

The Red, The White And The Rosé

Final Project

Applied Machine Learning 2022

Norman Pedersen, Marcus Dreisler, and Steen Bender

Introduction

- Wine has been the subject in various studies both in ML and other fields
 - \circ Chemical analysis \rightarrow assessing Quality & Rating
 - \circ Written reviews \rightarrow predicting Ratings
 - \circ Wine metadata \rightarrow predicting Ratings & Price

• We develop a ML framework to investigate the information in the bottle design and label (and hence visual consumer bias).

Predictions (generated)

The dataset

Scraped from Vivino in 2020

13k unique wines with 8 variables

Name	Country	Region	Winery	Rating	No. ratings	Price	Year
Ribera del Duero	Spain	Ribera del Duero	Garmón	4.2	1017	38.80 EUR	2015

The dataset - an extended version

We made an additional scraper to obtain wine label images

Google Maps API were also implemented to obtain *Latitude* and *Longitude* from *Winery, Region, and Country*

Name	Country	Region	Winery	Rating	No. ratings	Price	Year	Lat	Lng	Image
Ribera del Duero	Spain	Ribera del Duero	Garmón	4.2	1017	38.80 EUR	2015	42.45	-5.12	"Labels/Red _Wine/index .png"

8

Rating Vs. Wine type

Predictions (generated) 12

Separating hand-held and professional images

Transforming images using a pre-trained CNN, VGG16, to a 4096 dimensional representation

100 component PCA

K-Means clustering (n=5) of the 100 PCs

VGG16 by K. Simonyan and A. Zisserman (University of Oxford)

With this approach, we divide the wines into groups based on their label image.

The cluster integer further serves as a new variable, *img_cluster*, in the tabular data Cluster int: 2

Cluster int: 1

Cluster int: 0

+ 2 more

Name	Country	Region	Winery	Rating	No. ratings	Price	Year	Lat	Lng	img_cluster
Ribera del Duero	Spain	Ribera del Duero	Garmón	4.2	1017	38.80 EUR	2015	42.45	-5.12	0

Strings

"I always run a clustering algorithm at first..."

UMAP (2 components, 20 neighbours)

Colored by RGBA of price, type, year, and rating

Vars: Price, Year, type_int, MercLat, MercLng, img_cluster, Rating, NumberOfRatings

DBSCAN

"Price". "Year". "type_int", "MercLat". "MercLng", "img cluster", "Rating", "NumberOfRatings"

94 clusters

DBSCAN cluster int distribution, eps = 500, min_samples = 30

A high HP value (as compared to default), required to cluster the broadly distributed points in high dimensions

UMAP (2 components, 20 neighbours)

Colored by DBSCAN clusters

19

Geopandas: a library for plotting maps. (Among other things)

Comparable to the UMAP, wines assigned to the same cluster also show up in the same area

20

LightGBM

SHAP

Optuna

LightGBM regressor

Variables: Type, price, year, MercLat, MercLng, img_cluster

RMSE 0.18, 12811 entries White Rose Red 5.00 5.00 5.00 4.75 4.75 4.75 4.50 4.50 4.50 4.25 4.25 4.25 - 00.4 Actual rating Actual rating Actual rating 4.00 4.00 3.75 3.75 3.50 3.50 3.50 3.25 3.25 -3.25 -3.00 3.00 3.00 2.75 2.75 2.75 5.0 24 4.5 4.5 3.0 3.5 4.0 5.0 3.0 3.5 4.0 4.5 5.0 3.0 3.5 4.0 Predicted rating Predicted rating Predicted rating

LightGBM regressor

Variables: Type, rating, year, MercLat, MercLng, img_cluster

RMSE 66.67, 12811 entries

A Generative Adversarial Network

(And Variational Auto Encoder)

Variational Auto Encoder

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 32, 128, 128]	896
BatchNorm2d-2	[-1, 32, 128, 128]	64
LeakyReLU-3	[-1, 32, 128, 128]	0
Conv2d-4	[-1, 64, 64, 64]	18,496
BatchNorm2d-5	[-1, 64, 64, 64]	128
LeakyReLU-6	$\begin{bmatrix} -1, 64, 64, 64 \end{bmatrix}$	
Conv2d-/	$\begin{bmatrix} -1, 128, 32, 32 \end{bmatrix}$	/3,856
BalchNorm2d-8	$\begin{bmatrix} -1, & 120, & 32, & 32 \end{bmatrix}$	256
	[-1, 120, 32, 32] [-1, 256, 16, 16]	295 168
BatchNorm2d-11	$\begin{bmatrix} 1, 250, 10, 10 \end{bmatrix}$	293 , 100
LeakyReLU-12	$\begin{bmatrix} -1, 250, 10, 10 \end{bmatrix}$	0
Conv2d-13	$\begin{bmatrix} -1, 512, 8, 8 \end{bmatrix}$	1.180.160
BatchNorm2d-14	[-1, 512, 8, 8]	1,024
LeakyReLU-15	[-1, 512, 8, 8]	, • 0
Linear-16	[-1, 128]	4,194,432
Linear-17	[-1, 128]	4,194,432
Linear-18	[-1, 32768]	4,227,072
ConvTranspose2d-19	[-1, 256, 16, 16]	1,179,904
BatchNorm2d-20	[-1, 256, 16, 16]	512
LeakyReLU-21	[-1, 256, 16, 16]	0
ConvTranspose2d-22	[-1, 128, 32, 32]	295,040
BatchNorm2d-23	[-1, 128, 32, 32]	256
LeakyReLU-24	[-1, 128, 32, 32]	
ConvTranspose2d-25	$\begin{bmatrix} -1, 64, 64, 64 \end{bmatrix}$	13,192
BalchNorm2d-26	$\begin{bmatrix} -1, \ 64, \ 64, \ 64 \end{bmatrix}$	128
	$\begin{bmatrix} -1 & 32 & 128 & 128 \end{bmatrix}$	18 464
BatchNorm2d-29	$\begin{bmatrix} 1, 52, 120, 120 \end{bmatrix}$	10,404
LeakvReLU-30	$\begin{bmatrix} -1, & 32, & 120, & 120 \end{bmatrix}$	0
ConvTranspose2d-31	[-1, 32, 256, 256]	9,248
BatchNorm2d-32	[-1, 32, 256, 256]	64
LeakyReLU-33	[-1, 32, 256, 256]	0
Conv2d-34	[-1, 3, 256, 256]	867
Tanh-35	[-1, 3, 256, 256]	0

Hidden layers: [32,64,128,256,512]
Latent dim: 128
lr: 0.001

Activation function: LeakyReLU
Pooling : BatchNorm2d
End activation: Tanh
Loss: KL_loss * 0.5 + MSE

Total params: 15,764,835 Trainable params: 15,764,835 Non-trainable params: 0

Average prof red wine

VAE generated

... Perhaps a different approach? 31

Hidden layers: [8,16,32,64]

Latent dim: 128

lr: 0.001

End activation:	abs (Tanh)
Loss: KL_loss *	0.001 + MSE

Original images

Reconstructed images

200 Epoch

Reconstructed images

Generative Adversarial Network

Generator

Laten dim: 300

Linear Layer: 640000

(Tran)Conv2d layer: [256,64,64,64,64]

Activation fn: LeakyRelu

Lr: [0.0002]

Loss: Binary Cross entropy

Output shape: [300,300,3]

Total params: 192,740,227 Trainable params: 192,740,227 Non-trainable params: 0

Discriminator

Conv2d layer: [64,128,128,256]
Activation fn: LeakyRelu
Linear layer: [640000]
Pooling: Dropout
Lr: [0.0002]
Loss: Binary Cross entropy
Output shape: [1]
Total params: 870,721
Trainable params: 870,721
NON-trainable params: U

35

A Convolutional Neural Network

for predicting rating and price

CNN Output

Three different cases

- Regression based on image
- Regression based on image + variables (same variables as in LGBM)
- Regression based on variables

CNN structure - images and variables

RMSE (training) loss - Rating and Price

39

Predictions (generated) 40

CNN regression residuals (predicting by label image)

CNN regression residuals (predicting by label image + variables)

LGBM vs. CNN (Images and Variables) - Ratings

43

Conclusion

Rating: The best CNN-based model (vars), RMSE: 0.20 LGBM, RMSE: 0.18

Price: The best CNN-based model (vars), RMSE: 72.32 LGBM, RMSE: 66.67

Image-based CNN does learn during training, however we expect an ensemble model including both a tree-based and CNN is the way to go to incorporate label images.

We do manage to use ML methods to predict ratings and price, though there was no information to gain from the wine label images.

Further Work

- Scrap higher resolution pictures
- Addition of one-hot encoded categorical variables for CNN
- Utilize BOW from wine names
- SHAP on CNN
- Given working VAE
 - Train Linear NN to produce latent space of given picture from corresponding meta-data
 - Produce never seen before wine bottles through decoder given custom meta-data input
- Further improve GAN
 - Estimate rating and/or price from generated picture

Questions?

APPENDIX

The raw numericals

N_unique values of the categorical data

Name	10079
Country	7 32
Region	813
Winery	3264
dtype:	int64

Correlation matrices of red and white wine

LGBM vs. CNN (variables) - Price Prediction

LGBM vs. CNN - Price Prediction - Images

LGBM vs. CNN (Images and Variables)- Price Prediction

LGBM vs. CNN (Variables) - Rating Prediction

LGBM vs. CNN (Images)- Rating Prediction

Generative Adversarial Network

Generator

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 640000)	192640000
leaky_re_lu_4 (LeakyReLU)	(None, 640000)	0
reshape (Reshape)	(None, 50, 50, 256)	0
conv2d_transpose (Conv2DTra nspose)	(None, 50, 50, 64)	65600
leaky_re_lu_5 (LeakyReLU)	(None, 50, 50, 64)	0
conv2d_transpose_1 (Conv2DT ranspose)	(None, 100, 100, 64)	16448
leaky_re_lu_6 (LeakyReLU)	(None, 100, 100, 64)	0
conv2d_transpose_2 (Conv2DT ranspose)	(None, 300, 300, 64)	16448
leaky_re_lu_7 (LeakyReLU)	(None, 300, 300, 64)	0
conv2d_4 (Conv2D)	(None, 300, 300, 3)	1731

Discriminator

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 300, 300, 64)	832
leaky_re_lu (LeakyReLU)	(None, 300, 300, 64)	0
conv2d_1 (Conv2D)	(None, 100, 100, 128)	32896
leaky_re_lu_1 (LeakyReLU)	(None, 100, 100, 128)	0
conv2d_2 (Conv2D)	(None, 50, 50, 128)	65664
<pre>leaky_re_lu_2 (LeakyReLU)</pre>	(None, 50, 50, 128)	0
conv2d_3 (Conv2D)	(None, 50, 50, 256)	131328
<pre>leaky_re_lu_3 (LeakyReLU)</pre>	(None, 50, 50, 256)	0
flatten (Flatten)	(None, 640000)	0
dropout (Dropout)	(None, 640000)	0
dense (Dense)	(None, 1)	640001

VAE Loss over Epcohs

VAE Loss over Epcohs

Epoch 139

Original images

Reconstructed images

CNN Structure - Code

class Net(nn.Module): def __init__(self): super(Net,self).__init__() self.img features =nn.Sequential(

nn.Conv2d(4, 128, 5), nn.ReLU(), nn.Dropout(), nn.MaxPool2d(5,ceil_mode=True), nn.Conv2d(128, 64, 5), nn.ReLU(), nn.MaxPool2d(5,ceil_mode=True), nn.Flatten(), #shape 432 #nn.Linear(432, 1),

self.num_features_ = nn.Sequential(nn.Linear(6,128), nn.ReLU(),

)

nn.Dropout(), nn.Linear(128, 64), nn.ReLU(), nn.Dropout(), #shape 43

self.com_features_ = nn.Sequential(
 nn.Linear(9280,256),
 nn.ReLU(),
 nn.Dropout(),
 nn.Linear(256, 512),
 nn.ReLU(),
 nn.Linear(512, 256),
 nn.Linear(256,1),
)

def forward(self, x,y): x = self.img_features_(x) y = self.num_features_(y) z = torch.cat((x,y),1) z = self.com_features_(z) return z (C)NN regression residuals (predicting by variables)

CNN Evalutation Price Plots

Variables and Images

Images only

CNN Evaluation Price Plots - Variables Only

