
Computer Physics Communications 182 (2011) 485–489
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

TimeSeriesStreaming.vi: LabVIEW program for reliable data streaming of large
analog time series ✩

Fabian Czerwinski ∗, Lene B. Oddershede

Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 July 2010
Received in revised form 10 August 2010
Accepted 16 October 2010
Available online 28 October 2010

Keywords:
Data acquisition
Data streaming
LabVIEW
TDMS
Optical tweezers

With modern data acquisition devices that work fast and very precise, scientists often face the task of
dealing with huge amounts of data. These need to be rapidly processed and stored onto a hard disk. We
present a LabVIEW program which reliably streams analog time series of MHz sampling. Its run time
has virtually no limitation. We explicitly show how to use the program to extract time series from two
experiments: For a photodiode detection system that tracks the position of an optically trapped particle
and for a measurement of ionic current through a glass capillary. The program is easy to use and versatile
as the input can be any type of analog signal. Also, the data streaming software is simple, highly reliable,
and can be easily customized to include, e.g., real-time power spectral analysis and Allan variance noise
quantification.

Program summary

Program title: TimeSeriesStreaming.VI
Catalogue identifier: AEHT_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEHT_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 250
No. of bytes in distributed program, including test data, etc.: 63 259
Distribution format: tar.gz
Programming language: LabVIEW (http://www.ni.com/labview/)
Computer: Any machine running LabVIEW 8.6 or higher
Operating system: Windows XP and Windows 7
RAM: 60–360 Mbyte
Classification: 3
Nature of problem: For numerous scientific and engineering applications, it is highly desirable to have
an efficient, reliable, and flexible program to perform data streaming of time series sampled with high
frequencies and possibly for long time intervals. This type of data acquisition often produces very large
amounts of data not easily streamed onto a computer hard disk using standard methods.
Solution method: This LabVIEW program is developed to directly stream any kind of time series onto
a hard disk. Due to optimized timing and usage of computational resources, such as multicores and
protocols for memory usage, this program provides extremely reliable data acquisition. In particular, the
program is optimized to deal with large amounts of data, e.g., taken with high sampling frequencies and
over long time intervals. The program can be easily customized for time series analyses.
Restrictions: Only tested in Windows-operating LabVIEW environments, must use TDMS format,
acquisition cards must be LabVIEW compatible, driver DAQmx installed.
Running time: As desirable: microseconds to hours

© 2010 Elsevier B.V. All rights reserved.
✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author.
E-mail address: czerwinski@nbi.dk (F. Czerwinski).

URL: http://www.nbi.dk/~czerwin (F. Czerwinski).

0010-4655/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2010.10.019
1. Introduction

Precision experiments where data is acquired with high tem-
poral resolution pose a challenge with respect to streaming and
saving the data correctly onto a computer hard disk for further
processing [1]. Within the nanoscience and biophysical communi-

http://dx.doi.org/10.1016/j.cpc.2010.10.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AEHT_v1_0.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://www.ni.com/labview/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:czerwinski@nbi.dk
http://www.nbi.dk/~czerwin
http://dx.doi.org/10.1016/j.cpc.2010.10.019


486 F. Czerwinski, L.B. Oddershede / Computer Physics Communications 182 (2011) 485–489
ties, LabVIEW is often the program of choice for control of data
acquisition and streaming [2–4]. Here, we present a highly reliable
and efficient data streaming program in LabVIEW. The program is
built into modular blocks with the goal of making the design com-
prehensible and easily compatible for further customization. Also,
user-friendliness has been highly valued and we show how to use
the program to stream time series data from two typical nanoscale
experiments: One involving optical trapping assays [5], the other
ionic current measurements through glass capillaries [6].

2. Program overview

2.1. Requirements

A time series can originate from a wide range of physical sig-
nals, such as temperature, voltage, current, etc. The time series,
most often in the form of parallel voltage signals, enter the pro-
gram through a number of channels of an acquisition card, building
the interface between computers and experimental setups. Acqui-
sition cards are available in a broad range for various tasks and
quality requirements. We used National Instruments cards NI PCI-
6251, NI PCIe-M6251, and NI PCI-M6040 [7]. They are coupled into
TimeSeriesStreaming.vi by DAQmx, a LabVIEW-internal driver. As
precondition, the acquisition card must be compatible with Lab-
VIEW. This holds either for those that can be installed by National
Instrument’s Measurement and Automation Explorer, or for those
supplied with a LabVIEW-compatible driver.

2.2. Main program

The main program is designed in a modular fashion to offer in-
dependent as well as interconnected control of different sources of
analog signals. Further, it contains support for data-streaming pro-
tocols. The programming architecture combines horizontal mod-
ules (acquisition, queuing, streaming) with vertical programming
patterns (sequential structure, parallel while loops, multicore pro-
cessing) in order to assure negligible error rates and optional
customization.

The different modules of the program are highlighted each by
their background color in Figs. 1 and 2. The four modules deal
with elements that concern computer specifications (yellow), ac-
quisition (blue), queuing (red), and streaming (green). Each of the
modules functions independently from the others as it communi-
cates through well-defined programming patterns.
The usage of the program will be explained in Section 3.

2.2.1. Programming patterns
Multicore processing is the ability to distribute computational

jobs over more than one core, i.e. one CPU. This feature has be-
come available in recent versions of LabVIEW. In TimeSeriesStream-

ing.vi multicore processing is implemented by assigning each
timed loop to a specific core. On the tested systems, the CPU load
of an individual core never exceeded 20%. Optimal multicoring was
ensured by core assignments (highlighted yellow in Fig. 2). It could
also compensate for occasional interruptions by the Windows XP
operating system.

Data acquisition must not be interrupted by waiting times dur-
ing the streaming process. LabVIEW is optimized for data flow
control. In TimeSeriesStreaming.vi this is achieved by transporting
data packages between different loops exclusively through built-
in queues (highlighted red in Fig. 2). The streaming loop is not
executed when the queue is empty. This strategy has proven very
powerful, as it allows both loops to run as quickly as possible with-
out potential disturbance by waiting times.

Parallelizing allows for parallel execution of computational jobs.
Data acquisition is done in one while loop, data streaming in a
parallel loop. Very reliable streaming is achieved by the powerful
data format TDMS (Technical Data Management Streaming, Na-
tional Instruments). Using the primitive TDMS VIs allows for high
performance streaming virtually with no limitation.

3. How to use the program

A hands-on introduction to TimeSeriesStreaming.vi is given in
this section. The perspective user is guided through the modules
in the program’s front panel (Fig. 1). An experienced user could
adjust the programming architecture in the block diagram at will
(Fig. 2).

The only computer specification that must be set is the processor
assignment (highlighted yellow). The user can choose to perform
processor assignment on quad-, duo-, or single-cores; or simply
choose automatic in which case the program will usually assign
the highest ordered cores. However, if the user is aware, e.g., that
the Windows operating system is utilizing certain cores, it might
be beneficial to assign the cores manually.

The acquisition module (highlighted blue) controls mainly the
settings regarding the acquisition card for a particular measure-
ment. The desired scan rate [Hz] must be given in units of Hertz.
Fig. 1. Front panel of TimeSeriesStreaming.vi. In- and outputs of the four programming modules are highlighted by background color: computer specifications (yellow),
acquisition (blue), queuing (red), and streaming (green). Details regarding the user defined settings are given in Section 3. A high-resolution version of Fig. 1 is available
through http://www.nbi.dk/~czerwin/TimeSeriesStreaming.html. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

http://www.nbi.dk/~czerwin/TimeSeriesStreaming.html


F.Czerw
inski,L.B.O

ddershede
/Com

puter
Physics

Com
m

unications
182

(2011)
485–489

487

uing (red), and streaming (green). This diagram illustrates
cture, parallel while loops). A high-resolution version of
the web version of this article.)
Fig. 2. Block diagram of TimeSeriesStreaming.vi. The four programming modules are highlighted by background color: computer specifications (yellow), acquisition (blue), que
the modular architecture of the program where horizontal modules (acquisition, queuing, streaming) can be combined with vertical programming patterns (sequential stru
Fig. 2 is available through http://www.nbi.dk/~czerwin/TimeSeriesStreaming.html. (For interpretation of the references to color in this figure legend, the reader is referred to

http://www.nbi.dk/~czerwin/TimeSeriesStreaming.html


488 F. Czerwinski, L.B. Oddershede / Computer Physics Communications 182 (2011) 485–489
Table 1
Benchmark of TimeSeriesStreaming.vi as performed on a NI PCI-6251 connected to a Windows XP computer running LabVIEW 8.6. Each individual run took 4096 s. Scan
rate, number of channels, and buffer per channel were set. Maximum filling, file size, and error rate were determined.

Scan rate
(kHz)

Number of
channels

Buffer per
channel

Max filling of
queue

TDMS file size
(MB/s)

Error
rate

1250 1 4096 0 9.6 <0.000
500 2 2048 0 7.7 <0.000
250 4 1024 0 15.3 0.004
100 3 1366 0 2.3 0.001
100 1 4096 2 2.3 0.001

22 6 683 5 6.0 0.003
22 3 1366 3 3.0 0.001
22 1 4096 3 1.0 0.001
10 1 4096 8 0.5 <0.001

1 1 4096 3 0.05 <0.000
The physical channels must be specified. Dev1/ai0:2 denotes the
signals input from Dev1 through the channels 0, 1, and 2 (e.g., x,
y, and z coordinates of a recorded movement). The internal limits
of recordable voltage signal minimum [V] and maximum [V] are set
in order to optimize the resolution of the recorded time series. It
is advisable to have these settings as close as possible to the ex-
trema of the input time series, though, without cutting any of the
data points.

Acquisition cards are equipped with an on-board buffer of a cer-
tain size indicated by OnboardBuffer. event interval sets the number
of data points in each interval. If this number does not exceed the
limit given by OnboardBuffer, the data are optimally passed onto
the memory. Therefore, it is recommendable to try to keep event
interval smaller than OnboardBuffer.

On left side of the front panel, a graph displays the output of
the acquisition card in Volts for all specified channels. The graph
Readout AcqCard shows the last package passed to the memory.
The values of minimum [V] and maximum [V] shall be set as vertical
axis limits. At any time, the acquisition can be aborted by hitting
STOP AcqCard. This will halt the execution of looped functions of
the DAQmx driver. The indicators DAQ timeout and DAQ done light
up, if one of these two reasons terminates loop and therewith the
program.

The graph Readout Queue (highlighted red) displays the last
package of data passed through the queue to the streaming mod-
ule. Utilizing a user-specified voltage interval here allows for an
on-screen check, e.g., for whether data could be exposed to drift.
The indicator Elements in Queue reveals the queue’s filling level.

Streaming and data storage are controlled by the settings high-
lighted in green. With number of events the user specifies the total
number of event intervals to be acquired. Hence, the total number
of data points will be:

total number of points = number of events ∗ event interval.

how many? counts the processed number of events. The entries
spec1 value, spec2 value, and spec3 value are numerical values.
They will be stored in the resulting TDMS file in the header to
the recorded data. It can regard values the user wishes to keep
with the data (e.g., laser power, particle dimensions, etc.).

The exact path for the TDMS file with the recorded data must
be given. Therefore, replace [C:\filename.tdms] by an appro-
priate entry. Note that an already existing file will be overwritten
by default. The program automatically returns the file name and
stores it in the header of the TDMS file. title, description, and author
can be defined by the user and are also stored in the file header.

If the total number of data points has been streamed, or if the
STOP streaming button has been pressed, the program terminates
and the indicator streaming done lights up. All data recorded up
to that point is available in the user defined TDMS file. Also, TDMS
files could be access already during streaming, e.g., from inside an-
other VI.
Potential error messages are shown in the bottom right box.

4. Data format and benchmarks

4.1. Data format

The data recorded with TimeSeriesStreaming.vi is stored in a
TDMS file. TDMS is an open-source file format developed by Na-
tional Instruments. It is a binary format optimized for data stream-
ing, thus, it handles dynamically increasing files correctly. Also, one
can access the file already during acquisition. There are three ways
to access TDMS: Directly in LabVIEW using the primitive TDMS
VIs, by third-party plug-ins, or by the program Diadem (National
Instruments). For the latter method, it is essential to use Diadem
version 11.1 or higher. Detailed information on how to use Diadem
or how to export TDMS files into third-party products can be found
under http://www.ni.com/tdms. Third-party plug-ins exist, e.g., for
Matlab, OpenOffice, and Excel. Origin can open TDMS files directly.

4.2. Benchmarks

We tested the performance and stability of TimeSeries Stream-

ing.vi on three different computers designated for data acquisi-
tion. Their specifications are made available through the program
summary URL [8]. Since LabVIEW only provides acceptable perfor-
mance on machines operating Windows, we were limited by the
choice of the operating system. All tested CPU architectures (quad-
, duo-, and single-core) proved to yield very good acquisition.
Though, the highest level of customizability applied to multicore
processors. We tested the acquisition cards NI PCI-M6040, NI PCI-
6521, and NI PCIe-6521. Table 1 represents the benchmarks for the
NI PCI-6251 card with thermal noise as input. Scan rate, number of
channels, and buffer per channel were set. Then the program ran
for 4096 s and maximum filling and file size were determined. An
error was counted when two consecutive 16-bit digits were exactly
identical. The error rate was defined as number of errors divided
by the number of data points.

In addition, we simulated basically all voltage acquisition de-
vices with the Measurement and Automation Explorer and performed
benchmarks with TimeSeriesStreaming.vi using the input from the
simulated device.

5. Examples of program applications

Two brief examples of how to use TimeSeriesStreaming.vi

are described here. In addition, the program has already been
used to reliably stream large time series from experiments in-
volving optical trapping of micron-sized polystyrene spheres [5],
gold nanorods [9], and quantum dots [10]. Furthermore, we imple-
mented an improved calibration protocol for optical tweezers that
made use of the main programming features introduced here [11].

http://www.ni.com/tdms


F. Czerwinski, L.B. Oddershede / Computer Physics Communications 182 (2011) 485–489 489
Fig. 3. Example of data acquisition and time series analyses applied to an optical
trapping assay. (A) Positional time series of an 800 nm polystyrene sphere which is
harmonically trapped. Its lateral positions x (grey) and y (black, offset 50 nm) are
recorded by a photodiode detection system. The power spectral density (B) and the
Allan deviation (C) of the lateral positions visited.

5.1. Position recording in optical tweezers

The development of TimeSeriesStreaming.vi was prompted by
a need to stream large amounts of data from optical trapping as-
say to a hard disk. The goal was to analyze the noise by means of
accuracy measurements [5]. Therefore, positions of a trapped mi-
crosphere were recorded at sampling frequencies of up to 100 kHz
in the order of hours. A short time series is plotted in Fig. 3(A).

Experimental details are provided in Ref. [5]. The positions were
sampled using a photodiode detection system yielding an output
in Volts, which were reformulated in terms of metric distances
by a calibration factor. Fig. 3(B) shows the positional power spec-
trum, which, when properly analyzed, gives information about the
calibration factor as well as the strength of the optical trap [12].
A different type of time series analysis, Allan variance analysis, is
excellent for quantifying noise in optical trapping assays [5,11],
in particular in the low frequency regime, which is not possi-
ble through normal variance or power spectral analysis. Fig. 3(C)
shows the Allan deviation of the same trace quantifying the exact
accuracy for various measurement intervals. For this type of anal-
ysis it is crucial to have long overall measurement time series and
reliable streaming of the data onto the hard disk, a requirement
met by TimeSeriesStreaming.vi. The modular fashion of the pro-
gram enables straight forward implementation of similar types of
calibration or noise quantification routines.

5.2. Ionic current through glass capillary

The translocation of molecules through solid-state nanopores
has drawn a lot of attention in recent years due to the enor-
mous potential they hold for parallel screening of biomolecular
solutions [13]. Also, glass capillaries with a diameter of 60 nm
could be used to detect DNA folding [6]. Here, we used TimeSeries-

Streaming.vi to stream the ionic current measured onto the com-
puter hard disk. A sketch of the experiment is shown in the lower
right of Fig. 4. The measured current values are plotted, and in the
upper left there is a zoom-in to illustrate that data acquisition was
done at a very high rate (1.25 MHz). In this experiment, the error
rate was zero. Hence, time series can be analyzed for events hap-
pening within sub-milliseconds, the timescale relevant for protein
translocation through a nanopore [14], or for events happening on
Fig. 4. Time series from measurements of monovalent-ionic current through a glass
capillary (diameter 60 nm), a sketch of the experiment is shown in the lower right.
The inset in the upper left is a zoom-in on the time axis, showing that the acquisi-
tion card’s limit of 1.25 MHz sampling can be achieved.

the order of minutes, a typical timescale for drift, as also visible in
Fig. 4.

6. Summary

We developed a LabVIEW program that reliably streams large
amounts of data correctly onto a computer hard disk. The pro-
gram was checked on several individual platforms and showed to
perform with a very small error rate. The program is made in a
modular fashion with the aim of making it user-friendly and eas-
ily customizable. As an example, we showed how to acquire the
positions of an optically trapped sphere and how this time series
data can be further analyzed. We also demonstrated how the pro-
gram streamed time series of ionic current measurements. As the
program easily handles a broad range of analog inputs, there is a
wide range of applications, particularly in biophysical nano-scale
experiments as pointed out in the two examples. The source code
is freely available at through the CPC Program Library and under
the standard CPC license agreement [15].

Acknowledgements

We thank Lorenz Steinbock for data acquisition and help on
the ionic current measurements, and Oliver Otto as well as Jesper
Tholstrup for comments on the manuscript. Also, we acknowledge
financial support through the KU excellence program.

References

[1] K.C. Neuman, S.M. Block, Rev. Sci. Instrum. 75 (2004) 2787.
[2] T.M. Hansen, S.N.S. Reihani, L.B. Oddershede, M.A. Sørensen, Proc. Natl. Acad.

Sci. 104 (2007) 5830.
[3] J. van Mameren, K.C. Vermeulen, F. Gittes, C.F. Schmidt, J. Phys. Chem. B 113

(2009) 3837.
[4] M. Mahamdeh, E. Schäffer, Opt. Express 17 (2009) 17190.
[5] F. Czerwinski, A.C. Richardson, L.B. Oddershede, Opt. Express 17 (2009) 13255.
[6] L.J. Steinbock, O. Otto, C. Chimerel, J.L. Gornall, U.F. Keyser, Nano Lett. 10 (2010)

2493.
[7] Specifications of National Instrument’s acquisition cards are available through,

http://www.ni.com/dataacquisition/.
[8] Computer specifications during benchmarks are made available through the

program summary URL, http://www.nbi.dk/~czerwin/TimeSeriesStreaming.html.
[9] F. Czerwinski, A.C. Richardson, C. Selhuber-Unkel, L.B. Oddershede,

Proc. SPIE 7400 (2009) 740004.
[10] L. Jauffred, M. Sletmoen, F. Czerwinski, L.B. Oddershede, Proc. SPIE 7762 (2010)

776226.
[11] M. Andersson, F. Czerwinski, L.B. Oddershede, J. Opt. (2010), in press.
[12] K. Berg-Sørensen, H. Flyvbjerg, Rev. Sci. Instrum. 75 (2004) 594.
[13] C. Dekker, Nature Nanotech. 2 (2007) 209.
[14] S.W. Kowalczyk, A.R. Hall, C. Dekker, Nano Lett. 10 (2010) 324.
[15] The standard CPC license is posted at http://cpc.cs.qub.ac.uk/licence/licence.

html.

http://www.ni.com/dataacquisition/
http://www.nbi.dk/~czerwin/TimeSeriesStreaming.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://cpc.cs.qub.ac.uk/licence/licence.html

	TimeSeriesStreaming.vi: LabVIEW program for reliable data streaming of large analog time series
	Introduction
	Program overview
	Requirements
	Main program
	Programming patterns


	How to use the program
	Data format and benchmarks
	Data format
	Benchmarks

	Examples of program applications
	Position recording in optical tweezers
	Ionic current through glass capillary

	Summary
	Acknowledgements
	References


