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Law of large numbers

When rolling a normal die and averaging the outcome, it is no surprise that
this converges towards 3.5... with enough rolls, you can get as close as you want!

Outcome

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS

AVERAGE CONVERGES TO EXPECTED VALUE OF 3.5
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Adding random numbers

If each of you chose a random number
from your own favorit distribution®,
and we added all these numbers,
repeating this many times...

What would you expect?

* OK - to be nice to me, you agree to have similar RMSs in these distributions!



Adding random num

aw mber
strlbutlareéﬁ\

these Wﬁﬁ)ers

from your ow
ing th ‘g\a times..

Ga% ey

Mblie&\ would you expect?

If each of you chose &

* OK - to be nice to me, you agree to have similar RMSs in these distributions! 6



Adding random numbe\s

mber
str1but18;géﬁ\
these Wﬁfbers

‘g\a times...

[f each of you chose
from your ow

atmg th

JAae ceﬁ‘

Central Limit Theorem:
The sum of N independent continuous random variables x; with means

u; and variances 02 becomes a Gaussian random variable with mean

u = X. i, and variance 02 = ¥, 02 in the limit that N approaches infinity.
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Central Limit Theorem

Central Limit Theorem:

The sum of N independent continuous random variables x; with means
u; and variances 02 becomes a Gaussian random variable with mean
u = X. i, and variance 02 = ¥, 02 in the limit that N approaches infinity.

The Central Limit Theorem holds under fairly general conditions, which means

that the Gaussian distribution takes a central role in statistics...
-

The Gaussian is “the unit” of distributions!

Since measurements are often affected by many small effects,
uncertainties tend to be Gaussian (until otherwise proven!).

Statistical rules often require Gaussian uncertainties, and so
the central limit theorem is your new good friend..
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Example of Central Limit Theorem

Take the sum of 100 uniformm numbers!

Repeat 100000 times to see what distribution the sum has...
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Hist_Sum
Entries 100000
Mean 0.002193
RMS 1.003
%2 1 ndf 58.35/84
Prob 0.9851
Constant 3981=15.4

Mean  0.001794 = 0.003169

Sigma 1.002 = 0.002

The result is a bell shaped curve, a so-called normal or Gaussian distribution.

It turns out, that this is very general!!!




Example of Central Limit Theorem

Now take the sum of just 10 uniform numbers!

Hist_Sum H ist_Sum

4000 - Entries 100000
E Mean 0.0008772

3500 —
— RMS 1
3000 :_ %% | ndf 205.7173
2500 :— Prob 8.644e-17
2000 :_ Constant 3996 + 15.1
E Mean 0.002425+ 0.003160

1500 —
E Sigma 0.9965 + 0.0021

1000 —

500 —
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Example of Central Limit Theorem

Now take the sum of just 5 uniform numbers!

Hist_Sum Hist Sum
4000 :_ Entries 100000
5 Mean -0.0004084
3500 —
- RMS 1.002
3000 - %2 | ndf 558.9 / 66
2500 — Prob 0
2000 f_ Constant 4018 + 14.9
- Mean  0.00651+ 0.00315
1500 —
= Sigma 0.9878 + 0.0019
1000 —
500 —
" = P
-6 -4 -2 0 2 4 6




Example of Central Limit Theorem

Now take the sum of just 3 uniform numbers!

Hist_Sum Hist_ Sum
= Entries 100000
4000 —
- Mean -0.002565
3500 —
= RMS 1
3000 ;— %2 I ndf 2842 | 57
2500 — Prob 0
2000 - Constant 4125+ 14.9
= Mean -0.01674 = 0.00305
1500 —
= Sigma 0.941= 0.002
1000 —
500 —
; E e ——
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Example of Central Limit Theorem

This time we will try with a much more “nasty” function. Take the sum of
100 exponential numbers! Repeat 100000 times to see the sum’s distribution...

Hist_Exponential Hist_Exponential Hist_Sum | i
l _x1 oe | Entries 1e+07 - H ISt.._S um
= Mean -0.006042 = %
500 B S P 4000 — Entries 100000
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= 3500 —
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- 3000 —
L = 2? I ndf 716.6 /1 82
300 — 2500 — Prob 0
E 2000— Constant 4018+ 15.6
200— 1500 = Mean -0.0003873+ 0.0032393
E 1000 E_ Sigma 0.9859 :+ 0.0022
100— E
- 500 —
ol gl - e o 0 E | . . |
-2 4 5 6 6 -4 2 0 2 4 6

It doesn’t matter what shape the input PDF has, as long as it has finite mean
and width, which all numbers from the real world has! Sum quickly becomes:

Gaussian!!!

It turns out, that this fact saves us from much trouble: Makes statistics “easy”! 13



Example of Central Limit Theorem

Looking at z-coordinate of tracks at vertex from proton collisions in CERNs
LHC accelerator by the ATLAS detector, this is what you get:

RecZ0
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The Gaussian distribution

It is useful to know just a few of the Range Inside

most common Gaussian integrals:

0.4

0.3

0.2

0.0 0.1

Outside
+ 1o 68 % 32 %
+ 20 95 % 5 %
£ 3cE 99.7 % 0.3 %
+ 50 99.99995 %  0.00005 %

34.1% 34.1%
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Summary

The Central Limit Theorem

...1s your good friend because it...

ensures that uncertainties tend to be Gaussian

...which are the easiest to work with!
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Mean & Width
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Defining the mean

There are several ways of defining “a typical” value from a dataset:
a) Arithmetic mean b) Mode (most probably) c) Median (half below, half above)

d) Geometric mean e) Harmonic mean f) Truncated mean (robustness)
1.6
— mode
14 :
— median
1.2 1
— Mean
1.0+
0.8
06 \\\\vguu,,, 0O = 025
E ”””’”’”l/
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02 § Iy numnummmnmmu
00 = A —
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Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

The second (central) moment of the data is called the variance, defined as:

A 1
V:N . (xi—u)z

Note the “hat”, which means “estimator”. It is sometimes dropped...

20



Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

Note the “hat”, which means “estimator”. It is sometimes dropped... N



Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

For the standard deviation (SD), a.k.a. width or RMSE, it is:

1
/\_ __2
a N—lZ (i =)

Note the “hat”, which means “estimator”. It is sometimes dropped...

22



SD and Gaussian o relation

When a distribution is Gaussian, the SD corresponds to the Gaussian width o:

0.4

0.3

) 34.19% 34.1%

0.2

0.1

0.0

23



Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with
more data?

24



Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with
more data?

6y =06/VN

25



Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with
more data?

6y =06/VN

Example: Fia. .

Cavendish Experiment

_Mean

(measurement of Earth’s density) N j:
N =29 Fhe-
mu = 5.42 :\5 .

sigma = 0.333 T '.i LU %

sigma(mu) = 0.06
Earth density = 5.42 + 0.06

——> Value of Mean) Density.

26



Mean and Width
What is the uncertainty on the mean? And how quic m‘:‘.‘ove with

more data?
Exa .
C is ent . >
(m& nt ot Earth’s density) R |
N =29 o
mu = 5.42 s
sigma = 0.333 T - L L |
1 80 51243678 "

sigma(mu) = 0.06
Earth density = 5.42 + 0.06

———— RV, @ "l/enn': Density.



Weighted Mean

What if we are given data, which has different uncertainties?
How to average these, and what is the uncertainty on the average?

e g i
N T 1o

For measurements with varying uncertainty, there is no meaningful SD!
The uncertainty on the mean is:

SR Vi

Can be understood intuitively, if two persons combine 1 vs. 4 measurements

28



Weighted Mean

What if we are given data, which has different uncertainties?

How to average these, and what is the uncertainty on the average?

9 Y‘,CIZ‘J./U?

For measur

The uncertsz

Note that when doing a weighted mean,
one should check if the measurements
agree with each other!

This can be done with a ChiSquare test.

SR Vi

SD!

Can be understood intuitively, if two persons combine 1 vs. 4 measurements

29



Correlations

30
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Correlation

Temperdure (Fahrenheit)

65

55

North Atlantic Oscillation (NAO) Effects

Upper Texas Coast Temperature

Are there any correlations here?
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Correlation

Temperdure (Fahrenheit)

North Atlantic Oscillation (NAO) Effects

Upper Texas Coast Temperature

Are there any correlations here?

40
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www.guessthecorrelation.com
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http://www.guessthecorrelation.com

Correlation

Recall the definition of the Variance, V:

V=02= 23 (@i —w)? =Bz -

34



Correlation

Recall the definition of the Variance, V:
1 T
V=0"==) (z— )’ =Ellz—p)? = Bl2") — p°

()

Likewise, one defines the Covariance, Vyy:

Viw = 5 D@1 — ) i — 1) = El(zi = 1) (31 — )
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Correlation

Recall the definition of the Variance, V:
1 T
) 2 D 2 2
V=0?==) (&)’ =Elz—p)? = E[*) —u
)
Likewise, one defines the Covariance, Vyy:

Viw = 5 D@1 — ) i — 1) = El(zi = 1) (31 — )

“Normalising” by the widths, gives Pearson’s (linear) correlation

coefficient: me —1 < Py <1
Pxy =
O'a;O'y O'(,O) ~ \/%(1—102)24—0(71_2)

36



Correlation

Correlations in 2D are in the Gaussian case the “degree of ovalness”!

- by
~ )
/.' F'_/ \\. "‘\_
e e .,,4-'-"' o~ . ~e - N
» - e S S — ~. .
s -~ S ™~ ~
o .// ol . ~ \
s AN -
s < .

Note how ALL of the bottom distributions have o = 0, despite obvious correlations!
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Significant Digits

38



Reporting results

When reporting measurements, the notation is typically:

x = (0.24 £ 0.05) x 103 m

This should be interpreted as:

“with a mean of 0.24 km and a Gaussian uncertainty of 0.05 km”.

This does NOT guaranty that x is within 0.19 km and 0.29 km!
Rather it says, that there is a 68% chance of being inside this range.

<

o
o] 34.1% 34.1%

0.0
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Reporting results

When reporting measurements, the notation is typically:

x = (0.24 £ 0.05) x 103 m
The reason for not writing 240 + 50 m is that one might think, that the
uncertainty has been determined with two significant digits, which is most

often not the case.

Sometimes, one can find the following reporting;:

x = (0.24 £ 0.055tat = 0.07sys) x 103 m

The tells the reader, that the statistical and systematic uncertainties have been
kept apart, which allows for a better combination with other results (which
might share some of the systematic uncertainty).

The good experimentalist gives an explained table of systematic uncertainties!

40



Reporting results

The “uncertainty on the uncertainty” follows the approximate rule:

1
Y =)

Unless you have worked hard not only to reduce the uncertainty, but also to

Og

make it accurate, you should
only quote one significant digit errors, when giving results!

The (possible) exceptions are, if the first digitis a “1” (i.e. 0.51 £ 0.12),
or internally while you are working to reduce your uncertainties.
Using two significant digits for the error is then acceptable (in this course).

7l 34.1% 34.1%

0.0 0.1 02 03 04

41
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Why not “just” the naive SD?

Imagine taking 3 independent measurements, and then the mean and SD:

X1 X»> X3

l l ﬁest. MUtrue l

s T T > O'true

>

o4

N\
Gest. <

Above, all went well, because measurements were nicely distributed on both
sides of the mean, and spread out according to SD.
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Why not “just” the naive SD?

Imagine taking 3 independent measurements, and then the mean and RMSE:

X1 X2 X3

l l ﬁest. MUtrue l

X T T > O'true

>

o3 4

N\
Gest. <

Above, all went well, because measurements were nicely distributed on both
sides of the mean, and spread out according to SD.

X1 X3 X2

l ﬁeit, l MUtrue

A ‘ < T » O'true
Oest.

However, now the mean is off (not terribly so) and the SD way off (terribly so!).
If we had used the true mean in the formula, it would not have been a problem.

>
X




How incorrect 1s the naive SD?

Such questions can most easily be answered by a small simulation...
Produce N=3 numbers from a unit Gaussian, and calculate the SD estimate:

5000

RMS frequency

4000

3000

2000

1000

Distribution of RMS estimates on three unit Gaussian numbers

RMS naive estimate (uw = 0.72)

RMS correct estimate (u = 0.99)

N=3

0.5 1 1.5 2 2.5
RMS estimate

So, the “naive” SD underestimates the uncertainty significantly...
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How incorrect 1s the naive SD?

Such questions can most easily be answered by a small simulation...
Produce N=5 numbers from a unit Gaussian, and calculate the SD estimate:

Distribution of RMS estimates on five unit Gaussian numbers

)
cC
% 6000 RMS naive estimate (u = 0.84)
é RMS correct estimate (i = 0.97)
o 5000

4000 J_ N 5

3000 [

2000

1000

T

J

|

ollll’llll[llllllll ‘llll’l II‘ [

(=]

05 1 1.5 2

2.5
RMS estimate

Here, the “naive” SD underestimates the uncertainty a bit...
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