Choices on tests and loss functions

PERMANENT LINK TO THIS COMIC: HTTPS://XKCD.COM/1838/

Apr.29th 2020

Applied Machine Learning & Big Data Analysis (Adriano)

This Morning Session

- Something very quick: SLACK and workstreams
- Splitting choices on the data sets
- The loss function: where does it come from? What should I choose?

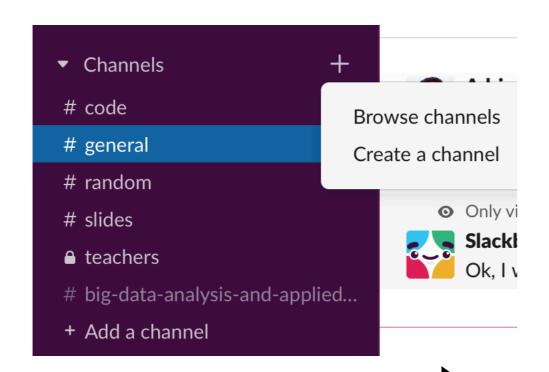
This Afternoon Session

- Hyperparameter optimisation:

All you ever wanted to know but were too ashamed to ask

- Cross-validation, again

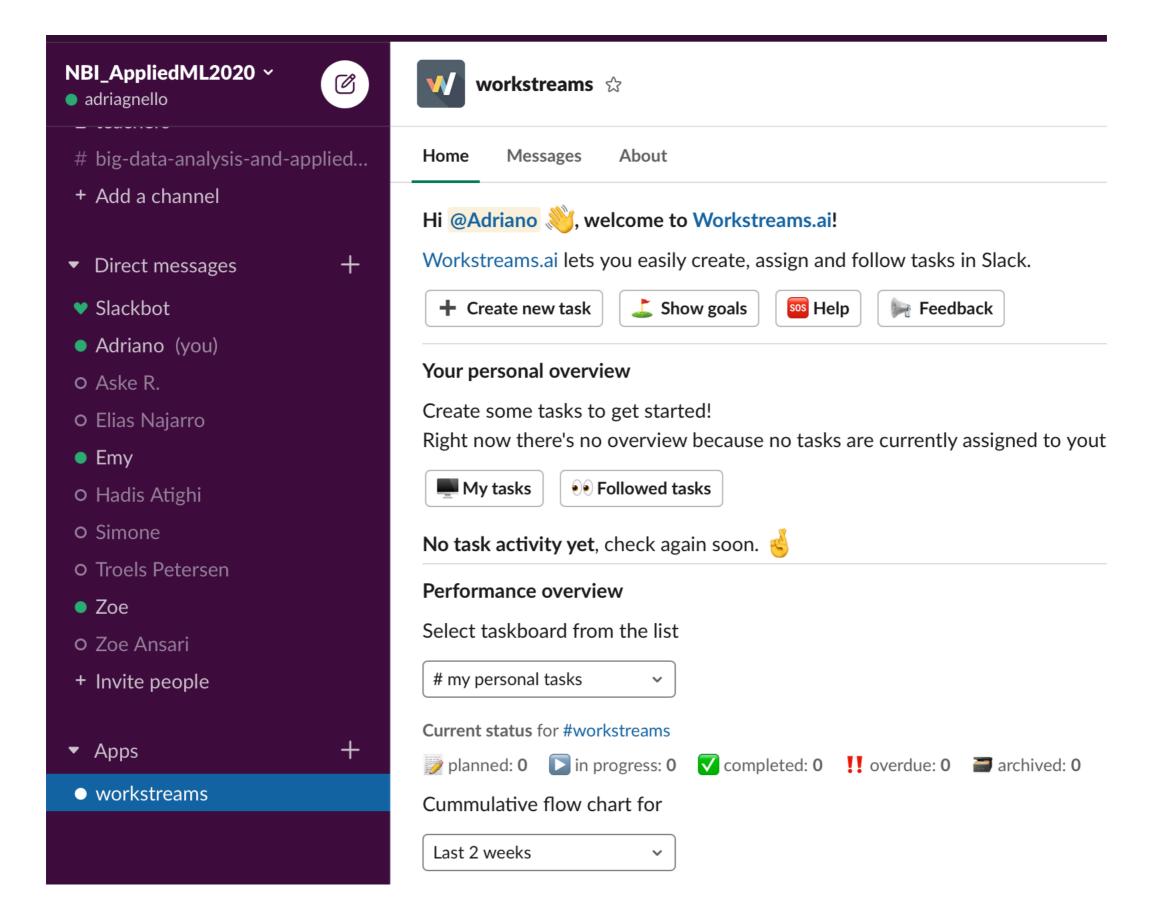
Before we begin: SLACK and Workstreams

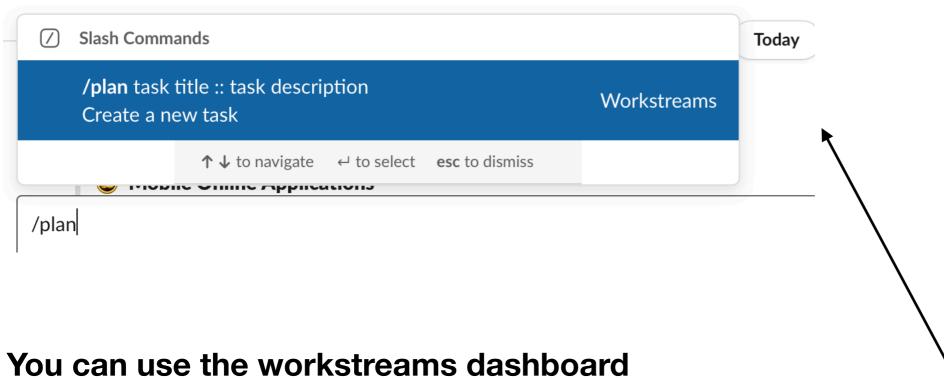


You can use this

to create your own channels for group work (or for book-keeping)

Workstreams

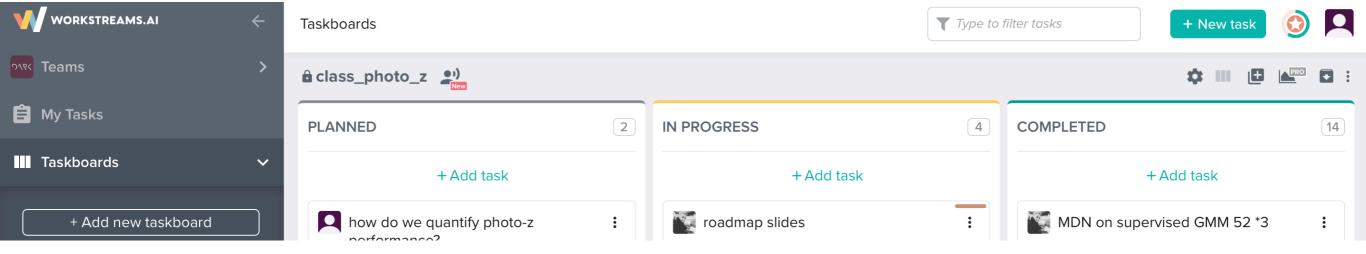




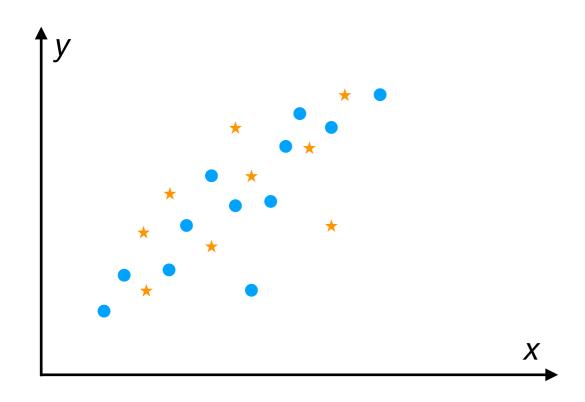
To issue tasks and track progress

(it's click and drag, really)

You can also issue tasks
With workstreams from within SLACK
(no need to install other stuff)



Training and Validating



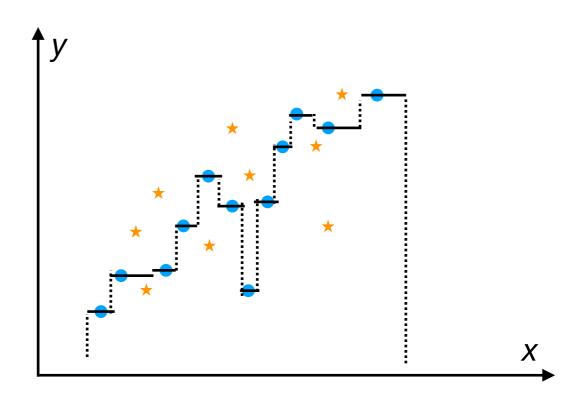
The data-set:

Objects drawn from some (possibly unknown) distribution, possibly with some outliers... And we get just some of them to train our machinery.

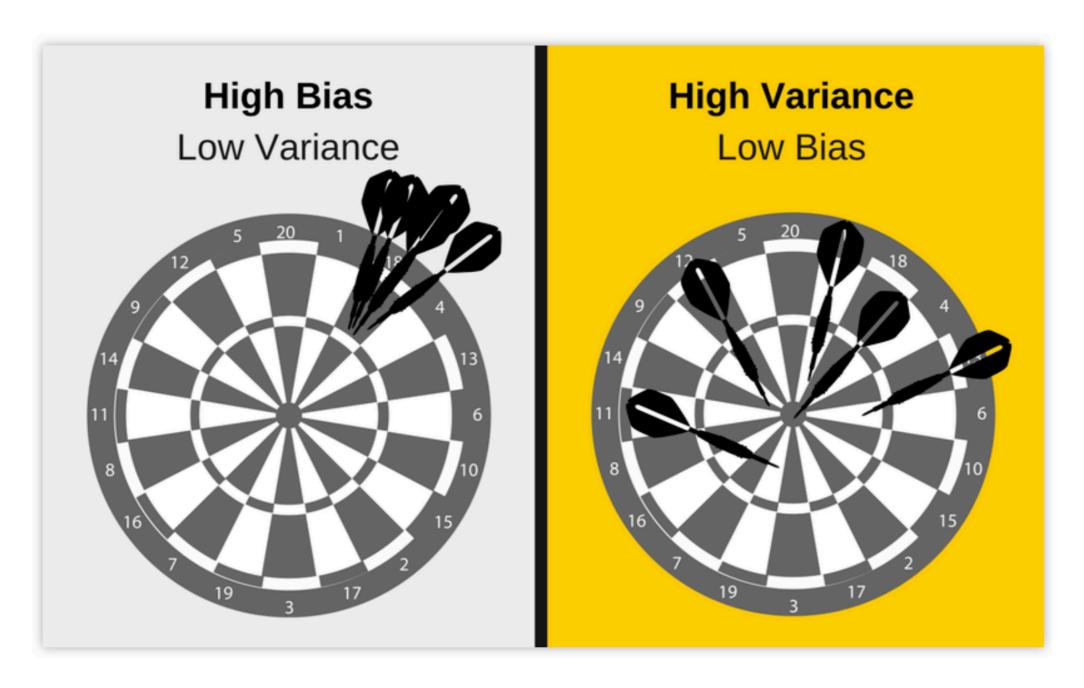
The issue:

We can push our machinery to fit them perfectly, But (a) does it make sense?

(b) how does it behave once we get more data?



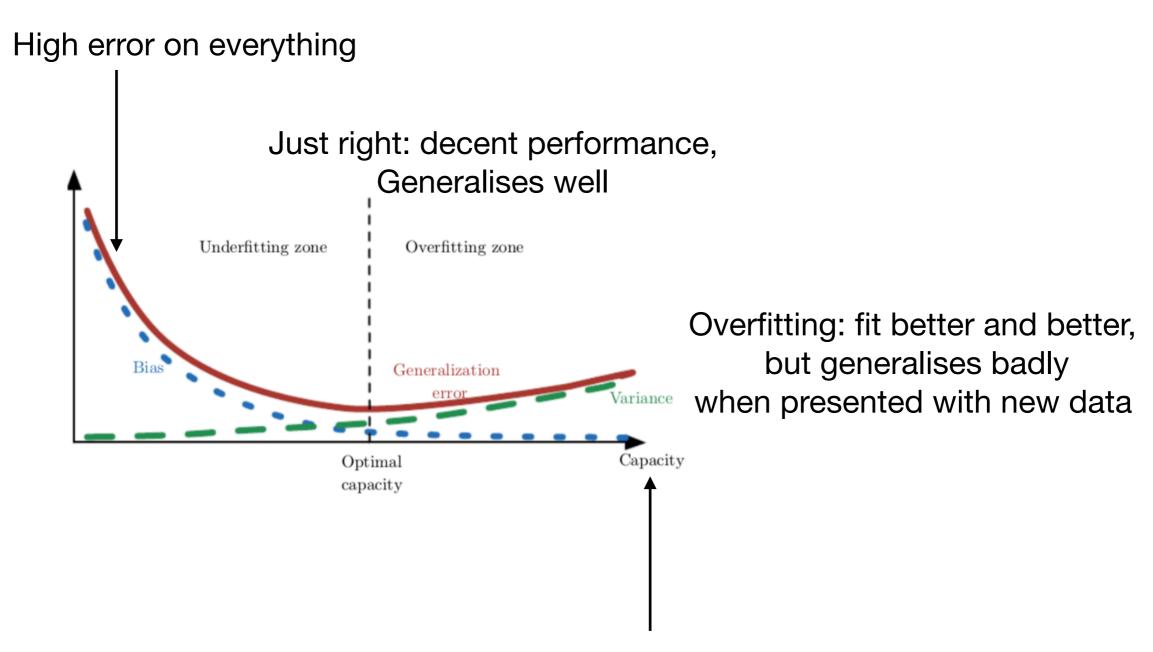
The bias-variance tradeoff



Q: suppose you draw some data and do some least-squares fitting to it, How can we write the standard deviation (over many draws) of the fitting error?

$$\mathbb{E}[(y - f(x))^2] = ?$$

Bias-variance in general



This means: tree depth, NN depth, NN nodes, *training epochs*...

Train, Validate, Test

This does the heavy lifting:
Training the machinery

This controls overfitting

Training set

Validating set

Test set

The actual data that you want to work on (anyways labeled) data

Actually: over the last ~5 years one often trains on the training set and tests on the test set

sklearn.model_selection.train_test_split(*arrays, **options)

NB The dataset may not be balanced! E.g. one class may be over-sampled.

Early stopping 101

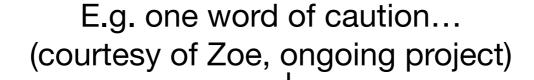
Example in keras (from Sofie H. Bruun)

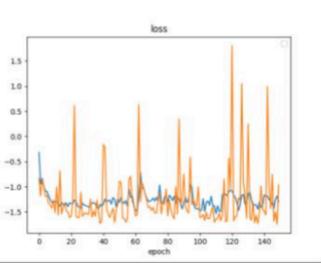
'patience'=epochs after val.err.minimum

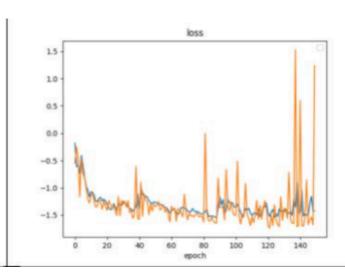
callbacks = [tf.keras.callbacks.EarlyStopping(monitor='loss', patience=20)]

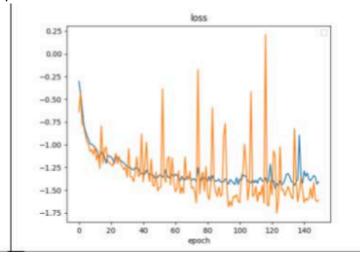
model.fit(train_dataset, epochs=2000, verbose=1, validation_data=val_dataset, validation_freq=1, callbacks=callbacks)

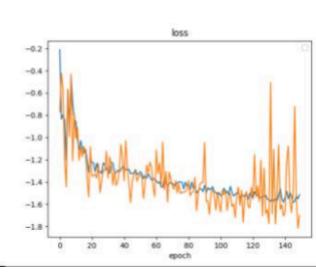
NB This also depends on the optimiser! Some methods are not a simple gradient descent.



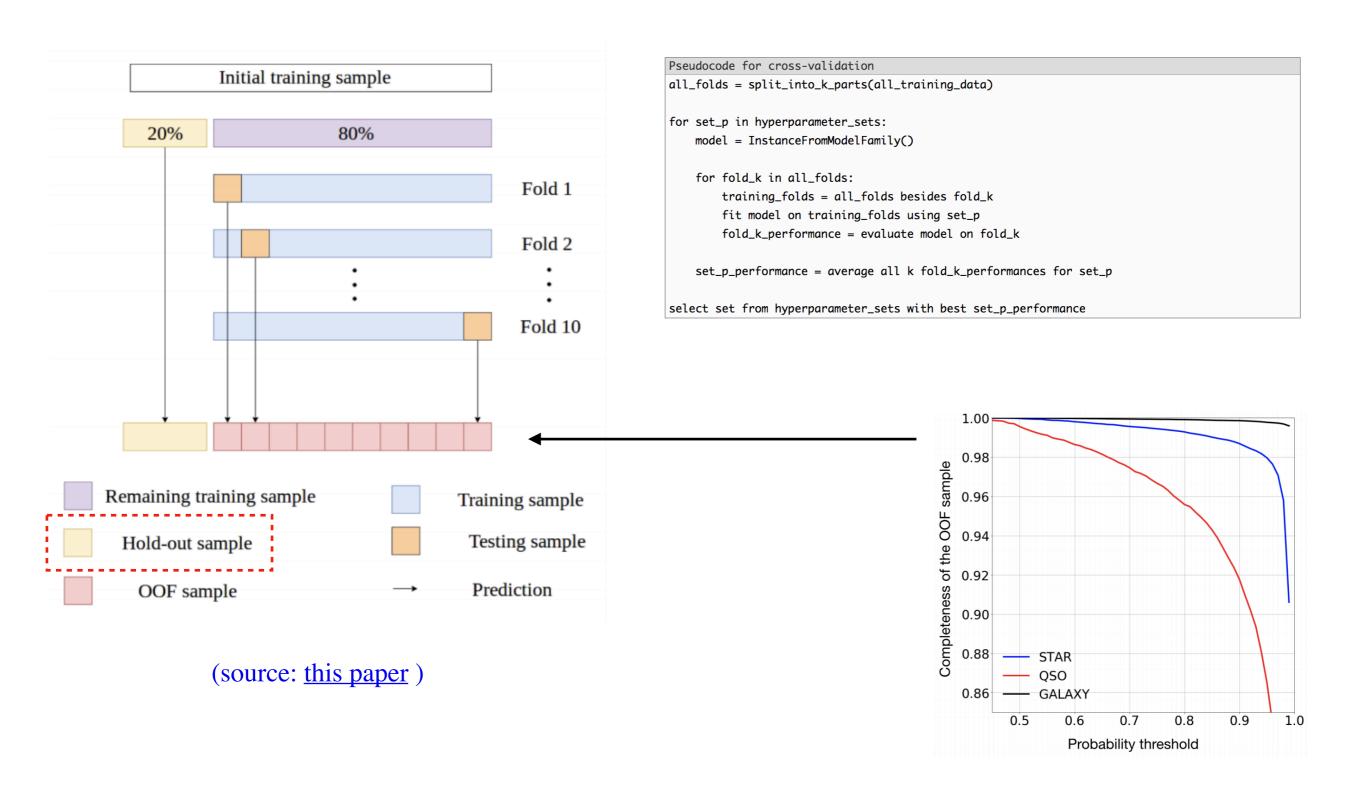








Cross-Validation 101



Bonus track: out-of-bag estimates:

https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_oob.html

Loss Functions: WHYs and HOWs, 1

Least-squares:

$$loss = \sum_{i=1}^{N} \frac{(y_i - f(x_i))^2}{\sigma^2 + \epsilon_i^2}$$

(you may have often seen it without the denominators, and with a 1/N in front of it)

- easy to operate with (smooth derivatives)
- comes from Gaussian statistics

$$p(y_i|x_i) = \mathcal{G}\left(f(x_i), \sqrt{\sigma^2 + \epsilon_i^2}\right), \quad loss \sim -\log(\prod_i p_i) + cnst$$

Issues and variations:

- What if we are not drawing data from Gaussian distributions?
- What about fat tails and outliers?
- Alternative choice: MAD

loss =
$$\sum_{i=1}^{N} \frac{|y_i - f(x_i)|}{\sqrt{\sigma^2 + \epsilon_i^2}}$$

Plus: Less sensitive to large deviations. Minus: derivative at zero??? Q: how would you write the loss function for power-law distributions

$$p(y_i|x_i) = \frac{\nu(\alpha)/\epsilon_i}{\left(1 + (y_i - f(x_i))^2/(\alpha\epsilon_i^2)\right)^{\alpha/2}}$$

Loss Functions: WHYs and HOWs, 2

Cross-entropy?

loss =
$$-\sum_{i=1}^{N} y_i \log f(x_i) + (1 - y_i) \log(1 - f(x_i))$$

comes from Bernoulli statistics

$$p(y_i | x_i) \sim f(x_i)^{y_i} (1 - f(x_i))^{1 - y_i}$$

Q: is this a good way to tackle multi-class problems?

- Q1: think about given class labels, and predictions for each object (e.g. ANN)
- Q2: think about given class labels, but rougher estimates (e.g. trees)
- Q3: if I use gradient descent, is the best-fit f an unbiased predictor of y?
 (hint: Laplace's rule of succession)

Q: if you use Gaussians as in the previous slides, what is the best-fit estimator of sigma? What is the *unbiased* estimator of sigma?

Loss Functions: WHYs and HOWs, 3

Mixture Density Networks (MDNs)

Very nice introduction here, with code

What if multiple values of *y* can correspond to the same *x*?

Example/Exercise:

in the 'QSO' objects from Monday's exercise, plot *y*=redshift vs *x*=g-r

U-Bj vs z

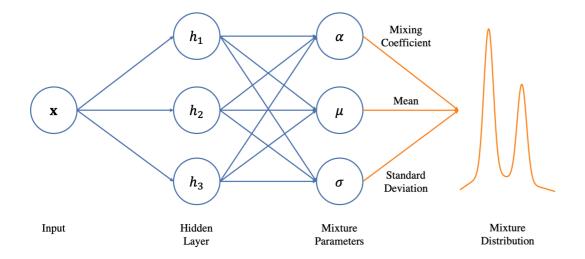
0.5
0
-0.5
-1
-1.5
-2
0
1
2
3

Likelihoods:
$$p(y_i|x_i) \sim$$

$$p(y_i | x_i) \sim \sum_{k=1}^{K} w_k(x_i) \mathcal{G}(\mu_k(x_i), \sigma_k(x_i))$$

Loss function:

loss =
$$-\sum_{i=1}^{N} \log(p(y_i|x_i)) = -\sum_{i=1}^{N} \log\left(\sum_{k=1}^{K} \hat{w}_k \mathcal{G}(\hat{\mu}_k, \hat{\sigma}_k)\right)$$



HARD Exercise:

in the 'QSO' objects from Monday's exercise, how well can you predict redshift using the SDSS magnitudes?