Data collection and preprocessing

Adriano Agnello

274th April 2020

Playing with multi-dimensional data

- Part 1: some real-life datasets, surveys and queries.
- Part 2: visualising and dimensionality reduction, PCA, kPCA

Part 1: surveys, databases, queries & thereabouts

General problem: we have big heaps of data produced by surveys/experiments and need to make sense of them.

Example from astro: spectra, fluxes, colours.

Spectrum: blueprint of an object (more or less). Magnitudes: what we get most of the time.

From big data to science: discover, classify, characterise. **NB:** light-curve data (left) don't always have the same number of points!

Various magnitude systems for different uses¹. Each magnitude has a *central wavelength* and a *width*.

From big data to science: finding rare objects/events. (these ones are *very* rare)

OK, but where do we begin???

Different experiments//surveys gather different kinds of info. We "just" need to grab it...

Telescope//experiment (pipelines) \mapsto data, various formats (database) \mapsto catalog tables

ID ra dec	class sub	bClass z	zerr b	lnLStar_	i umag	gmag	rmag :	imag	zmag	W1 W2	psfgmag	psfrmag	psfim:
12376786619	68265435 16.	.878845 5.	.0594924 GAL/	XY STAR	BURST 0.	274081	1.216552	E-05	-57.5784	29492237	3 -1.	180048	20.70
12376786233	08578947 17.	.145415 5.	.2240461 GAL	XY null	0.2789	114 0.	0001069236	-57.	38323343	35941	-351.62	16 24.	92443
12376786233	08644624 17.	.274179 5.	1563299 GAL	XY null	0.2926	412 3.	324989E-05	-57.	43434671	94447	-2043.5	75 19.	76747
12376786227	71773628 17.	.297309 4.	7099285 GAL	XY null	0.2964	781 6.	580158E-05	-57.	87409502	8543	-808.24	21.8231	6 2
12376786619	68396491 17.	.230792 4.	.9492185 GAL	XY null	0.3512	432 5.	516663E-05	-57.	64526545	54808	-239.443	34 21.	51004
12376786619	68331270 17.	.112495 4.	895233 GAL	XY null	0.4003	306 8.	685785E-05	-57.	71357710	29507	-261.369	94 20.	7531 2
12376786619	68265425 16.	.932224 4.	.9781829 GAL	XY AGN	0.2789478	3.6382	13E-05 -	-57.6529	41984151	5 -724	.0213	24.5822	5 1
12376786227	71642595 16.	.988994 4.	8418012 GAL	XY null	0.2760	086 3.	284616E-05	-57.	78161444	36961	-2073.6	51 21.	62795
	68265378 16.		.009444 GAL				791953E-05		62353728		-1666.30		24423
12376786227	71642499 16.	.963018 4.		BROADLIN		306 5.	767976E-05	-57.	90343133	64451	-33.670	56 19.	65396
	71707950 17.			BROADLIN			0001009258		78476908		-5.10530		50608
12376697021	24241089 15.	.152699 7.		BROADLIN		501 0.	0001920112	-55.	55584049	4391	-1.2455	45 19.	21545
	24109952 14.			BROADLIN			0002858732		50146349		-4.9721		59216
12376697021	24175820 15.	.049748 7.	.194844 GAL	XY null	0.4973	788 0.	0003538404	-55.	61134320	40637	-11.593	72 21.	03806

Queries

Sometimes you can do a bulk download of a catalog table, sometimes it's unfeasible or unnecessary.

SQL: Structured Query Language. Basic syntax: SELECT {fields} FROM {table} WHERE {conditions

```
SELECT TOP 100
objID, ra ,dec
FROM
PhotoPrimary
WHERE
ra > 185 and ra < 185.1
AND dec > 15 and dec < 15.1
```

Queries

Sometimes you can do a bulk download of a catalog table, sometimes it's unfeasible or unnecessary.

SQL: Structured Query Language. Basic syntax: SELECT {fields} FROM {table} WHERE {conditions}

```
SELECT TOP 100
objID, ra ,dec
FROM
PhotoPrimary
WHERE
ra > 185 and ra < 185.1
AND dec > 15 and dec < 15.1
```

Slightly more complicated:

```
SELECT D.coadd_object_id, W.cntr, D.alphawin_j2000 as desra, D.deltawin_j2000 as desdec, D.mag_auto_i, W.w1mpro, W.w2mpro
FROM des_dr1.main AS D
JOIN des_dr1.des_allwise AS W on
W.coadd_object_id=D.coadd_object_id
WHERE ( D.galactic_b<-20.0 AND D.mag_auto_i>8.0 AND D.deltawin_j2000<-55.0 )
```

Q: how many differences can you spot with the simplest query?

Many examples here:

http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp Quote of the day:

"Most of the AI you may need is an SQL SELECT followed by an ORDER BY clause"

Slightly more complicated:

```
SELECT D.coadd_object_id, W.cntr, D.alphawin_j2000 as desra, D.deltawin_j2000 as desdec, D.mag_auto_i, W.w1mpro, W.w2mpro
FROM des_dr1.main AS D
JOIN des_dr1.des_allwise AS W on
W.coadd_object_id=D.coadd_object_id
WHERE ( D.galactic_b<-20.0 AND D.mag_auto_i>8.0 AND D.deltawin_j2000<-55.0 )
```

Q: how many differences can you spot with the simplest query?

Many examples here:

http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp
Quote of the day:

"Most of the AI you may need is an SQL SELECT followed by an ORDER BY clause"

Exercise

To familiarise with it a bit: Let's have a look at the *SDSS*

- Have a look at the Schema Browser for the PhotoObj and SpecPhoto tables.
- Query coordinates (ra, dec) and PSF magnitudes in u-, g-, r-, i-, z-bands, plus spectroscopic redshift, for ten thousand object with CLASS=='QSO', ten thousand with CLASS=='STAR'. You can use the web query page here.²
- Q: how well can you fit the redshift using only the magnitudes above? How well can you fit the class, given only the magnitudes?
- Repeat but also using magnitudes w1mpro and w2mpro from AllWISE.

Various examples of SDSS queries here

Can't we do it in python?

• For access to SQL servers, you can use sqlite (ask Carl!).

• For astronomical surveys, you can use astroqueries. Some examples given in **ExampleQueries.txt**, courtesy of Zoe Ansari and Sofie H. Bruun (DARK-NBI).

Plot, plot, plot Linear: Principal Component Analysi: Non-Linear: kPCA

Part 2: handling

OK, I have my table: now what?

- First things first: look at it!

 Do the entries make sense? Are there any missing entries? Are some lines redundant?
- Second: plot familiar (and unfamiliar) stuff.

Easy things first: plot feature vs feature:

Python tips and tricks: you should do it yourselves, but someone has already done it for you...

1. Pair plots (with seaborn)

https://seaborn.pydata.org/generated/seaborn.pairplot.html

```
import seaborn as sns; sns.set(style="ticks", color_codes=True)
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species", palette="husl")
```

2. Corner plots (with corner)

https://corner.readthedocs.io/en/latest/pages/quickstart.html

```
import corner
fig = corner.corner(samples, labels=["$m$", "$b$", "$\ln\,f$"])
fig.show()
```

Plot, plot, plot Linear: Principal Component Analysis Non-Linear: kPCA

sepal_length

petal_length

But how do I decide which features are important? Should I plot all of them?!

What if I'm dealing with collections of pictures instead of tables with some columns?

Common issue, 1: the dataset may be easier to crunch in a different coordinate system.

Common issue, 2: are there any combinations of features that maximize information?

Plot, plot, plot

But how do I decide which features are important? Should I plot all of them?!

What if I'm dealing with collections of pictures instead of tables with some columns?

Common issue, 1: the dataset may be easier to crunch in a different coordinate system.

Common issue, 2: are there any combinations of features that maximize information?

Sometimes you don't need hundreds of features:

This is actually done with something more advanced (Kingma & Welling 2014), but still...

Linear: Principal Component Analysys (PCA)

The maths: we want to transform our feature vectors $\{\mathbf{x}_i \in \mathbb{R}^p\}_{i=1,...,N}$ into others $\{\mathbf{f}_i \in \mathbb{R}^p\}_{i=1,...,N}$ that are uncorrelated.

How to? Find eigenvectors of the covariance matrix:

$$C_{k,l} = \frac{1}{N} \sum_{i=1}^{N} x_{i,k} x_{i,l}$$
 (1)

$$\mathbf{C}\,\mathbf{v}_k = \lambda_k \mathbf{v}_k \tag{2}$$

The eigenvectors are the *principal components*. Fraction of explained variance:

$$\operatorname{var}_{(r)} := \frac{\sum_{k=1}^{r} \lambda_k}{\sum_{k=1}^{p} \lambda_k}$$
 (3)

NB do you need to standardize your dataset?

Example on (simple stuff) images:3

³That's from an old paper of mine, you don't really need to know about it. ✓ ≥ → ≥ ✓ 🤉 ✓

Example (from scikit-learn):4

```
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n components=2)
>>> pca.fit(X)
PCA(copy=True, iterated power='auto', n components=2, random state=None,
   svd_solver='auto', tol=0.0, whiten=False)
>>> print(pca.explained variance ratio )
[0.9924... 0.0075...]
>>> print(pca.singular values )
[6.30061... 0.54980...]
Methods
 fit (X[, v])
                       Fit the model with X.
                      Fit the model with X and apply the dimensionality reduction on X.
 fit transform (XI, vI)
 get_covariance()
                       Compute data covariance with the generative model.
 get params ([deep])
                       Get parameters for this estimator.
 get precision ()
                       Compute data precision matrix with the generative model.
 inverse transform (X) Transform data back to its original space.
 score (X[, v])
                       Return the average log-likelihood of all samples.
 score samples (X)
                       Return the log-likelihood of each sample.
 set_params (**params)
                       Set the parameters of this estimator.
 transform (X)
                       Apply dimensionality reduction to X.
```

Q: Run a PCA on the quark data table, see where the '1' and '0' subsamples lie.

⁴ https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PQM.html = > < = > > =

Bonus track: kPCA

How it works:5

How the 'kernel trick' works: map feature space $\Phi: \mathbb{R}^p \mapsto \mathcal{H}$ to very-high-dimensional space with its own scalar product $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$. Diagonalize a *big* matrix

$$K_{i,j} = (1/N)k(\mathbf{x}_i, \mathbf{x}_j) \tag{4}$$

$$K\mathbf{a} = \lambda \mathbf{a}$$
 (5)

Then the components of a given feature vector $\Phi(\mathbf{f})$ in this space, relative to r—th component, are

$$t_r = \langle \mathbf{a}_r, \Phi(\mathbf{f}) \rangle = \sum_{i=1}^N a_{r,i} k(\mathbf{x}_i, \mathbf{f})$$
 (6)

Theorem: everything exists if $k(\bullet, \bullet)$ is semi-positive definite.

Q: Run a (k)PCA on the b-quark data table, try to separate the jets.

Q: Run a (k)PCA on the SDSS data table, try to separate the classes.

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- datasets can be very-high-dimensional
- Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- datasets can be very-high-dimensional
- Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)