shown. Inset: z* as a func-
tion of approach velocity. Circles �with error bars� denote experi-
mentally obtained data. Asterisks indicate Langevin simulation
data. The dashed line is a linear fit to the experimental data.
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locities shown here. Using Eq. �21� we find �=0.12 nm−1

from the slope of the inset in Fig. 4. Fitting experimental
data we generally observe that the values of � found using
Eq. �22� are lower than when Eq. �21� is used. This is due to
experimental uncertainties which tend to broaden the ob-
served jump distributions.

If the total energy is as described by Eq. �1�, the only free
parameter in our model is the Hamaker constant A. In order
to determine this parameter experimentally, we solve Eq.
�20� where both 	V and f0 implicitly depend on A. Using
the results from the experiments depicted in Fig. 4,
�=0.12 nm−1, and the typical velocity, v̄=28 nm/s,
Eq. �20� was solved numerically, resulting in a value of
A=1.7�10−20 J which can be compared to A=1.5�10−20 J
found in �8�. To further compare experiments to simulations,
the experimentally obtained values of A and � were inserted
in a Langevin simulation. The result of the simulation is
shown by asterisks in the inset of Fig. 4. There is good agree-
ment between experiments and Langevin simulations as the
typical jump lengths from the simulations were only 6 nm
less than experimentally observed.

VII. EXTENSIONS AND ERROR CONSIDERATIONS

Retardation effects of the van der Waals attraction have
been neglected in Eq. �1�. A more detailed analysis would
allow the Hamaker constant to be distance dependent. How-
ever, our comparison with Langevin simulations shows that
the simple model explains our data sufficiently well. The
Hamaker constant we find should be interpreted as an aver-
age value in the observed interval.

The simplest interpretation of a jump experiment would
be to neglect the thermal energy of the probe. However, this
induces a systematic error in the determination of the Ha-
maker constant. Here, we investigate the size of this system-
atic error: If one neglects the influence of the thermal energy,
the colloidal particle would escape when the energy barrier is
zero. This corresponds to applying Eq. �6� and �7� to deter-
mine the Hamaker constant A. When the temperature van-
ishes, T=0, the observed jump length must be equal to zc.
The mean jump length in the experiment is found from Fig.
1�b� to be around 135 nm. Solving Eq. �7� for A we get:

A =
8�zc

3

9R
� 4 � 10−20 J. �24�

As the correct answer is A=1.5�10−20 J, this result repre-
sents an overestimation of the strength of the interaction po-
tential by a factor of almost three.

The error is even larger if the experimentally observed
jump length is interpreted as being equal to �. If this assump-

tion is applied to the analyses of our experimental data, the
value of the Hamaker constant would be overestimated by
nearly one order of magnitude: Since zc= �3/2���200 nm
we would get A�13�10−20 J.

In any case, the dependence of A on zc
3 induces a large

uncertainty in estimates based on the critical apparatus posi-
tion.

In similar studies using atomic force microscopy �AFM�
�13�, the thermal energy of the probe is typically neglected.
The stiffness of an AFM cantilever is ��10–100 pN/nm,
and even for a high approach speed, v=1000 nm/s, the sys-
tematic overestimation of the interaction energy amounts to a
factor of 1.5 on A.

The framework presented in this paper may be general-
ized to study a variety of nanoscale systems. Here, we dem-
onstrated it for a colloidal system and our experimental pro-
cedure is directly applicable to quantitative measurements of
biological phenomena such as cell adhesion. Also topics in
condensed matter physics such as, e.g., the stability of liquid
interfaces may benefit from a similar analysis: In the work
described in Refs. �14,15� it is likely that the velocity of
retraction influences the observed critical distances.

VIII. CONCLUSION

A quantitative description of small-scale systems out of
thermal equilibrium poses a challenge to the physical com-
munity. We attack this problem and devise a way to quanti-
tatively deal with the escape of a particle in a changing en-
ergy landscape. Experimentally, this is tested by having a
colloid in an optical trap approaching an attractive surface to
which the colloid eventually jumps. The experiment could
equally well have been an AFM cantilever approaching a
surface. Theoretically, we treat this scenario by a model
based on Kramers equation. The validity of this approach is
tested by Langevin simulations as well as by comparison to
experiments. In particular, we show how to find the constants
which describe the underlying interaction potential. In our
particular test case, the Hamaker constant would have been
overestimated by a factor of roughly 3, if thermal fluctua-
tions had not been taken into account.
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