Faculty of Science

Big Data Analysis (Applied Machine Learning) Convolutional Neural Networks (CNN) and images.

Aleksandar Topic Niels Bohr Institute, University of Copenhagen

May 13th, 2020

Overview

Brief recap of Artificial Neural Networks (ANNs)

Images on a computer

CNN architecture and building blocks

Training process and inference

- Implementation in Python
- Examples and perspectivation

Recap of Artificial Neural Networks (ANNs)

- A model used in both supervised and unsupervised learning
- Usecases include regression, classification, segmentation, compression, etc.
- Less interpretable compared to decision trees
- A black box model
- Require large amounts of data, often need data augmentation
- Good at dealing with natural variance in data

Convolutional neural networks work especially well for image data

ImageNet architecture from Alex Krizhevsky, et. al (*ImageNet Classification with Deep Convolutional Neural Networks*), 2012

- Discrete representation onto finite grid and resolution
- Channels (depth) expands representation
- Bitwidth and datatype in relation to dynamic range
- Contrast reflected by choice of colormap (linear vs non-linear)
- Typically we normalize values to be in range [0,1]

Image from brohrer.github.io

The convolution operation, a regional approach

Input data

Image from Josh Patterson and Adam Gibson, (*Deep Learning, A Practitioner's Approach*), 2017

Three examples of convolution kernels on [28,28] px input image

• original image

•
$$dx = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

•
$$dy = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

•
$$G = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Properties of convolutions

- Used to extract or manipulate image features
- A linear operator but what about non-linear kernels?
- Input/output generalizes to N-dimensions and multiple channels
- Stride and padding
- Global vs local context in feature maps
- Convolution operator commutes with translation \rightarrow translational invariance

Image from indoml.com

- Layers can roughly be divided into having one of two purposes: Feature extraction or pattern recognition
- One layer typically includes convolution followed by pooling
- Typically increase the number of feature maps, while decreasing kernel size
- Networks with few layers and/or feature maps are called shallow networks
- Shallow/Deep depends on data. We need to make sure that model capacity is sufficient!

Image from (Introducing Deep Learning with MATLAB), eBook

Why do we need convolution?

- · CNNs contain many parameters, even for modest input sizes
- Convolution provides a tool for describing images in terms of individual features
- The output of each operation produces a feature map
- Captures image context
- Kernel values = weights, these are the trainable parameters
- Each filter has a unique scalar associated to it the bias term
- Common filter sizes are about 3,5,7 What happens if too large? Too small? (1x1)
- · Weight sharing, more than one gradient can affect values
- General features \rightarrow specific features the deeper we go

Interactive questions!

Q1: Given an input image of W=[28,28] pixels, we perform a convolution using a kernel size of F=5, a padding of P=1 and a stride of S=1. What will the dimensions of the output become?

Q2: We look at a single convolution layer in a CNN. We feed a RGB image with C=3 channels as input. The layer contains N=8 kernels each of size K=5. What is the total number of trainable parameters for this given layer?

Interactive questions!

A1:

$$\left(\frac{W-F+2P}{S}\right)+1 = \left(\frac{28-5+2\cdot 1}{1}\right)+1 = 26$$

where:

W
ightarrow input size, F
ightarrow kernel size, P
ightarrow padding size, S
ightarrow stride size

A2:

$$K^2 \cdot C \cdot N + B = 5^2 \cdot 3 \cdot 8 + 8 = 608$$

where:

 $K \rightarrow$ kernel size, $C \rightarrow$ # of input channels,

 $N = B \rightarrow \#$ kernels/biases (output channels)

Pooling layer

- Reduces dimensions and localization accuracy
- Makes feature maps more manageable
- No trainable parameters
- Pooling operates on each activation map individually
- When downsampling, are we loosing information?
- Remember: Values represent the accumulation of all previous processes
- Pooling enhances what is prominent

Image from

towardsdatascience.com

Activations

- Recall: Convolution is linear
 → only linear data mappings
- Each feature map is "activated" by non-linearity activation function
- Monotonicity is not necessary but can help speed up optimization
- ReLU is most used, low computational cost
- Often choose functions which are cheaply differentiable (BP)
- Saturated vanishing gradient problem

Top image shows common activations with their derivatives below.

Dense layers - almost a "regular" feed forward ANN

- Fully connected layers
- Number of trainable parameters increase drastically
- Randomized dropout to avoid regional dominance
- Typically used towards end of network - and no shared parameters
- Responsible for pattern recognition and classification
- Dense layers are problem-specific and not necessary in a CNN

Image from Fundamental Concepts of Convolutional Neural Network, 2019

How to choose architecture and what to consider?

- Well there is **no** one-fits-all approach ...
- The capacity of the network is a measure for what it can learn
- We control capacity through many (hyper)parameters
- · How does the initialized parameters change, does it make sense?
- How many epochs are necessary? Early stopping?
- Often work in mini-batches when possible
- Pruning can tremendously increase performance
- Try things out: One change at one place can make other changes elsewhere redundant

Training process and inference

While training is typically slow, inference is almost instantaneous.

Some data processing is necessary to make BP usable.

$$I_{\text{normalized}} = \frac{I - \min(I)}{\max(I) - \min(I)} \qquad \qquad I_{\text{standardized}} = \frac{I - \mu_{\text{I}}}{\sigma_{\text{I}}}$$

This ensures small perturbations in weights/bias also yield small changes in output.

- · Start with small portion of data should be easy to overfit
- Monitor various parameters during training
- Then make adaptations accordingly: From coarse to fine tuning
- Is learning rate too low?
- Sanity check: Is loss behaving as expected?
- Try making the model intentionally worse does it behave reasonably?
- Random search vs grid search
- Can initialize from trained network (transfer learning)

Implementation in Python

- Very parallelizable process through vectorization \rightarrow GPU
- Processing images in mini-batches not single image at a time
- Data-augmentation when necessary: Rotations, scaling, stretching, flipping, add noise, change lighting, etc.
- Need to be careful when data-augmenting (MNIST: 6 vs 9)
- Most popular: Tensorflow (Google), PyTorch (Facebook)
- · Personal choice of high vs low level approach in both frameworks

Implementation in Python

Live demo in Jupyter Notebook

Examples and perspectivation

Left: Object detection using Faster RCNN (Shaoqing Ren et. al 2016). Right: Image segmentation using U-net (Olaf Ronneberger et. al 2015).

Interactive 3D visualization of CNN on MNIST data: https://www.cs.ryerson.ca/~aharley/vis/conv/

More advanced interactive CNN visualization system: https://poloclub.github.io/cnn-explainer/