Friction-limited cell motility in confluent monolayer tissue

To cite this article: Amalie Christensen et al 2018 Phys. Biol. 15 066004

View the article online for updates and enhancements.
Friction-limited cell motility in confluent monolayer tissue

Amalie Christensen¹, Ann-Katrine Vrans West¹, Lena Wullkopf², Janine Terra Erler², Lene Broeng Oddershede³ and Joachim Mathiesen³

¹ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
² Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
³ Author to whom any correspondence should be addressed.

E-mail: mathies@nbi.ku.dk

Keywords: collective cell motion, mechanical model, substrate friction, tissues

Abstract

Mechanical forces are important factors in the development, coordination and collective motion of cells. Based on a continuum-scale model, we consider the influence of substrate friction on cell motility in confluent living tissue. We test our model on the experimental data of endothelial and cancer cells. In contrast to the commonly used drag friction, we find that solid friction best captures the cell speed distribution. From our model, we quantify a number of measurable physical tissue parameters, such as the ratio between the viscosity and substrate friction.

1. Introduction

Various models of collective cell motion exist in the literature, including particle-based models [1–4], cellular Potts models [5–7], vertex models [8], phase field models [9] and continuum-scale models with [10–16] and without cell polarization [17, 18]. Often, continuum-scale models have the advantage of being analytically more tractable than the corresponding particle-based models. However, a general problem with most models is how to choose the right constitutive relation between quantities, such as cell strain and stress or to decide on the right functional form of various dissipative processes. Observations at the level of individual cells suggest that cell deformation is viscoelastic [19, 20], i.e. at short time scales, any deformation responds elastically to a mechanical loading, whereas loads applied over a longer period will be followed by a viscous relaxation and thus an irreversible deformation.

Several constitutive relations have been employed to describe the deformation of single cells, see, for example, [21]. Examples of such relations include a Maxwell fluid (figure 1(A)), consisting of a dashpot in series with a spring, and a Kelvin–Voigt solid (figure 1(B)) consisting of a dashpot in parallel with a spring. Depending on the coupling of the basic building blocks (dashpots and springs) a broad range of fluid-like and solid-like behaviors can be obtained. One prominent example of a basic rheological model is the standard linear solid, where the dashpot in the Kelvin–Voigt element is coupled in series with a spring. When subjected to a sudden strain, the stress in the standard linear solid model decays exponentially towards a constant non-zero value.

Aggregates of cells in tissues also behave viscoelastically [22]. Based on stress relaxation experiments on freely suspended cell monolayers, Harris et al [23] used the standard linear solid model to estimate an apparent viscosity for Madin–Darby canine kidney cell monolayers. Guevorkian et al [24] obtained an apparent viscosity for murine sarcoma cell aggregates using a micropipette aspiration technique and the standard linear solid model in series with a dashpot. Forgacs et al [25] performed parallel plate compression experiments on chicken cell aggregates and estimated the viscosity using a rheological model of two parallel-coupled Maxwell fluid elements. In addition, the viscosity of breast cancer tumors has been measured using ultrasonic shear-wave imaging experiments combined with a Maxwell model [26].

2. Methods

We shall here consider the Oldroyd-B rheological model (see, for example, [27]), which follows from the immersion of a Maxwell fluid of viscosity \(\eta_1 \) and shear modulus \(G \) in a Newtonian fluid of viscosity \(\eta_2 \). Defining the total viscosity \(\eta_0 = \eta_1 + \eta_2 \), the relaxation time \(\lambda_1 = \eta_1 / G \) and the retardation time \(\lambda_2 = (\eta_2 / \eta_0) \lambda_1 \), the Oldroyd-B constitutive relation is:
The Deborah number is small and the upper convected derivative reduces to a partial derivative. The Oldroyd-B model only relaxes exponentially with one or two characteristic time scales depending on the external loading conditions [23, 25]. The Oldroyd-B model only captures a single characteristic relaxation time scale λ_1 under the same experimental conditions. While more rheological elements could be added to account for more time scales, we shall here aim at simplicity and stick with a description based on a single time scale.

Moreover, the upper convected derivative can often be greatly simplified in slowly moving tissues. Defining a characteristic time t_r, on which γ changes, a characteristic flow speed U_v, and length scale L_v, the upper convected derivative can be cast in dimensionless form:

$$\nabla \gamma = \frac{t_r U_v}{L_v} \left\{ (v \cdot \nabla) \gamma - \left[(\nabla v) + (\nabla v)^T \cdot \gamma \right] \right\} \cdot$$

(2)

In the limit where the time scale, L_v / U_v, used for a fluid element to traverse a length scale L_v, is large compared to the characteristic (relaxation) time t_r, the quantity $t_r U_v / L_v$ (the Deborah number) is small and the upper convected derivative reduces to a partial derivative with respect to time,

$$\nabla \gamma \approx \frac{\partial \gamma}{\partial t}.$$

(3)

In the experimental data, we shall consider below that the used cell lines have a characteristic flow velocity $U_v \sim 1 \mu m \text{ min}^{-1}$ and a characteristic size of $L_v \sim 20 \ mu m$ (see appendix A). The typical relaxation time is of the order of a minute. The prefactor in the upper convected derivative is therefore relatively small $t_r U_v / L_v \sim 0.05$.

2.1. Substrate friction

The friction between motile cells and the substrate is often considered to be linear in the cell velocity [1, 10, 17, 18, 28, 29]. That is, the friction is similar to the viscous drag on a fluid flowing over a surface at low Reynolds numbers. In contrast, measurements on individual cells suggest that the traction force exerted by a cell is non-trivially related to the filmamentous actin speed [30]. The traction force seems to follow an increasing trend for low actin speeds, crossing over to a decreasing trend for larger actin speeds. It remains an open question as to whether these measurements can be generalized to the larger scale dynamics of, for example, a confluent cell layer. From a modelling point of view, various forms of friction can be derived from the dynamics of discrete contact points between cells and the substrate, see, for example [31]. Here, we consider the dynamical consequences of various friction terms using, as a starting point, a simple stochastic differential equation. In conclusion, we find that a term which crosses over to solid friction (or so-called Coulomb friction) for larger velocities offers the best quantitative agreement with our data and is consistent with the experimental observation that the speed distribution of the cells have exponential tails (see figure 3(A)). The Coulomb friction does not depend on the speed, only on the velocity direction $\psi = v / |v|$ scaled with a friction coefficient α.

For simplicity, let us for a moment disregard the interaction between cells and consider only the balance between the motility force and friction force of an individual cell. We first consider the motility force to be a basic stochastic process similar to the Ornstein–Uhlenbeck process, which describes a viscously damped and stochastically-driven particle. This process has also been commonly used to describe cell motion [32, 33]. The process is formulated in the cell velocity v,

$$\frac{dv}{dt} = \psi(v) + \xi(t),$$

(4)

where the motility force ξ is a Gaussian white-noise field of strength $\langle \xi(t) \xi(t') \rangle = 2 \delta(t - t') \delta_0$ and the friction (or damping) force is given by $\psi(v)$. Note that we have scaled the damping term and time with a general amplitude of the noise field.

If the friction force is assumed to be isotropic and always acts in a direction opposite to the local velocity, it will assume a form
From the stochastic differential equation (4), one obtains the corresponding Fokker–Planck equation for the speed distribution,

$$\frac{\partial P(v,t)}{\partial t} = -\nabla \cdot \left(\psi(v) P(v,t) \right) + \nabla^2 P(v,t).$$

(6)

Because of the rotational symmetry of the damping term, the equation only contains the radial term in velocity space, i.e.

$$\frac{\partial P(v,t)}{\partial t} = -\frac{\partial}{\partial v} \left(\psi(v) P(v,t) \right) - \frac{\psi(v)}{v} P(v,t) + \frac{\partial}{\partial v} \left(\frac{\partial P(v,t)}{\partial v} \right) = 0.$$

(7)

We find the stationary distribution $P(v)$ by demanding that the time derivative vanishes, i.e. we have the equation

$$\frac{\partial^2 P}{\partial v^2} + \left(\frac{1}{v} - \psi \right) \frac{\partial P}{\partial v} - \frac{\partial \psi}{\partial v} + \frac{\psi}{v} P = 0.$$

(8)

For a given $\psi(v)$, the solution to the steady-state equation can be written in the form

$$P(v) = K \exp \left(\int_0^v (\psi(v')dv') \right)$$

(9)

where K is a normalization constant. In the case of Coulomb friction, where for all $v \neq 0$ the term $\psi(v) = -\alpha$ is a constant, the steady-state distribution becomes an exponential

$$P(v) = \alpha \exp(-\alpha v).$$

(10)

A stochastic differential equation similar to the one considered here has been suggested to describe the dynamics in granular systems [34].

For completeness, we write the contrasting Gaussian tail achieved when a linear damping term is used, $-\alpha v$,

$$P(v) = \sqrt{\frac{2\alpha}{\pi}} \exp \left(-\frac{\alpha v^2}{2} \right).$$

(11)

At a microscopic level, a velocity-independent friction arising from contact with the substrate would require the contact area of individual cells to be roughly constant, or similarly require the number of bonds formed between a cell and the substrate to be independent of the cell velocity. For this to be the case, the rate of bond formation and breakage would have to be equal. In dry friction [35], however, the friction force is often observed to decrease at larger slipvelocities, suggesting that the bond formation cannot catch up. A decreasing friction force would change the tail of the velocity distribution of equation (9). We emphasize that the data we shall consider here does not reveal a consistent departure from an exponential tail at larger velocities.

As suggested from observations of individual cells [30], the singular transition of Coulomb friction when going from no motion to motion might not be fully representative of the substrate friction. In the following, we therefore consider an approximately linear friction for small velocities crossing exponentially over to a velocity-independent friction for larger velocities by using a friction term of the form $\psi(v) = -\alpha \tanh(v/w_0)v$. The characteristic speed w_0 determines the point of crossover to velocity-independent friction. Note that this friction would still result in an exponential speed distribution for larger speeds.

2.2. Equations of motion

The tissues, we consider, are confluent monolayers of cells residing on a substrate. The layers are taken to be incompressible such that the divergence of the local mean velocity vanishes and the projected area of each cell is conserved. We model the tissue dynamic by a momentum balance equation where cell motility is introduced via a persistent random forcing. From the considerations in the previous section, the interaction between tissue and substrate will be given by a friction term of the form

$$\psi(v) = -\alpha \tanh(v/w_0)v$$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \sigma + \psi(v) + \mathbf{m},$$

(12)

$$0 = \nabla \cdot \mathbf{v}$$

(13)

$$\frac{\partial \mathbf{m}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{m} = -\frac{1}{\lambda_m} \mathbf{m} + \phi(x,t).$$

(14)

Here, ρ is the mean density, p is pressure and σ is the deviatoric stress tensor. The term $\mathbf{m}(x,t)$ is the force driving the cell motility, λ_m is a persistence time and ϕ is filtered white Gaussian noise. Note that in contrast to the considerations above, the noise term, in the case of non-interacting motile cells, would lead to persistent random motion. Similar persistent random motion has been considered, for example, in [36, 37]. As each cell is a coherent body, there is a minimum length scale—similar to the cell size—below which the velocity field is approximately constant. We therefore impose a length scale ℓ_m on the random forcing by filtering the noise field ξ with a Gaussian function of
width ℓ_m and zero mean to obtain the filtered noise field $\phi(x, t)$:

$$\phi(x, t) = \frac{1}{2\pi\ell_m^2} \int \xi(x', t) \exp\left(-\frac{|x-x'|^2}{2\ell_m^2}\right) dx'. \tag{15}$$

The strength of the white Gaussian noise field was taken to be $\langle \phi_i(x, t)\phi_j(x', t') \rangle = \beta_m \delta^{(2)}(x-x')\delta(t-t')\delta_{ij}$ where the indices i, j run over the spatial directions x, y. It follows that the filtered noise field will have an exponentially decaying spatial correlation:

$$\langle \phi_i(x, t)\phi_j(x', t') \rangle = \frac{\beta_m}{4\pi\ell_m^2} \exp\left(-\frac{|x-x'|^2}{4\ell_m^2}\right) \delta(t-t')\delta_{ij}. \tag{16}$$

We note that the cell motion is strongly over-damped (the flow occurs at negligible Reynolds numbers) and it is therefore safe to neglect the inertial terms on the left-hand side of equation (12).

2.3. Model parameters

The model described above has eight parameters, which we have listed in table 1. We can then use the viscosity η_0, along with the density ρ, the relaxation time λ_m and a characteristic length ℓ_m, to cast the model equations in a dimensionless form,

$$\nabla^2 p = \nabla \cdot \sigma - a_\alpha \tanh(a_\alpha \nu) \nu + m \tag{17}$$

$$\nabla \cdot v = 0 \tag{18}$$

$$\sigma + a_1 \frac{\partial \sigma}{\partial t} = 2 \left(\gamma + a_2 \frac{\partial \gamma}{\partial t} \right) \tag{19}$$

$$\dot{m} + \frac{\partial m}{\partial t} = \phi(x, t) \tag{20}$$

$$\langle \phi_i(x, t)\phi_j(x', t') \rangle = \frac{\alpha_{ij}}{4\pi} \exp\left(-\frac{|x-x'|^2}{4\ell_m^2}\right) \delta(t-t')\delta_{ij}. \tag{21}$$

where we have defined the dimensionless control parameters:

$$a_1 = \frac{\lambda_1}{\lambda_m}, \quad a_2 = \frac{\lambda_2}{\lambda_m}, \quad a_\alpha = \frac{\rho}{\eta_0} \ell_m^2 a_\alpha, \quad a_\beta = \left(\frac{\rho}{\eta_0}\right)^2 \lambda_m^4 a_\beta, \quad a_\nu = \frac{\ell_m}{\lambda_m \eta_0}. \tag{22}$$

That is, we have five parameters to fit by the numerical simulation of equations (17)–(21). From these five parameters, it is not possible to extract all the eight parameters in table 1. For example, we can only determine the ratio between the friction constant and the viscosity as well as the ratio between the viscosity and the noisy driving force. We note that we cannot explicitly determine the viscosity. In figure 2, we have computed the distribution of speed for different values of η_0 used in the friction term for typical tissue parameters. We see that for large η_0, we recover the Gaussian tail characteristic for the Ornstein–Uhlenbeck process, whereas, when η_0 is smaller than typical speeds in the tissue, we have an exponential tail in the speed distribution.

We apply our model to the experimental data on epithelial and endothelial tissue from [14, 38]. The model is simulated numerically using a pseudospectral method on a two dimensional (2D) periodic domain. The Fourier and inverse Fourier transforms in the spectral formulation are performed using the fast Fourier transform algorithm, and the non-linear terms are evaluated in real space. Time integration of the stress tensor and the noise term are performed using an exponential time differencing scheme [39]. In each time step, the velocity field and the pressure is found by a relaxation procedure. The periodic 2D computational domain consists of 256×256 grid points corresponding to a box of length $\sim 200 \, \mu m$ in physical units. The time step was $\sim 0.01 \, \text{min}$ in physical units. From the model parameters, we recover parameters with physical units for each cell type by matching the

![Figure 2](image-url)
simulation mean speed v_{0} with the experimental mean speeds (listed in appendix A) and the simulation velocity correlation length ℓ_{0} with the experimental velocity correlation length. Finally, the main constituent of biological tissue is water; we therefore do not consider the density ρ as a free parameter of the model.

3. Results

We fit the model by performing a parameter grid search and by choosing the parameters simultaneously resulting in the smallest relative squared error between the experimental $P^{\ast}(v)$ and simulated speed distribution $P(v)$, the spatial velocity correlation function (simulated $C_{rv}(r)$ and experimental $C_{rv}(r)$) and the temporal velocity correlation function (simulated $C_{tv}(t)$ and experimental $C_{tv}(t)$), i.e. the parameters that minimize the sum

$$\langle \left(\frac{P^{\ast} - P}{P} \right)^2 \rangle_r + \langle \left(\frac{C_{rv} - C_{rv}}{C_{rv}} \right)^2 \rangle_r + \langle \left(\frac{C_{tv} - C_{tv}}{C_{tv}} \right)^2 \rangle_t,$$

where the averages are taken over the limited ranges shown in figure 3. We note that the choice of error function is somewhat arbitrary and that individual parts could have been weighted differently. Nonetheless, we believe that similar results would be obtained from related error functions. The set of best fit parameters for each cell type is listed in table 2 and follows from the limit of pure solid friction.
also considered in [38]. The model reproduces, fairly accurately, the spatial and temporal velocity correlations—see figures 3(A)–(C) and where the results for both the epithelial and endothelial tissue is consistent with the findings in [38]. The choice of friction force in the model leads to an exponentially decaying tail of the speed distribution. Note that the only slight difference between the model and experiments is in the spatial correlation function, where the model has a slightly more pronounced dip than in the experimental data (see figure 3(B)). The spatial correlation in the model predominantly enters through the correlation length scale introduced by the structured noise (see equation (16)). The length scale of the noise dominates over the one introduced by the viscous forces. Below the length scale of the structured noise, our model slightly overestimates the spatial correlation, which is also apparent in figure 4 where indeed, locally, the correlation in the models seems stronger than in the experimental data (see figure 3(B)).

4. Conclusions and discussion

In a continuum model of tissue dynamics, we find that a solid friction term between cells and a substrate in a mono-layered tissue describes the exponential tail in the cell speed distribution fairly well. This is in contrast to many existing continuum and particle models, which typically consider a drag term linear in the velocity field and therefore a Gaussian tailed speed distribution. In addition to the experimental data considered here, a similar exponential tail has been observed, for example, for dilute suspensions of the MDA-MB-231 cell line [40]. Non-Gaussian tails have also been observed experimentally for other types of tissue [36, 37, 41]. To our knowledge, little is known about the cell–substrate dissipation process on the tissue scale, and it would be interesting to obtain firmer experimental knowledge on the appropriateness of either a linear drag or a Coulomb type friction. By modifying the frictional force to make a cross over between a drag-like friction at small velocities to Coulomb friction at larger velocities, our model can

Table 2. Fitted parameters for bulk cell motion.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>(\lambda_1) (min)</th>
<th>(\lambda_2) (min)</th>
<th>(\lambda_m) (min)</th>
<th>(\alpha (\rho/\eta_0)) ((\mu m \cdot)min(^{-1}))</th>
<th>(\beta_{\alpha} (\rho/\eta_0)^2) (min(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4T1</td>
<td>1.6</td>
<td>0.4</td>
<td>7.8</td>
<td>10</td>
<td>0.002</td>
</tr>
<tr>
<td>67NR</td>
<td>2.9</td>
<td>0.7</td>
<td>7.1</td>
<td>12</td>
<td>0.003</td>
</tr>
<tr>
<td>MCF7</td>
<td>1.2</td>
<td>0.3</td>
<td>3.0</td>
<td>9</td>
<td>0.003</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>2.2</td>
<td>0.2</td>
<td>4.3</td>
<td>7</td>
<td>0.015</td>
</tr>
<tr>
<td>HUVEC</td>
<td>1.6</td>
<td>0.4</td>
<td>7.8</td>
<td>10</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Figure 4. Bulk velocity fields. (A) Experiment. Human MCF7 cells during bulk motion. (B) Simulation. Velocity field of a simulation, where the speed distribution \(P(v) \), the temporal velocity correlation \(C_{vv}(t) \) and the spatial velocity correlation \(C_{vv}(r) \) have been fitted to the experimentally measured data of the MCF7 cells.
further capture speed distributions with a Gaussian-like intermediate range, consistent with experimental observations [1].

The self-propulsion of cells in the proposed model incorporates a length scale and a persistence time of the local motility force field, which accounts for the finite extent of a single cell and for the tendency of a single cell to change its velocity in a certain time scale. Several papers have used related but more elaborate approaches, where the motility force field evolves in time due to some specified dynamics. Basan et al. [42] proposed that the local motility force tends to align with the tissue velocity, and, combined with an assumption of cell locomotion being suppressed by neighbors, Zimmermann et al. [43] were able to model the traction patterns observed experimentally in spreading epithelial tissue [44, 45]. Other authors have envisioned the polarization field as a 2D nematic liquid crystal [10, 13, 29], which allows for complex flow patterns with vortices and jets. In contrast to these existing models, the proposed motility evolution contains no assumptions of velocity–motility alignment or nematic behavior.

Including a motility force explicitly, as we have done in this paper, has the advantage that the local velocity need not be aligned with the local motility force. This behavior has been observed in an expanding monolayer, where the velocity and the local motility (traction) force under certain circumstances were anti parallel [45]. A natural next step is therefore to incorporate tissue boundaries in the proposed model, such that monolayer expansion and the generated tractions can be studied. This would also allow the model to be compared with, and used to study, the classical scratch-wound assay experiment [46–48], the observed fingering of tissue edges [48, 49] and the propagation of strain rate waves in spreading tissue [50].

Acknowledgments

The authors acknowledge financial support from the Danish Research Council DFF-4002-00099, from the Danish National Research Foundation DNRF116 and from the Villum Foundation grant Earth Patterns.

Appendix A. Cell cultures and experiments

The data used with our model are taken from [14, 38]. The mean speed and velocity correlation length observed in the experiments are listed below.

Appendix B. Analytical calculation of velocity correlation functions

In order to analytically calculate the velocity correlation functions of the model, we make two simplifications. We neglect the advection of the motility field \(\mathbf{m}(x, t) \) and we replace the non-linear friction term \(-\alpha \mathbf{v}\) with the linear drag term \(-\alpha \mathbf{v}\). The simplified model equation system reads:

\[
\begin{align*}
\nabla p &= \nabla \cdot \sigma - \alpha \rho \mathbf{v} + \rho \mathbf{m} & \text{Momentum balance with drag} \\
\n\nabla \cdot \mathbf{v} &= 0 & \text{Incompressibility} \\
\sigma + \lambda_1 \partial \sigma \over \partial t &= 2 \rho \left(\nu + \lambda_2 \partial \gamma \over \partial t \right) & \text{Constitutive relation} \\
\mathbf{m} + \lambda_\alpha \partial \mathbf{m} \over \partial t &= \lambda_m \phi(x, t) & \text{Motility evolution.}
\end{align*}
\]

The noise \(\phi(x, t) \) in the motility evolution is filtered white Gaussian noise satisfying:

\[
\langle \phi(x, t) \phi(x', t') \rangle = \frac{\delta m}{4 \pi^2 \mu} \exp \left(-\frac{|x-x'|^2}{4 \mu t} \right) \delta(t-t') \delta_{ij}.
\]

Assuming that the initial stress, velocity and motility fields vanish \(\sigma(x, 0) = \mathbf{v}(x, 0) = \mathbf{m}(x, 0) = 0 \), the Laplace- and Fourier-transformed velocity field \(\tilde{\mathbf{v}}(k, s) \) can be isolated. Here, \(k \) is the Fourier transform variable, \(s \) is the Laplace transform variable and the index \(j \) runs over the spatial directions \(x, y \). The real space, real time velocity field is then:

\[
\mathbf{v}(x, t) = \frac{1}{(2\pi)^2} \int d^2k \frac{1}{2\pi i} \int \Gamma ds \ e^{ikx+\sigma t} \tilde{\mathbf{v}}(k, s) = \frac{1}{(2\pi)^2} \int d^2k \frac{1}{2\pi i} \int \Gamma ds \ e^{ikx+\sigma t} f(k, s) \\
\times \left[\tilde{\phi}(k, s) - k_j \tilde{k}_j \tilde{\phi}_j(k, s) + k_j \tilde{k}_j \tilde{\phi}_j(k, s) \right] \frac{1}{k^2},
\]

where \(\Gamma \) indicates the integration path in the complex plane for the inverse Laplace transform, and we have defined:

\[
f(k, s) = \frac{1}{a_{ss} + \frac{d_k^2}{m} k^2} \left(s + \frac{1}{a_\sigma} \right) \left(s + \frac{1}{a_\nu} \right) \left(s + \frac{1}{a_\lambda + \frac{d_k^2}{m} k^2} \right).
\]

The velocity component correlation is proportional to:

TableA1. Measured characteristics of experimental velocity fields in bulk experiments. The correlation length \(\ell_\sigma \) was found by fitting a single exponential \(G_\sigma(t) = e^{-t/\ell_\sigma} \) to the spatial correlation functions displayed in figure 3.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Mean speed (v_3) ((\mu \text{m}) (\text{min}^{-1}))</th>
<th>Correlation length (\ell_\sigma) ((\mu \text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4T1</td>
<td>(0.27 ± 0.06)</td>
<td>(25.8 ± 0.9)</td>
</tr>
<tr>
<td>67NR</td>
<td>(0.13 ± 0.03)</td>
<td>(26.5 ± 1.1)</td>
</tr>
<tr>
<td>MCF7</td>
<td>(0.23 ± 0.02)</td>
<td>(19.6 ± 0.7)</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>(0.7 ± 0.2)</td>
<td>(13.7 ± 0.4)</td>
</tr>
<tr>
<td>HUVEC</td>
<td>(0.5 ± 0.1)</td>
<td>(28.0 ± 0.1)</td>
</tr>
</tbody>
</table>
Figure B1. Analytically calculated correlation functions. The correlation functions obtained from simulations with friction (full blue line) and drag (dotted blue line) are very similar and both well described by the analytically calculated correlation function (full black line). The simulations shown here correspond to the case of 4T1 cells, and have the parameters (\(a_1, a_2, d_j\)). Panels (A)-(C) show the spatial correlation function when the three control parameters \(a_1, a_2, d_j\) are varied. Only \(a_1\) has a significant influence on the correlation function. Panels (B)-(D) show the temporal correlation function when the three control parameters are varied. The temporal correlation is very insensitive to the parameters.

\[
\langle v_x(x, t) v_x(x', t') \rangle = \frac{1}{(2\pi)^2} \frac{1}{(2\pi)^2} \int d^2 k \int d^2 k' \int d^s \int_{\Gamma'} ds' \int_{\Gamma'} ds' e^{ik \cdot x + ik' \cdot x'} f(k, s) f(k', s')
\]

\[
\langle \bar{\phi}_y(k, s) - k_j \bar{\phi}_u(k, s) \rangle \times \left[\bar{\phi}_y(k', s') - k_j \bar{\phi}_u(k', s') \right] \int d^2 k \int d^2 k \int_{\Gamma'} ds \int_{\Gamma'} ds' e^{ik \cdot x + ik' \cdot x'} f(k, s) f(k', s') e^{-k^2 s + s'}
\]

We note that the term \(e^{-k^2 s}\) is a result of the noise being filtered. If \(\phi\) had been white Gaussian noise, the term would not have been present.

The velocity correlation function \(C_{vv}(r, \tau)\) of \(r = |x - x'|\) and \(\tau = t - t' > 0\) is then proportional to:

\[
C_{vv}(r, \tau) = C_{vv}(r, 0) - 1
\]

where the Fourier transform has been turned into a Hankel transform and \(j_0(\nu)\) is the zeroth order Bessel function of the first kind. The function \(j_0(\nu, t)\) can be found analytically by applying the inverse Laplace transform to equation (2.2) and also the integral over \(t_1\) can be performed analytically.

Neglecting the transient behavior \((t, t' \gg 0)\), we find the spatial correlation function for equal times \(\tau = t - t' = 0:\n
\[
C_{vv}(r) = C_{vv}(r, 0) - 1
\]

(B.4)
and the temporal correlation function for a fixed point in space $t = |x - x'| = 0$:

$$C_{vv}(\tau) = C_{vv}(0, \tau) \propto \int_0^\infty dk \frac{k e^{-k^2}}{(a_0 + \frac{b_1}{2} k^2)^2} \left[-\frac{1}{2 a_0} f_1(k) + \frac{1}{2 b_0} f_2(k) e^{2\tau} \right].$$

(B.5)

Here, we have denoted the two simple poles of $f(k)$ as s_a, s_b and defined the two functions $f_1(k), f_2(k)$:

$$s_a = -1 \quad s_b = -\frac{a_0 + k^2}{a_0 a_1 + a_2 k^2},$$

$$f_1(k) = \frac{s_a + \frac{1}{a_1}}{s_a - s_b}, \quad f_2(k) = \frac{s_b + \frac{1}{a_2}}{s_b - s_a}.$$

(B.6)

The integral over k in equations (B.4) and (B.5) was performed numerically and the resulting normalized correlation functions are plotted in figure B1 for various parameter combinations.

ORCID iDs

Lene Broeng Oddershede https://orcid.org/0000-0003-2923-2844

Joachim Mathiesen https://orcid.org/0000-0002-5621-5487

References

[34] Hayakawa H 2005 Langevin equation with coulomb friction *Physica D* **205** 48–56