
Faculty of Science

Big Data Analysis (Applied Machine Learning)
Convolutional Neural Networks (CNN) and images.

Aleksandar Topic
Niels Bohr Institute, University of Copenhagen

May 13th, 2020



Overview

� Brief recap of Artificial Neural Networks (ANNs)

� Images on a computer

� CNN architecture and building blocks

� Training process and inference

� Implementation in Python

� Examples and perspectivation

1 / 18



Recap of Artificial Neural Networks (ANNs)
• A model used in both supervised and unsupervised learning
• Usecases include regression, classification, segmentation,

compression, etc.
• Less interpretable compared to decision trees
• A black box model
• Require large amounts of data, often need data augmentation
• Good at dealing with natural variance in data

Convolutional neural networks work especially well for image data

ImageNet architecture from Alex Krizhevsky, et. al (ImageNet Classification
with Deep Convolutional Neural Networks), 2012

2 / 18



Images on a computer

• Discrete representation onto
finite grid and resolution

• Channels (depth) expands
representation

• Bitwidth and datatype in
relation to dynamic range

• Contrast reflected by choice
of colormap (linear vs
non-linear)

• Typically we normalize values
to be in range [0,1]

Image from brohrer.github.io

3 / 18

brohrer.github.io


Images on a computer

The convolution operation, a regional approach

Image from Josh Patterson and Adam Gibson, (Deep Learning, A
Practitioner’s Approach), 2017

4 / 18



Images on a computer
Three examples of convolution kernels on [28,28] px input image

• original image

• dx =

−1 0 1
−2 0 2
−1 0 1



• dy =

−1 −2 −1
0 0 0
1 2 1



• G = 1
16

1 2 1
2 4 2
1 2 1


5 / 18



Images on a computer
Properties of convolutions
• Used to extract or manipulate image features
• A linear operator - but what about non-linear kernels?
• Input/output generalizes to N-dimensions and multiple channels
• Stride and padding
• Global vs local context in feature maps
• Convolution operator commutes with translation→ translational

invariance

Image from indoml.com
6 / 18

indoml.com


CNN architecture and building blocks
• Layers can roughly be divided into having one of two purposes:

Feature extraction or pattern recognition
• One layer typically includes convolution followed by pooling
• Typically increase the number of feature maps, while decreasing

kernel size
• Networks with few layers and/or feature maps are called shallow

networks
• Shallow/Deep depends on data. We need to make sure that

model capacity is sufficient!

Image from (Introducing Deep Learning with MATLAB), eBook

7 / 18



CNN architecture and building blocks
Why do we need convolution?

• CNNs contain many parameters, even for modest input sizes

• Convolution provides a tool for describing images in terms of
individual features

• The output of each operation produces a feature map

• Captures image context

• Kernel values = weights, these are the trainable parameters

• Each filter has a unique scalar associated to it - the bias term

• Common filter sizes are about 3,5,7 - What happens if too large?
Too small? (1x1)

• Weight sharing, more than one gradient can affect values

• General features→ specific features the deeper we go

8 / 18



Interactive questions!

� Q1: Given an input image of W=[28,28] pixels, we perform a
convolution using a kernel size of F=5, a padding of P=1 and a
stride of S=1. What will the dimenions of the output become?

� Q2: We look at a single convolution layer in a CNN. We feed a
RGB image with C=3 channels as input. The layer contains N=8
kernels each of size K=5. What is the total number of trainable
parameters for this given layer?

9 / 18



Interactive questions!

� A1:(
W −F +2P

S

)
+1 =

(
28−5+2 ·1

1

)
+1 = 26

where:
W → input size, F → kernel size, P → padding size, S→ stride size

� A2:

K 2 ·C ·N +B = 52 ·3 ·8+8 = 608

where:
K → kernel size, C → # of input channels,
N = B→ # kernels/biases (output channels)

10 / 18



CNN architecture and building blocks
Pooling layer

• Reduces dimensions and
localization accuracy

• Makes feature maps more
manageable

• No trainable parameters
• Pooling operates on each

activation map individually
• When downsampling, are we

loosing information?
• Remember: Values represent

the accumulation of all
previous processes

• Pooling enhances what is
prominent

Image from
towardsdatascience.com

11 / 18

towardsdatascience.com


CNN architecture and building blocks
Activations

• Recall: Convolution is linear
→ only linear data mappings

• Each feature map is
”activated” by non-linearity
activation function

• Monotonicity is not necessary
but can help speed up
optimization

• ReLU is most used, low
computational cost

• Often choose functions which
are cheaply differentiable (BP)

• Saturated vanishing gradient
problem

Top image shows common
activations with their derivatives
below.

12 / 18



CNN architecture and building blocks
Dense layers - almost a ”regular” feed forward ANN

• Fully connected layers
• Number of trainable

parameters increase
drastically

• Randomized dropout to avoid
regional dominance

• Typically used towards end of
network - and no shared
parameters

• Responsible for pattern
recognition and classification

• Dense layers are
problem-specific and not
necessary in a CNN

Image from Fundamental
Concepts of Convolutional Neural
Network, 2019

13 / 18



CNN architecture and building blocks
How to choose architecture and what to consider?

• Well there is no one-fits-all approach ...

• The capacity of the network is a measure for what it can learn

• We control capacity through many (hyper)parameters

• How does the initialized parameters change, does it make sense?

• How many epochs are necessary? Early stopping?

• Often work in mini-batches when possible

• Pruning can tremendously increase performance

• Try things out: One change at one place can make other changes
elsewhere redundant

14 / 18



Training process and inference
While training is typically slow, inference is almost instantaneous.

Some data processing is necessary to make BP usable.

Inormalized =
I−min(I)

max(I)−min(I)
Istandardized =

I−µI

σI

This ensures small perturbations in weights/bias also yield small
changes in output.

• Start with small portion of data - should be easy to overfit
• Monitor various parameters during training
• Then make adaptations accordingly: From coarse to fine tuning
• Is learning rate too low?
• Sanity check: Is loss behaving as expected?
• Try making the model intentionally worse - does it behave

reasonably?
• Random search vs grid search
• Can initialize from trained network (transfer learning)

15 / 18



Implementation in Python

• Very parallelizable process through vectorization→ GPU

• Processing images in mini-batches not single image at a time

• Data-augmentation when necessary: Rotations, scaling,
stretching, flipping, add noise, change lighting, etc.

• Need to be careful when data-augmenting (MNIST: 6 vs 9)

• Most popular: Tensorflow (Google), PyTorch (Facebook)

• Personal choice of high vs low level approach in both frameworks

16 / 18



Implementation in Python

Live demo in Jupyter Notebook

17 / 18



Examples and perspectivation

Left: Object detection using Faster RCNN (Shaoqing Ren et. al 2016). Right:
Image segmentation using U-net (Olaf Ronneberger et. al 2015).

Interactive 3D visualization of CNN on MNIST data:
https://www.cs.ryerson.ca/˜aharley/vis/conv/

More advanced interactive CNN visualization system:
https://poloclub.github.io/cnn-explainer/

18 / 18

https://www.cs.ryerson.ca/~aharley/vis/conv/
https://poloclub.github.io/cnn-explainer/

