Insolubles in Ice Cores

By Cecilie, Flemming, Laura, Mads and Yannick

Hypothesis and outline

By training on images and metadata from insolubles that can be found in ice cores, we want to classify different classes of insolubles from a Peruvian ice core (supervised learning).

<u>Outline:</u>

- Data
- Training the model
- Predict on peruvian ice core

The data

Training data:

Data from Niccolò Maffezzoli

- 7 classes with labels
- 147960 data points
- images of varying resolution
- 56 metadata
- 'Synthetic data'

Peruvian ice core data:

- Unknown amount of classes
- 102764 data points
- images and metadata

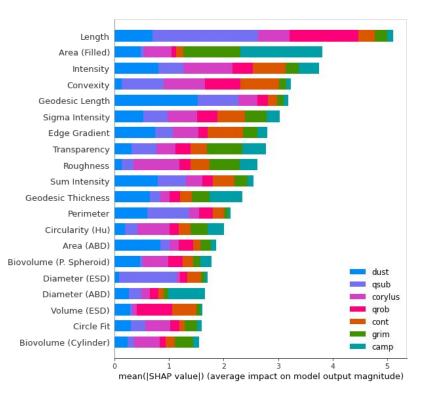
Metadata -contains 56 only 34 is applied

'Area (ABD)', 'Area (Filled)', 'Aspect Ratio', 'Biovolume (Cylinder)',

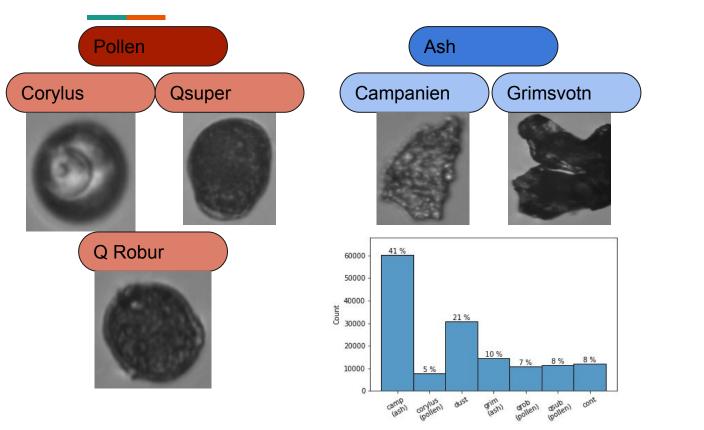
'Biovolume (P. Spheroid)', 'Circle Fit',

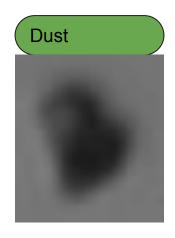
'Circularity', 'Circularity (Hu)', 'Compactness', 'Convex Perimeter',

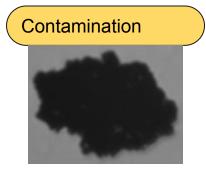
'Convexity', 'Diameter (ABD)', 'Diameter (ESD)', 'Edge Gradient',


'Elongation', 'Feret Angle Max', 'Feret Angle Min', 'Fiber Curl',

'Fiber Straightness', 'Geodesic Aspect Ratio', 'Geodesic Length',


'Geodesic Thickness', 'Intensity', 'Length', 'Particles Per Chain',


'Perimeter', 'Roughness', 'Sigma Intensity', 'Sum Intensity',


'Symmetry', 'Transparency', 'Volume (ABD)', 'Volume (ESD)', 'Width'

Images in training

Training the model

Preprocessing

Images:

- Reshape to 128x128
- Normalization
- Grayscale

Metadata:

- Also normalize metadata

- so can be input into NNs
- to have consistent scale
- to reduce size

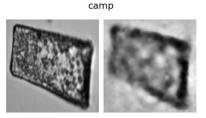
Models and applications

Models:

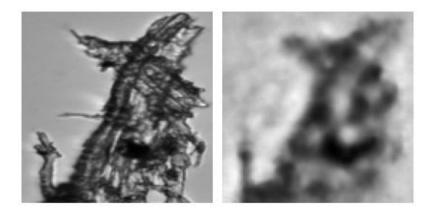
- Auto encoder
- Making a NN only from metadata
- Making a CNN without the metadata
- Combining images and metadata
 - With LightGBM
 - NN from tenserflow
 - Combining a CNN and NN with Resnet

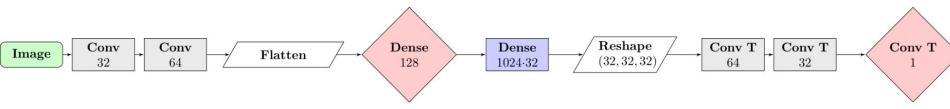
Model and applications:

- Shap to find best metadata
- Train on 6 classes umap to find 7
- Use last hidden layer to classify
- Use auto encoder to remake images
- Optimize latent space
- Does single classes have structure?
- Only look at pollen because they are hardest to classify
- Classify into 4 classes then into 7


Auto encoder

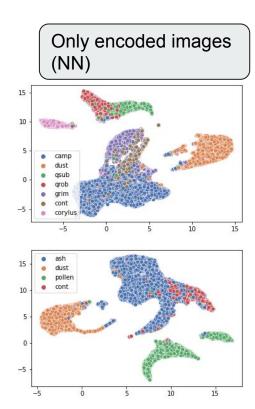
Only encoder for the NN - auto encoder to validate

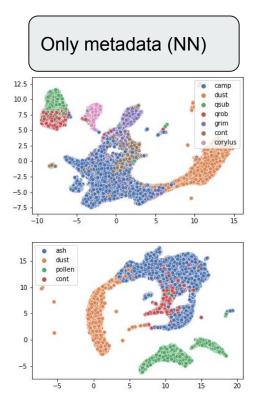

Optimized latent space and looked at how it improved the NNs predictions

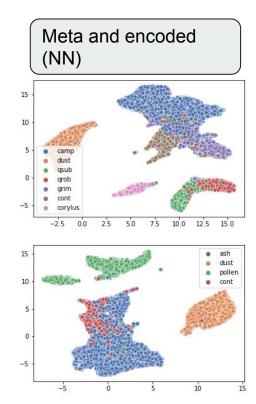

Tried different auto encoders more convolutions and included maxpools

camp

cont

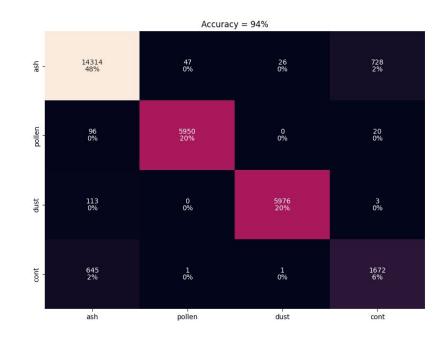





Performance and predictions

	Accuracy	Comment
LightGBM meta and encoded images	86%	Fast and fine
Only images (CNN)	81%	Bad
Only metadata (NN)	84%	Not good
Only images (NN on encoded images)	87%	Decent
Meta and encoded (NN)	90%	Much better than individual
Combined convolutional NN	86%	Difficult to train and not better than the above

Umaps



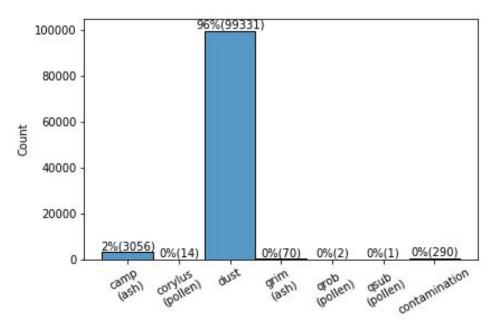
NN from encoded images and metadata

Accuracy = 90%							
- camp	11720	19	37	179	7	5	182
	40%	0%	0%	1%	0%	0%	1%
corylus	14	1507	0	4	3	2	0
	0%	5%	0%	0%	0%	0%	0%
dust	47	0	6040	3	0	0	2
	0%	0%	20%	0%	0%	0%	0%
grim -	591	9	12	2218	10	4	122
	2%	0%	0%	7%	0%	0%	0%
qrob	27	33	0	25	1807	333	5
	0%	0%	0%	0%	6%	1%	0%
dsub	11	21	0	28	296	1947	3
	0%	0%	0%	0%	1%	7%	0%
cont	819	3	2	154	2	0	1339
	3%	0%	0%	1%	0%	0%	5%
	camp	corylus	dust	grim	qrob	qsub	cont

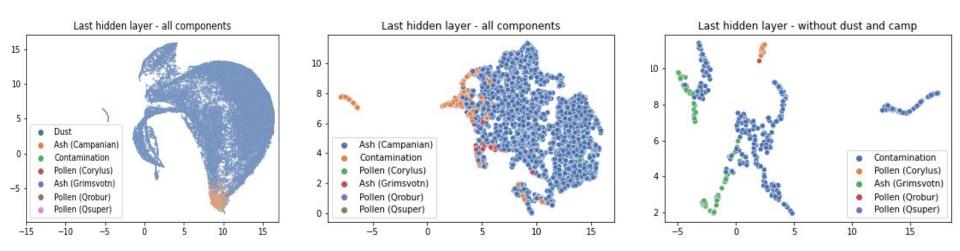
Combining classes into larger groups

Optimize

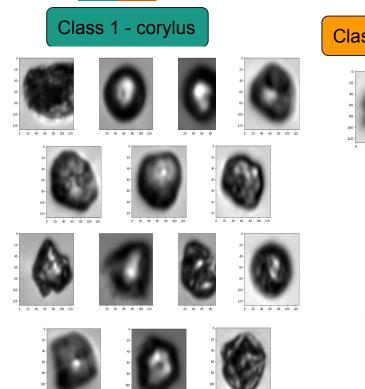
- Balancing of data types
 - smote, random undersampling and random oversampling
- Baysianoptimazation

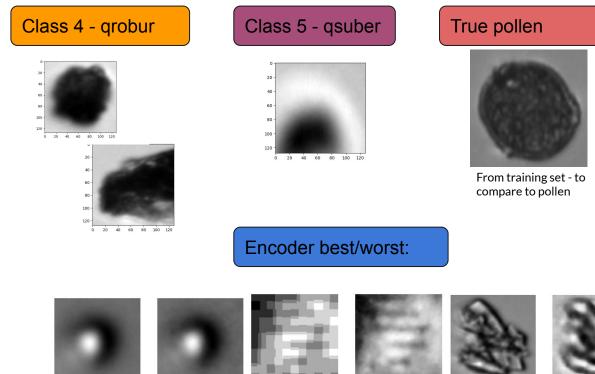

Troubles with training

- Models that took images as input were troublesome in google colab.
- Limited GPU time on colab.


PERUVIAN ICE CORE

Predictions from test and train

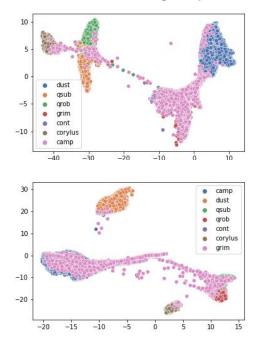

Found a lot of dust and a bit of ash and not so much pollen

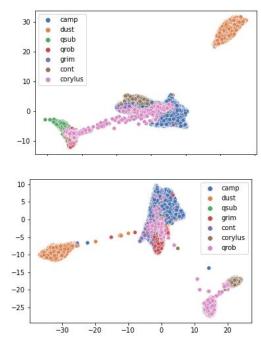

Umap on last hidden layer, colored by predictions from NN

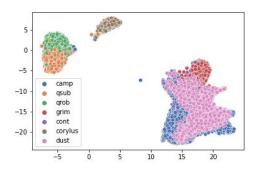
20 interesting images

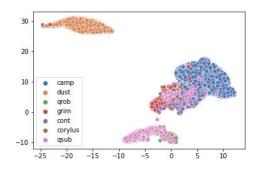
0 20 40 60 80 100 120

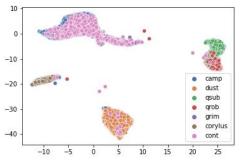
Conclusions and perspective


- Our model is pretty good at separating major groups (pollen, ash, dust, and contamination)
- Difficult to separate inside these groups
- There is mostly dust in peruvian ice cores, little ash and not much pollen at all


- Perspective:
 - optimize our models
 - find a way to do better training


Appendix


train on 6 umap on 7


Idea is to only train with 6 of the labels. Then use umap on the last layer of NN to see if the 7th makes a distinct group.

Dedicated NN to see differences between groups

We also attempted to make dedicated NN to see the differences between the groups it at a bad time at seperating.

No increase in performance was made.

LightGBM

Accuracy = 89%							
camp	10025	10	5	70	10	0	195
	40%	0%	0%	0%	0%	0%	1%
corylus	55	1140	0	0	25	5	0
	0%	5%	0%	0%	0%	0%	0%
dust	195	0	4830	10	0	0	5
	1%	0%	19%	0%	0%	0%	0%
grim	710	0	10	1740	10	20	130
-	3%	0%	0%	7%	0%	0%	1%
qrob	30	25	0	45	1530	320	5
	0%	0%	0%	0%	6%	1%	0%
qnsb	10	20	0	50	345	1530	0
	0%	0%	0%	0%	1%	6%	0%
cont	925	5	0	140	10	0	810
	4%	0%	0%	1%	0%	0%	3%
	camp	corylus	dust	grim	qrob	qsub	cont

Only metadata

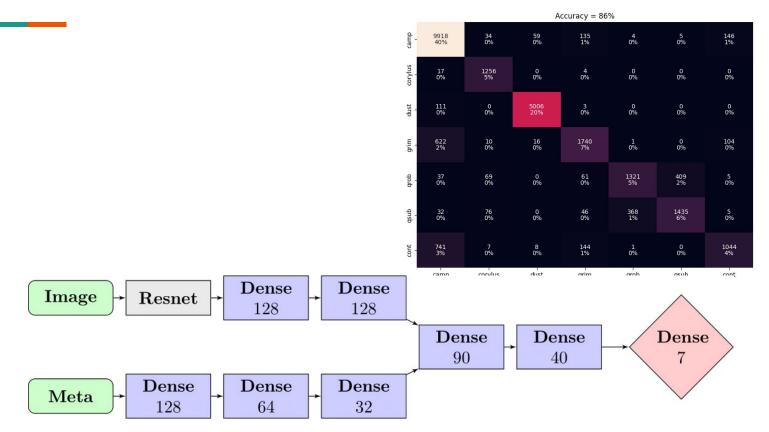
camp 37% 0% 3% 0% 0% 0% 1% corylus 5% 0% 0% 0% 0% 0% 0% dust 0% 0% 0% 0% 0% 0% grim 3% 0% 1% 6% 0% 0% 0% 6% 1% qrob 0% 0% 0% 0% 0% 1% 6% dusp 0% 0% 0% cont 4% 0% 0% 0% 0% 3% qrob qsub corylus dust grim camp cont

Accuracy = 84%

Only images

	Accuracy = 87%						
- camp	11422	10	40	198	11	8	460
	39%	0%	0%	1%	0%	0%	2%
corylus	30	1464	0	11	12	11	2
	0%	5%	0%	0%	0%	0%	0%
dust	125	1	5941	18	0	0	7
	0%	0%	20%	0%	0%	0%	0%
grim	597	13	20	1940	21	19	356
-	2%	0%	0%	7%	0%	0%	1%
qrob	28	16	1	37	1833	306	9
	0%	0%	0%	0%	6%	1%	0%
qnsb	12	9	2	34	458	1785	6
	0%	0%	0%	0%	2%	6%	0%
cont	681	3	4	148	3	0	1480
	2%	0%	0%	1%	0%	0%	5%
	camp	corylus	dust	grim	qrob	qsub	cont

CNN

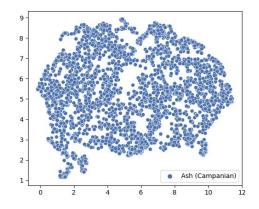

			A	ccuracy – or	70		
- camp	9297	32	406	209	23	10	324
	37%	0%	2%	1%	0%	0%	1%
corylus	36	1188	0	5	35	12	1
	0%	5%	0%	0%	0%	0%	0%
dust	178	0	4923	12	1	0	6
	1%	0%	20%	0%	0%	0%	0%
grim	738	15	120	1464	50	17	89
-	3%	0%	0%	6%	0%	0%	0%
qrob	28	32	8	39	1597	191	7
	0%	0%	0%	0%	6%	1%	0%
dusp	21	33	2	43	664	1194	5
	0%	0%	0%	0%	3%	5%	0%
cont	1073	6	29	202	9	1	625
	4%	0%	0%	1%	0%	0%	2%
	camp	corylus	dust	grim	qrob	qsub	cont

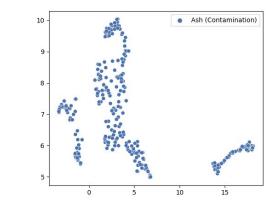
Accuracy = 81%

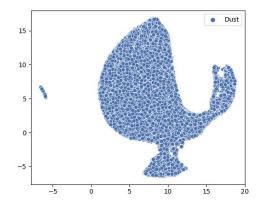
CNN

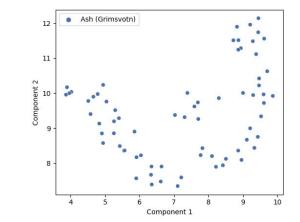
Layer (type)	Output Shape	Param #
input_4 (InputLayer)		
conv2d_7 (Conv2D)	(None, 63, 63, 64)	640
dropout_16 (Dropout)	(None, 63, 63, 64)	0
batch_normalization_16 (Bat chNormalization)	(None, 63, 63, 64)	256
conv2d_8 (Conv2D)	(None, 31, 31, 128)	73856
dropout_17 (Dropout)	(None, 31, 31, 128)	0
batch_normalization_17 (Bat chNormalization)	(None, 31, 31, 128)	512
flatten_3 (Flatten)	(None, 123008)	0
dense_12 (Dense)	(None, 256)	31490304
dropout_18 (Dropout)	(None, 256)	0
batch_normalization_18 (Bat chNormalization)	(None, 256)	1024
dense_13 (Dense)	(None, 128)	32896
dropout_19 (Dropout)	(None, 128)	0
batch_normalization_19 (Bat chNormalization)	(None, 128)	512
dense_14 (Dense)	(None, 7)	903
Total params: 31,600,903 Trainable params: 31,599,751 Non-trainable params: 1,152		

Combined convolutional




Combined convolutional


Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	[(None, 128, 128, 3)]		0
resnet50 (Functional)	(None, 2048)	23587712	['input_1[0][0]']
input_3 (InputLayer)	[(None, 34)]	0	[]
flatten (Flatten)	(None, 2048)		['resnet50[0][0]']
dense_2 (Dense)	(None, 128)	4480	['input_3[0][0]']
dropout (Dropout)	(None, 2048)		['flatten[0][0]']
dropout_2 (Dropout)	(None, 128)		['dense_2[0][0]']
<pre>batch_normalization (BatchNorm alization)</pre>	(None, 2048)	8192	['dropout[0][0]']
<pre>batch_normalization_2 (BatchNo rmalization)</pre>	(None, 128)	512	['dropout_2[0][0]']
dense (Dense)	(None, 128)	262272	['batch_normalization[0][0]']
dense_3 (Dense)	(None, 128)	16512	['batch_normalization_2[0][0]']
dropout_1 (Dropout)	(None, 128)		['dense[0][0]']
dropout_3 (Dropout)	(None, 128)		['dense_3[0][0]']
<pre>batch_normalization_1 (BatchNo rmalization)</pre>	(None, 128)	512	['dropout_1[0][0]']
<pre>batch_normalization_3 (BatchNo rmalization)</pre>	(None, 128)	512	['dropout_3[0][0]']


dense_1 (Dense)	(None,	128)	16512	['batch_normalization_1[0][0]']
dense_4 (Dense)	(None,	32)	4128	['batch_normalization_3[0][0]']
concatenate (Concatenate)	(None,	160)	0	['dense_1[0][0]', 'dense_4[0][0]']
dense_5 (Dense)	(None,	128)	20608	['concatenate[0][0]']
dropout_4 (Dropout)	(None,	128)	0	['dense_5[0][0]']
<pre>batch_normalization_4 (BatchNo rmalization)</pre>	(None,	, 128)	512	['dropout_4[0][0]']
dense_6 (Dense)	(None,	64)	8256	['batch_normalization_4[0][0]']
dropout_5 (Dropout)	(None,	64)	0	['dense_6[0][0]']
<pre>batch_normalization_5 (BatchNo rmalization)</pre>	(None,	, 64)	256	['dropout_5[0][0]']
dropout_6 (Dropout)	(None,	64)	0	['batch_normalization_5[0][0]']
<pre>batch_normalization_6 (BatchNo rmalization)</pre>	(None,	, 64)	256	['dropout_6[0][0]']
dense_7 (Dense)	(None,		455	['batch_normalization_6[0][0]']
Total params: 23,931,687 Trainable params: 23,873,191 Non-trainable params: 58,496				

Substructures of classes in Peruvian

