
Applied Statistics 
Basic Statistics

“Statistics is merely a quantisation of common sense”

Troels C. Petersen (NBI)
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Central Limit Theorem
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Central Limit Theorem
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Law of large numbers
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When rolling a normal die and averaging the outcome, it is no surprise that
this converges towards 3.5… with enough rolls, you can get as close as you want!



Adding random numbers

If each of you chose a random number 
from your own favorit distribution*, 

and we added all these numbers, 
repeating this many times…

What would you expect?

* OK - to be nice to me, you agree to have similar RMSs in these distributions! 5
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Central Limit Theorem:
The sum of N independent continuous random variables xi with means 
μi and variances σi

2 becomes a Gaussian random variable with mean 
μ = Σi μi and variance σ2 = Σi σi

2 in the limit that N approaches infinity.
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Central Limit Theorem
Central Limit Theorem:

The sum of N independent continuous random variables xi with means 
μi and variances σi

2 becomes a Gaussian random variable with mean 
μ = Σi μi and variance σ2 = Σi σi

2 in the limit that N approaches infinity.

The Central Limit Theorem holds under fairly general conditions, which means 
that the Gaussian distribution takes a central role in statistics...

The Gaussian is “the unit” of distributions!

Since measurements are often affected by many small effects,
uncertainties tend to be Gaussian (until otherwise proven!).

Statistical rules often require Gaussian uncertainties, and so
the central limit theorem is your new good friend..
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Example of Central Limit Theorem
Take the sum of 100 uniform numbers!
Repeat 100000 times to see what distribution the sum has…

The result is a bell shaped curve, a so-called normal or Gaussian distribution.

   It turns out, that this is very general!!!
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Now take the sum of just 10 uniform numbers!
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Example of Central Limit Theorem



Now take the sum of just 5 uniform numbers!
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Example of Central Limit Theorem



Now take the sum of just 3 uniform numbers!
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Example of Central Limit Theorem



This time we will try with a much more “nasty” function. Take the sum of
100 exponential numbers! Repeat 100000 times to see the sum’s distribution…

It doesn’t matter what shape the input PDF has, as long as it has finite mean 
and width, which all numbers from the real world has! Sum quickly becomes:

Gaussian!!!
It turns out, that this fact saves us from much trouble: Makes statistics “easy”! 13

Example of Central Limit Theorem



Example of Central Limit Theorem
Looking at z-coordinate of tracks at vertex from proton collisions in CERNs
LHC accelerator by the ATLAS detector, this is what you get:

14



It is useful to know just a few of the
most common Gaussian integrals:

The Gaussian distribution
Range Inside Outside

± 1� 68 % 32 %

± 2� 95 % 5 %

± 3� 99.7 % 0.3 %

± 5� 99.99995 % 0.00005 %
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Summary

The Central Limit Theorem
...is your good friend because it…

ensures that uncertainties tend to be Gaussian
…which are the easiest to work with!
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Mean & Width
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Mean & Width
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Defining the mean
There are several ways of defining “a typical” value from a dataset:
a) Arithmetic mean   b) Mode (most probably)   c) Median (half below, half above)
d) Geometric mean   e) Harmonic mean               f) Truncated mean (robustness)
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It turns out, that the best estimator for the mean is (as you all know):

Mean and Width

µ̂ =
1

N

X

i

xi = x̄

The second (central) moment of the data is called the variance, defined as:

Note the “hat”, which means “estimator”. It is sometimes dropped...
20

V̂ =
1

N

X

i

(xi � µ)2
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For the standard deviation (SD), a.k.a. width or RMSE, it is:



It turns out, that the best estimator for the mean is (as you all know):
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ŝ =

s
1

N � 1

X

i

(xi � x̄)2

For the standard deviation (SD), a.k.a. width or RMSE, it is:



SD and Gaussian σ relation
When a distribution is Gaussian, the SD corresponds to the Gaussian width σ:
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What is the uncertainty on the mean? And how quickly does it improve with
more data?

Mean and Width
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What is the uncertainty on the mean? And how quickly does it improve with
more data?

Mean and Width

�̂µ = �̂/
p
N
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What is the uncertainty on the mean? And how quickly does it improve with
more data?

Example:
Cavendish Experiment

(measurement of Earth’s density)
N = 29

mu = 5.42
sigma = 0.333

sigma(mu) = 0.06
Earth density = 5.42 ± 0.06

Mean and Width

�̂µ = �̂/
p
N
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What is the uncertainty on the mean? And how quickly does it improve with
more data?

Example:
Cavendish Experiment

(measurement of Earth’s density)
N = 29

mu = 5.42
sigma = 0.333

sigma(mu) = 0.06
Earth density = 5.42 ± 0.06

Mean and Width

�̂µ = �̂/
p
NPlease, commit

to memory now!
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Weighted Mean
What if we are given data, which has different uncertainties?
How to average these, and what is the uncertainty on the average?

Can be understood intuitively, if two persons combine 1 vs. 4 measurements

µ̂ =

P
xi/�2

iP
1/�2

i

�̂µ =

s
1P
1/�2

i

For measurements with varying uncertainty, there is no meaningful SD!
The uncertainty on the mean is:
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Note that when doing a weighted mean,
one should check if the measurements
agree with each other!
This can be done with a ChiSquare test.



Correlations
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Correlations
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Correlation
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Are there any correlations here?



Correlation
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Are there any correlations here?

www.guessthecorrelation.com

http://www.guessthecorrelation.com


Correlation
Recall the definition of the Variance, V:

V = �2 =
1

N

nX

i

(xi � µ)2 = E[(x� µ)2] = E[x2]� µ2
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Correlation
Recall the definition of the Variance, V:

Likewise, one defines the Covariance, Vxy:

V = �2 =
1

N

nX

i

(xi � µ)2 = E[(x� µ)2] = E[x2]� µ2

Vxy =
1

N

nX

i

(xi � µx)(yi � µy) = E[(xi � µx)(yi � µy)]
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Correlation
Recall the definition of the Variance, V:

Likewise, one defines the Covariance, Vxy:

“Normalising” by the widths, gives Pearson’s (linear) correlation 
coefficient:

V = �2 =
1

N

nX

i

(xi � µ)2 = E[(x� µ)2] = E[x2]� µ2

Vxy =
1

N

nX

i

(xi � µx)(yi � µy) = E[(xi � µx)(yi � µy)]

⇢xy =
Vxy

�x�y

�1 < ⇢xy < 1

�(⇢) '
r

1

n
(1� ⇢2)2 +O(n�2)
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Note how ALL of the bottom distributions have ρ = 0, despite obvious correlations!

Correlation
Correlations in 2D are in the Gaussian case the “degree of ovalness”! 
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Significant Digits
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Reporting results
When reporting measurements, the notation is typically:

x = (0.24 ± 0.05) × 103 m

This should be interpreted as:
“with a mean of 0.24 km and a Gaussian uncertainty of 0.05 km”.

This does NOT guaranty that x is within 0.19 km and 0.29 km!
Rather it says, that there is a 68% chance of being inside this range.
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Reporting results
When reporting measurements, the notation is typically:

x = (0.24 ± 0.05) × 103 m

The reason for not writing 240 ± 50 m is that one might think, that the 
uncertainty has been determined with two significant digits, which is most 
often not the case.

Sometimes, one can find the following reporting:
x = (0.24 ± 0.05stat ± 0.07syst) × 103 m

The tells the reader, that the statistical and systematic uncertainties have been 
kept apart, which allows for a better combination with other results (which 
might share some of the systematic uncertainty).

The good experimentalist gives an explained table of systematic uncertainties!
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Reporting results
The “uncertainty on the uncertainty” follows the approximate rule:

Unless you have worked hard not only to reduce the uncertainty, but also to 
make it accurate, you should

only quote one significant digit errors, when giving results!

The (possible) exceptions are, if the first digit is a “1” (i.e. 0.51 ± 0.12),
or internally while you are working to reduce your uncertainties.
Using two significant digits for the error is then acceptable (in this course).
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Bonus Slides

42



Why not “just” the naive SD?
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Imagine taking 3 independent measurements, and then the mean and SD:

Above, all went well, because measurements were nicely distributed on both 
sides of the mean, and spread out according to SD.

^

^

X

x1 x2 x3
μtrue

σtrue

μest.

σest.



Why not “just” the naive SD?
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Imagine taking 3 independent measurements, and then the mean and RMSE:

Above, all went well, because measurements were nicely distributed on both 
sides of the mean, and spread out according to SD.

^

^

X

x1 x2 x3
μtrue

σtrue

μest.

σest.

X

x1 x2x3
μtrue

σtrue

μest.

σest.

^

^

However, now the mean is off (not terribly so) and the SD way off (terribly so!).
If we had used the true mean in the formula, it would not have been a problem.



How incorrect is the naive SD?
Such questions can most easily be answered by a small simulation…
Produce N=3 numbers from a unit Gaussian, and calculate the SD estimate: 
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Distribution of RMS estimates on three unit Gaussian numbers

N = 3

So, the “naive” SD underestimates the uncertainty significantly…



Such questions can most easily be answered by a small simulation…
Produce N=5 numbers from a unit Gaussian, and calculate the SD estimate: 
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Here, the “naive” SD underestimates the uncertainty a bit...

N = 5

How incorrect is the naive SD?


