Data collection and preprocessing

Adriano Agnello

274th April 2020

Playing with multi-dimensional data

- Part 1: some real-life datasets, surveys and queries.
- Part 2: visualising and dimensionality reduction, PCA, kPCA

Part 1: surveys, databases, queries \& thereabouts

General problem: we have big heaps of data produced by surveys/experiments and need to make sense of them.

Example from astro: spectra, fluxes, colours.

Spectrum: blueprint of an object (more or less). Magnitudes: what we get most of the time.

From big data to science: discover, classify, characterise. NB: light-curve data (left) don't always have the same number of points!

Various magnitude systems for different uses ${ }^{1}$. Each magnitude has a central wavelength and a width.

Bessell. MS. 2005
Amu. Rev. Astron Astrophys. 43: 293-336
${ }^{1}$ If you're really, really curious: Bessel, M. S. 2005, ARA\&A, 43, 293

From big data to science: finding rare objects/events. (these ones are very rare)

OK, but where do we begin???

Different experiments//surveys gather different kinds of info. We "just" need to grab it...

Telescope//experiment (pipelines) \mapsto data, various formats (database) \mapsto catalog tables

| \|ID ra dec class | subClass |
| :--- | :--- | :--- |
| 1237678661968265435 | 16.878845 |
| 1237678623308578947 | 17.145415 |
| 1237678623308644624 | 17.274179 |
| 12376786277177328 | 17.297309 |
| 1237678661968396491 | 1.230792 |
| 1237678661968331270 | 17.112495 |
| 1237678661968265425 | 16.932224 |
| 1237678622771642595 | 16.988994 |
| 12376786196826378 | 16.918275 |
| 1237678622771642499 | 1.963018 |
| 1237678622771707950 | 17.151402 |
| 1237669702124241089 | 15.152699 |
| 1237669702124109952 | 14.874624 |
| 1237669702124175820 | 15.049748 |

$z \quad$ zerr
5.0594924
5.2240461
5.1563299
4.7099285
4.9492185
4.895233
4.9781829
4.8418012
5.009444
4.7222274
4.8186359
7.2441582
7.3149651
7.194844

Queries

Sometimes you can do a bulk download of a catalog table, sometimes it's unfeasible or unnecessary.
SQL: Structured Query Language. Basic syntax:
SELECT \{fields\} FROM \{table\} WHERE \{conditions\}

```
SELECT TOP 100
    objID, ra ,dec
FROM
    PhotoPrimary
WHERE
    ra > 185 and ra < 185.1
    AND dec > 15 and dec < 15.1
```


Queries

Sometimes you can do a bulk download of a catalog table, sometimes it's unfeasible or unnecessary.
SQL: Structured Query Language. Basic syntax: SELECT \{fields\} FROM \{table\} WHERE \{conditions\}

```
SELECT TOP 100
    objID, ra ,dec
FROM
    PhotoPrimary
WHERE
    ra > 185 and ra < 185.1
    AND dec > 15 and dec < 15.1
```


Slightly more complicated:

```
    SELECT D.coadd_object_id, W.cntr, D.alphawin_j2000 as
desra, D.deltawin_j2000 as desdec, D.mag_auto_i,
W.w1mpro, W.w2mpro
FROM des_dr1.main AS D
JOIN des_dr1.des_allwise AS W on
W.coadd_object_id=D.coadd_object_id
WHERE ( D.galactic_b<-20.0 AND D.mag_auto_i>8.0 AND
D.deltawin_j2000>-60.0 AND D.deltawin_j2000<-55.0 )
Q: how many differences can you spot with the simplest query?
```


Many examples here:

http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp
Quote of the day:
"Most of the Al you may need is an SQL SELECT followed by an ORDER BY clause"

Slightly more complicated:

```
    SELECT D.coadd_object_id, W.cntr, D.alphawin_j2000 as
desra, D.deltawin_j2000 as desdec, D.mag_auto_i,
W.w1mpro, W.w2mpro
FROM des_dr1.main AS D
JOIN des_dr1.des_allwise AS W on
W.coadd_object_id=D.coadd_object_id
WHERE ( D.galactic_b<-20.0 AND D.mag_auto_i>8.0 AND
D.deltawin_j2000>-60.0 AND D.deltawin_j2000<-55.0 )
Q: how many differences can you spot with the simplest query?
```

Many examples here:
http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp Quote of the day:
"Most of the Al you may need is an SQL SELECT followed by an ORDER BY clause"

Exercise

To familiarise with it a bit: Let's have a look at the SDSS

- Have a look at the Schema Browser for the PhotoObj and SpecPhoto tables.
- Query coordinates (ra, dec) and PSF magnitudes in $u-, g-$, $r-, i-, z$-bands, plus spectroscopic redshift, for ten thousand object with CLASS==' QSO', ten thousand with CLASS==' GALAXY', ten thousand with CLASS==' STAR'. You can use the web query page here . ${ }^{2}$
- Q: how well can you fit the redshift using only the magnitudes above? How well can you fit the class, given only the magnitudes?
- Repeat but also using magnitudes w1mpro and w2mpro from AllWISE.

Various examples of SDSS queries here

[^0]Can't we do it in python?

- For access to SQL servers, you can use sqlite (ask Carl!).
- For astronomical surveys, you can use astroqueries. Some examples given in ExampleQueries.txt , courtesy of Zoe Ansari and Sofie H. Bruun (DARK-NBI).

Part 2: handling

OK, I have my table: now what?

- First things first: look at it!

Do the entries make sense? Are there any missing entries? Are some lines redundant?

- Second: plot familiar (and unfamiliar) stuff.

Easy things first: plot feature vs feature:

Python tips and tricks: you should do it yourselves, but someone has already done it for you...

1. Pair plots (with seaborn)
https://seaborn.pydata.org/generated/seaborn.pairplot.html
import seaborn as sns; sns.set(style="ticks", color_codes=True) iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species", palette="husl")
2. Corner plots (with corner)
https://corner.readthedocs.io/en/latest/pages/quickstart.html
import corner
fig = corner.corner(samples, labels=["\$m\$", "\$b\$", "\$\ln
,f\$"])
fig.show()

[^1]

But how do I decide which features are important? Should I plot all of them?!
What if l'm dealing with collections of pictures instead of tables with some columns?

Common issue, 1: the dataset may be easier to crunch in a different
coordinate system.
Common issue, 2: are there any combinations of features that
maximize information?

But how do I decide which features are important? Should I plot all of them?!
What if I'm dealing with collections of pictures instead of tables with some columns?
Common issue, 1: the dataset may be easier to crunch in a different coordinate system.
Common issue, 2: are there any combinations of features that maximize information?

Sometimes you don't need hundreds of features:

This is actually done with something more advanced (Kingma \& Welling 2014), but still...

Linear: Principal Component Analysys (PCA)

The maths: we want to transform our feature vectors $\left\{\mathbf{x}_{i} \in \mathbb{R}^{p}\right\}_{i=1, \ldots, N}$ into others $\left\{\mathbf{f}_{i} \in \mathbb{R}^{p}\right\}_{i=1, \ldots, N}$ that are uncorrelated. How to? Find eigenvectors of the covariance matrix:

$$
\begin{equation*}
C_{k, l}=\frac{1}{N} \sum_{i=1}^{N} x_{i, k} x_{i, l} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{C} \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k} \tag{2}
\end{equation*}
$$

The eigenvectors are the principal components.
Fraction of explained variance:

$$
\begin{equation*}
\operatorname{var}_{(r)}:=\frac{\sum_{k=1}^{r} \lambda_{k}}{\sum_{k=1}^{p} \lambda_{k}} \tag{3}
\end{equation*}
$$

NB do you need to standardize your dataset?

Example on (simple stuff) images: ${ }^{3}$

[^2]
Example (from scikit-learn):4

```
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
    svd_solver='auto', tol=0.0, whiten=False)
>>> print(pca.explained_variance_ratio_)
[0.9924... 0.0075...]
>>> print(pca.singular_values_)
[6.30061... 0.54980...]
```


Methods

fit (X[, y])	Fit the model with X.
$\mathbf{f i t _ t r a n s f o r m ~ (X [, ~ y]) ~}$	Fit the model with X and apply the dimensionality reduction on X.
get_covariance ()	Compute data covariance with the generative model.
get_params ([deep])	Get parameters for this estimator.
get_precision ()	Compute data precision matrix with the generative model.
inverse_transform (X)	Transform data back to its original space.
score (X[, y])	Return the average log-likelihood of all samples.
score_samples (X)	Return the log-likelihood of each sample.
set_params (**params)	Set the parameters of this estimator.
transform (X)	Apply dimensionality reduction to X.

Q: Run a PCA on the quark data table, see where the ' 1 ' and ' 0 ' subsamples lie.

Bonus track: kPCA

How it works: ${ }^{5}$

Projection by KPCA

1st principal component in space induced by ϕ

Original spate after inver inversent transform

${ }^{5}$ You can find code for this example on the scikit-learn website.

How the 'kernel trick' works: map feature space $\Phi: \mathbb{R}^{p} \mapsto \mathcal{H}$ to very-high-dimensional space with its own scalar product $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle$. Diagonalize a *big* matrix

$$
\begin{array}{r}
K_{i, j}=(1 / N) k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
K \mathbf{a}=\lambda \mathbf{a} \tag{5}
\end{array}
$$

Then the components of a given feature vector $\Phi(\mathbf{f})$ in this space, relative to r-th component, are

$$
\begin{equation*}
t_{r}=\left\langle\mathbf{a}_{r}, \Phi(\mathbf{f})\right\rangle=\sum_{i=1}^{N} a_{r, i} k\left(\mathbf{x}_{i}, \mathbf{f}\right) \tag{6}
\end{equation*}
$$

Theorem: everything exists if $k(\bullet, \bullet)$ is semi-positive definite. Q: Run a (k)PCA on the b-quark data table, try to separate the jets. Q: Run a (k)PCA on the SDSS data table, try to separate the classes.

Summary

So to sum it up:
© data are ugly.
(3) know where your data come from!
© inspect your data tables, plot stuff.
(One method does not necessarily fit every purpose.
(0) there is already technology to parse tables, if needed (SQL and thereabouts).
(C) datasets can be very-high-dimensional

Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

Summary

So to sum it up:
(1) data are ugly.
(2) know where your data come from!
(3) inspect your data tables, plot stuff.

- one method does not necessarily fit every purpose.
(2) there is already technology to parse tables, if needed (SQL and thereabouts).
(0) datasets can be very-high-dimensional
- Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

Summary

So to sum it up:
(1) data are ugly.
(2) know where your data come from!
(3) inspect your data tables, plot stuff.
(4) one method does not necessarily fit every purpose.
© there is already technology to parse tables, if needed (SQL and thereabouts)
(6) datasets can be very-high-dimensional
© Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

Summary

So to sum it up:

- data are ugly.
(2) know where your data come from!
(3) inspect your data tables, plot stuff.
(4) one method does not necessarily fit every purpose.
(6) there is already technology to parse tables, if needed (SQL and thereabouts).
(8) datasets can be very-high-dimensional
(Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

Summary

So to sum it up:
© data are ugly.
(2) know where your data come from!
(3) inspect your data tables, plot stuff.
(4) one method does not necessarily fit every purpose.
(6) there is already technology to parse tables, if needed (SQL and thereabouts).
(0) datasets can be very-high-dimensional
© Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

Summary

So to sum it up:
(- data are ugly.
(2) know where your data come from!
(3) inspect your data tables, plot stuff.
(4) one method does not necessarily fit every purpose.
(6) there is already technology to parse tables, if needed (SQL and thereabouts).
(6) datasets can be very-high-dimensional
(Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

[^0]: ${ }^{2}$ To query and save heavier stuff, have a loot at CasJobs!

[^1]: >> g = sns.pairplot(iris, hue="species", palette="hus(")

[^2]: ${ }^{3}$ That's from an old paper of mine, you don't really need to know-about it.

