## Applied Statistics

 Basic Statistics

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

Central Limit Theorem

## Central Limit Theorem



## Law of large numbers

When rolling a normal die and averaging the outcome, it is no surprise that this converges towards $3.5 \ldots$ with enough rolls, you can get as close as you want!

## LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS <br> AUERAGE CONVERGES TO EXPECTED UALUE OF 3.5



## Adding random numbers

If each of you chose a random number from your own favorit distribution*, and we added all these numbers, repeating this many times...

## What would you expect?

## Adding random numbers

If each of you chose a ran ri mamber from your ownf $\mathrm{P}_{11}+$ distributione ad weld ledall these nuthers, - prating this naty times...

## Whblat would you expect?

[^0]
## Adding random numbers

 If each of you chose a ran ro mamber ad yeld ledall these nuk bers, - Pating this galy times...

## Central Limit Theorem:

The sum of N independent continuous random variables $\mathrm{x}_{\mathrm{i}}$ with means $\mu_{\mathrm{i}}$ and variances $\sigma_{\mathrm{i}}^{2}$ becomes a Gaussian random variable with mean $\mu=\Sigma_{\mathrm{i}} \mu_{\mathrm{i}}$ and variance $\sigma^{2}=\Sigma_{\mathrm{i}} \sigma_{\mathrm{i}}^{2}$ in the limit that N approaches infinity.

## Central Limit Theorem

## Central Limit Theorem:

The sum of $N$ independent continuous random variables $x_{i}$ with means $\mu_{\mathrm{i}}$ and variances $\sigma_{\mathrm{i}}^{2}$ becomes a Gaussian random variable with mean $\mu=\Sigma_{\mathrm{i}} \mu_{\mathrm{i}}$ and variance $\sigma^{2}=\Sigma_{\mathrm{i}} \sigma_{\mathrm{i}}^{2}$ in the limit that N approaches infinity.

The Central Limit Theorem holds under fairly general conditions, which means that the Gaussian distribution takes a central role in statistics...

## The Gaussian is "the unit" of distributions!

Since measurements are often affected by many small effects, uncertainties tend to be Gaussian (until otherwise proven!).

Statistical rules often require Gaussian uncertainties, and so the central limit theorem is your new good friend..


## Example of Central Limit Theorem

Take the sum of 100 uniform numbers!
Repeat 100000 times to see what distribution the sum has...



The result is a bell shaped curve, a so-called normal or Gaussian distribution.
It turns out, that this is very general!!!

## Example of Central Limit Theorem

Now take the sum of just 10 uniform numbers!


## Example of Central Limit Theorem

Now take the sum of just 5 uniform numbers!


## Example of Central Limit Theorem

Now take the sum of just 3 uniform numbers!


## Example of Central Limit Theorem

This time we will try with a much more "nasty" function. Take the sum of 100 exponential numbers! Repeat 100000 times to see the sum's distribution...



It doesn't matter what shape the input PDF has, as long as it has finite mean and width, which all numbers from the real world has! Sum quickly becomes:

## Gaussian!!!

It turns out, that this fact saves us from much trouble: Makes statistics "easy"!

## Example of Central Limit Theorem

Looking at z-coordinate of tracks at vertex from proton collisions in CERNs LHC accelerator by the ATLAS detector, this is what you get:


## The Gaussian distribution



## Summary

## The Central Limit Theorem

...is your good friend because it...
ensures that uncertainties tend to be Gaussian
...which are the easiest to work with!


## Mean \& Width

## Mean \& Width



## Defining the mean

There are several ways of defining "a typical" value from a dataset:
a) Arithmetic mean
b) Mode (most probably)
c) Median (half below, half above)
d) Geometric mean
e) Harmonic mean
f) Truncated mean (robustness)


## Mean and Width

It turns out, that the best estimator for the mean is (as you all know):


The second (central) moment of the data is called the variance, defined as:

$$
\hat{V}=\frac{1}{N} \sum_{i}\left(x_{i}-\mu\right)^{2}
$$

Note the "hat", which means "estimator". It is sometimes dropped...

## Mean and Width

It turns out, that the best estimator for the mean is (as you all know):


For the standard deviation (SD), a.k.a. width or RMSE, it is:

$$
\hat{\sigma}=\sqrt{\frac{1}{N} \sum_{i}\left(x_{i}-\mu\right)^{2}}
$$

Note the "hat", which means "estimator". It is sometimes dropped...

## Mean and Width

It turns out, that the best estimator for the mean is (as you all know):


For the standard deviation (SD), a.k.a. width or RMSE, it is:

$$
\hat{s}=\sqrt{\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

Note the "hat", which means "estimator". It is sometimes dropped...

## SD and Gaussian $\sigma$ relation

When a distribution is Gaussian, the SD corresponds to the Gaussian width $\sigma$ :


## Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with more data?

## Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with more data?

$$
\hat{\sigma}_{\mu}=\hat{\sigma} / \sqrt{N}
$$

## Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with more data?


$$
\begin{gathered}
\text { Example: } \\
\text { Cavendish Experiment } \\
\text { (measurement of Earth's density) } \\
\mathrm{N}=29 \\
\mathrm{mu}=5.42 \\
\operatorname{sigma}=0.333 \\
\operatorname{sigma}(\mathrm{mu})=0.06 \\
\text { Earth density }=5.42 \pm \mathbf{0 . 0 6}
\end{gathered}
$$



## Mean and Width

What is the uncertainty on the mean? And how quicklo it m wove with more data?

$$
\mathrm{N}=29
$$

$$
\mathrm{mu}=5.42
$$

$$
\text { sigma }=0.333
$$

$$
\operatorname{sigma}(\mathrm{mu})=0.06
$$

Earth density $=5.42 \pm 0.06$


## Weighted Mean

What if we are given data, which has different uncertainties?
How to average these, and what is the uncertainty on the average?


For measurements with varying uncertainty, there is no meaningful SD! The uncertainty on the mean is:


Can be understood intuitively, if two persons combine 1 vs. 4 measurements

## Weighted Mean

What if we are given data, which has different uncertainties?
How to average these, and what is the uncertainty on the average?


Note that when doing a weighted mean, one should check if the measurements agree with each other!
For measur This can be done with a ChiSquare test. The uncerta


Can be understood intuitively, if two persons combine 1 vs. 4 measurements

## Correlations

## Correlations



## Correlation



## Correlation

North Atlantic Oscillation (NAO) Effects
Upper Texas Coast Temperature


## Correlation

Recall the definition of the Variance, V :

$$
V=\sigma^{2}=\frac{1}{N} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2}=E\left[(x-\mu)^{2}\right]=E\left[x^{2}\right]-\mu^{2}
$$

## Correlation

Recall the definition of the Variance, V:
$V=\sigma^{2}=\frac{1}{N} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2}=E\left[(x-\mu)^{2}\right]=E\left[x^{2}\right]-\mu^{2}$
Likewise, one defines the Covariance, $\mathbf{V}_{\mathrm{xy}}$ :
$V_{x y}=\frac{1}{N} \sum_{i}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)=E\left[\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)\right]$

## Correlation

Recall the definition of the Variance, V:
$V=\sigma^{2}=\frac{1}{N} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2}=E\left[(x-\mu)^{2}\right]=E\left[x^{2}\right]-\mu^{2}$
Likewise, one defines the Covariance, $\mathrm{V}_{\mathrm{xy}}$ :
$V_{x y}=\frac{1}{N} \sum_{i}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)=E\left[\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)\right]$
"Normalising" by the widths, gives Pearson's (linear) correlation coefficient:

$$
\rho_{x y}=\frac{V_{x y}}{\sigma_{x} \sigma_{y}} \quad-1<\rho_{x y}<1
$$

## Correlation

Correlations in 2D are in the Gaussian case the "degree of ovalness"!


Note how ALL of the bottom distributions have $\varrho=0$, despite obvious correlations!

## Significant Digits

## Reporting results

When reporting measurements, the notation is typically:

$$
x=(0.24 \pm 0.05) \times 10^{3} \mathrm{~m}
$$

This should be interpreted as:
"with a mean of 0.24 km and a Gaussian uncertainty of 0.05 km ".
This does NOT guaranty that x is within 0.19 km and 0.29 km ! Rather it says, that there is a $68 \%$ chance of being inside this range.


## Reporting results

When reporting measurements, the notation is typically:

$$
x=(0.24 \pm 0.05) \times 10^{3} \mathrm{~m}
$$

The reason for not writing $240 \pm 50 \mathrm{~m}$ is that one might think, that the uncertainty has been determined with two significant digits, which is most often not the case.

Sometimes, one can find the following reporting:

$$
x=\left(0.24 \pm 0.05_{\text {stat }} \pm 0.07_{\text {syst }}\right) \times 10^{3} \mathrm{~m}
$$

The tells the reader, that the statistical and systematic uncertainties have been kept apart, which allows for a better combination with other results (which might share some of the systematic uncertainty).

The good experimentalist gives an explained table of systematic uncertainties!

## Reporting results

The "uncertainty on the uncertainty" follows the approximate rule:

$$
\sigma_{\sigma}=\frac{1}{\sqrt{2 N-2}}
$$

Unless you have worked hard not only to reduce the uncertainty, but also to make it accurate, you should
only quote one significant digit errors, when giving results!
The (possible) exceptions are, if the first digit is a " 1 " (i.e. $0.51 \pm 0.12$ ), or internally while you are working to reduce your uncertainties. Using two significant digits for the error is then acceptable (in this course).


Bonus Slides

## Why not "just" the naive SD?

Imagine taking 3 independent measurements, and then the mean and SD:


Above, all went well, because measurements were nicely distributed on both sides of the mean, and spread out according to SD.

## Why not "just" the naive SD?

Imagine taking 3 independent measurements, and then the mean and RMSE:


Above, all went well, because measurements were nicely distributed on both sides of the mean, and spread out according to SD.


However, now the mean is off (not terribly so) and the SD way off (terribly so!). If we had used the true mean in the formula, it would not have been a problem.

## How incorrect is the naive SD?

Such questions can most easily be answered by a small simulation...
Produce N=3 numbers from a unit Gaussian, and calculate the SD estimate:
Distribution of RMS estimates on three unit Gaussian numbers


So, the "naive" SD underestimates the uncertainty significantly...

## How incorrect is the naive SD?

Such questions can most easily be answered by a small simulation...
Produce $\mathrm{N}=5$ numbers from a unit Gaussian, and calculate the SD estimate:


Here, the "naive" SD underestimates the uncertainty a bit...


[^0]:    * OK - to be nice to me, you agree to have similar RMSs in these distributions!

