Big Data Analysis

Results and Scores of Small Project

“Statistics is merely a quantisation of common sense - Big Data is a sharpening of it!”



Overall comments

The name “Small Project” is misleading, and should have been “Initial project”,
because it is by no means small. But you did very well, and so let me start by
gently stating, that you have little/nothing to fear - in fact, you did really great!

Grading it was perhaps harder than the project itself, but Carl and I have done
our best to be as open as possible about the scoring. And to give you a maximum
of feedback, we have produced a report for each of you.



The motivation

We wanted you to try the very real challenge of optimising models, without
knowing their performance on the data it is applied to.

We also wanted you to individually run ML algorithms, so that you have the
machinery in place after the course.

We insisted that you tried both tree- and NN-based algorithms, to get a feel for
their differences and similarities.

The description file was meant to trigger you to think about your models, and
what you tried. Also, considerations of size and performance are in place.

Finally, we wanted to ensure that you yourself tried all the work and things to
consider, to put together ML models and apply them.



Classification Results



Classification variable usage

Many (most?) of you have made a variable ranking. Below you find a variable
usage frequency plot, showing how often a variable was used.
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There is a small “step” after 12 variables, which probably reflects the output of
different variable ranking methods (permutation importance and SHAP).



Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

Distribution of classification LogLoss:
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Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

Distribution of classification LogLoss:
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likely the point of best possible separation.
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Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

Distribution of classification LogLoss:
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Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

Distribution of classification LogLoss:
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Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

Distribution of classification LogLoss:
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Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

Distribution of classification LogLoss:

LogLoss (ALL solutions)
Hm Logloss (BEST solutions)
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Regression Results
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Regression variable usage

The most important variable happens to be ATLAS’ own energy prediction, so
that is no surprise. I considered not including it, and might change next year.
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The variables have changed drastically from the PID case, and there is NO overlap
at all for the top 10-15 variables! PID and E-regression are two very different tasks.
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:

Distribution of regression relative MAE:
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:

Distribution of regression relative MAE:
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:

Distribution of regression relative MAE:
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:

Distribution of regression relative MAE:

Relative MAE (ALL solutions)
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Clustering Results
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I would have thought, that the clustering variable usage would be near-identical

Clustering variable usage

to that of the (supervised) classification task. However, it is not entirely...
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Classification

It is also a “hard” (i.e. under defined) task of choosing variables for clustering,
when the task/target is unknown. It takes insight and domain knowledge...
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Clustering
housing

While postal codes
are good, they are not
very useful in
clustering Denmark.

However, using just a
few variables (x, y,
density, price/m2),
one can cluster villas
in Denmark very
efficiently.

In this way, one can
follow trends for a
type of house much
better.
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Clustering accuracy distribution

The accuracy of the clustering (when assigned either electron or not) was:
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Clustering accuracy distribution

The accuracy of the clustering (when assigned either electron or not) was:

Distribution of clustering accuracies:
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Clustering accuracy distribution

The accuracy of the clustering (when assigned either electron or not) was:

Distribution of clustering accuracies:

Accuracy (ALL solutions)
Emm Accuracy (BEST solutions)
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Scoring your solutions

26



How do we grade your projects?

Final Score:
You submitted a full solution, from which you get: 65 points

Your choice of methods based on your description was scored as follows [0,6]:
Your solutions entailed Nalgo different algorithms, which gives a score of [0,6]:
Your variable choice was scored 8 x (Sum YourVarFreq / Sum TopVarFreq) [0,8]:
Your performance was for:

Classification: -log(CrossEntropy - 0.14) [0,4+]:

Regression:  -log( (MAE((E-T)/T) - 8000)/8000) [0,4+]:

Thus your total number of points was: N points
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Your description reports

Carl and I read through your descriptions, and did a manual scoring (the only)
based on choice of algorithms, hyperparameter optimisation, and data division
(e.g. cross validation). Each yielded a score of 0-2, giving a total score of 0-6
points.

Are we nice? Do we agree?
. 6 e o e
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5.0 1
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0.0 -

0 1 2 3 4 5 6
Troels

As you can see, we were generally satisfied. The descriptions were short and to
the point, and give some insight into your line of thinking and working.
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Your variable choice

Assuming, that the variable frequency reflected the actual ranking very well,
your variable choice was scored as follows:

8 X (Z Freq(Your variables)/ Z Freq(Top variables))

...s0 if you picked the top variables, you would get full points.

Classification
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Performance scoring

As mentioned, performance isn’t everything, and we certainly didn’t want it to
be for the small project. Getting close to the information limit is just great.

This was reflected by using a logarithmic scoring, which turned your best key
performance parameter into a score in the (open) range [0,4+]:

LogLoss (ALL solutions)

LogLoss of solutions Relative MAE of solutions
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Reporting back to you
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Feedback to you

We have created a small report back to you, which consists of:

e A certificate - for you to be proud of handing in...

e A summary - for you to know how you did...

e A solution scoring with key numbers and illustrations - for you to understand
how your model performed.

These are (hopefully) being mailed to you by Carl and Zoe right now. Please sit
down after class and look through them.

Also, don't hesitate to discuss them with your peers. —
Perhaps you have already done this (great), but this :
feedback and reflection is the process through which
you learn the most... please use it.

100

— PBas @o,aew
Troels C. Petersen
Coure responsble




Classification report

By now you should know what all the different plots and number are...

The solution gave the following metrics:

Metric ‘ Equation | Value
Accuracy sklearn.metrics.accuracy_score | 0.940735
AUC sklearn.metrics.auc 0.976952
Cross entropy sklearn.metrics.log_loss 0.153488

The solution produced the following plots:

Figure 1: Left: ROC curve for the tensorflow2 implementation. The orange curve should
be as close to the upper left corner as possible. Right: Confusion matrix for the ten-
sorflow2 implementation. The diagonal squares ((0,0) and (1,1)) should have the higher
values.
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Regression report

The solution gave the following metrics:

Metric Equation Value
MAE - Absolute sklearn.metrics.mean absolute error | 6744.0340
MAE - Relative P 9019.6753
RMS mean((yp — yt)?) 14344.1986
RMS 98th percentile mean((yp — yt)?) 9011.5420
RMS 90th percentile /mean((y, — y:)?) 5818.4660
RMS 70th percentile mean((y, — y:)?) 4338.8145

The solution produced the following plots:
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Figure 2: Upper: Distribution plots for the xgboost1 implementation. The plots are for
absolute error (Left) and relative error (Right.). Both plots should have a tall narrow
curve, centered around 0. Lower: Diversion plot for the xgboostl implementation. The
dots should be scattered close to the line - especially for the 90th percentile.
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Clustering report

The clustering report is
necessarily not very detailed, as
unsupervised learning carries a
great deal of uncertainty on
what you’re doing.

However, remember the remark
by Alexander Nielsen about t-
SNE, but applied more
generally:

“I always start by throwing a
clustering algorithm at data,
just to see what structures turn
up, if any.

Even the latter result tells me
something valuable for the
further analysis.”

The solution produced the following metrics:

Metric ‘ Equation ‘ Value
Accuracy ‘ sklearn.metrics.accuracy_score ‘ 0.8128

To compute the accuracy, the following mapping was used, based on the clusters resem-
blance to electron classification:

Cluster 01
is electron | 1 | 0

The solution provided the following plot:
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Figure 3: Pairplot for the scikitkmeansl implementation. The variables chosen are the top
4 most used variables for clustering. There should be a clear distinction of the clusters.
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Thank you,

for all your
hard work



