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• Sea ice is frozen seawater that floats on the surface of the ocean

• The rapid loss of Arctic sea ice (ASI) in the last decades is one of the most
evident manifestations of anthropogenic climate change

• An ice-free Arctic would impact climate and ecosystems, both regionally and
globally
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Knowing the history of the ASI is crucial to understanding its future evolution

Introduction



Problem

• Satellite observations for the ASI start from 1979

• We have an incomplete spatiotemporal dataset of ASI concentration (1901-
2013)

• We want to reconstruct the missing data



Problem

• Satellite observations for the ASI start from 1979

• We have an incomplete spatiotemporal dataset of ASI concentration (1901-
2013)

• We want to reconstruct the missing data

How can we fill the (massive) gaps in the dataset?



Dataset

Sea-ice concentration [%]
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Methods

• Regression at every site (90-10% split training-validation)

➢ Linear regression

➢ Ridge regression

➢ Single Layer Perceptron

➢ Multi Layer Perceptron

• Partial CNN-based image inpainting (90-10% split training-validation on ERA5 
daily ASI concentration dataset)



Prediction (Multi Layer)

Sea-ice concentration [%] Temperature [°C]



Method MSE on validation set

Linear Regression 643.8

Ridge Regression 643.8

Single Layer Perceptron 314

Multi Layer Perceptron 242

Results
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Attempt with partial convolution

Based on which is based on



Attempt with partial convolution

Application of a Partial Convolutional Neural Network for Estimating Geostationary Aerosol Optical Depth Data, Lops et al. (2021)



15706 daily images
(1979-present)

13960 train images

1746 validation images

1345 masks1345 incomplete SIC* images

modeltrain
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1345 inpainted SIC* images

Purple = missing

Sea ice especially suitable for this approach since yearly 
seasonal behavior ~ global warming-induced changes

predict

*SIC = sea ice concentration



SIC* < 0 and > 100?
(-5189 ≤ SIC* ≤ 16418)

But…

*SIC = sea ice concentration



SIC* < 0 and > 100?
(-5189 ≤ SIC* ≤ 16418)

Several problems:

• Continent distribution different between   
train and test data

• How to deal with continents?

• We didn’t use anomalies (normalize images)

• Some missing data in training data?

But…

*SIC = sea ice concentration



• All the regression methods underestimated the observed sea ice concentration

• The multi layer perceptron showed the best performance in terms of MSE
compared to the other regression models

• The partial convolution might be a better approach, but it requires additional
work (especially in the data preprocessing phase)

Conclusions



Future work

• Goal: complete dataset of monthly sea ice concentration on a 0.25°×0.25° grid
from the year 1900

• Reconstruction using PConv Network where enough data are available

• “Forecast” of the past using ConvLSTM or similar method

• Explore more recent methods for image inpainting



Appendix



Datasets

• ERA5 monthly temperature data (1950 - 2021): DOI: 10.24381/cds.f17050d7

• Sea ice concentration data by Vasily Smolyanitsky, Arctic and Antarctic Research
Institute (unpublished)

• Observational sea ice concentration data: https://doi.org/10.7265/jj4s-tq79

• ERA5 hourly sea ice concentration data (1979 - 2021): DOI: 10.24381/cds.adbb2d47

https://doi.org/10.24381/cds.f17050d7
https://doi.org/10.7265/jj4s-tq79
https://doi.org/10.24381/cds.adbb2d47


Preprocessing

• The data used as input for the regression methods were regridded to a 2.5°×2.5°
resolution

• The data used as input for the partial convolution method were regridded to a
squared 72×72 cells grid (5°×0.625°)

• The regridding assigned values between 100 (maximum for SIC) and 122 (default
value for land cells) to some cells, that we manually set to land

• The daily data used in the partial convolution was downloaded as hourly data (24
files per day) and then averaged to daily data



The partial convolutional layer is defined as:

Source: Liu et al. (2018), Partial Convolution based Padding, DOI: 1811.11718.pdf (arxiv.org)

Partial convolutional layer

The mask is updated after each partial convolution as:

with X as input, M as mask, and W as filter weight matrix.

https://arxiv.org/pdf/1811.11718.pdf


Image by Chu-Tak Li (Pushing the Limits of Deep Image Inpainting Using Partial Convolutions | by Chu-Tak Li | Towards Data Science)

Example calculation of 
partial convolution:

Partial convolutional layer

https://towardsdatascience.com/pushing-the-limits-of-deep-image-inpainting-using-partial-convolutions-ed5520775ab4


Module Name Filter size # Filters/Channels Batch Norm Nonlinearity

PConv1 7x7 18 No ReLU

PConv2 5x5 36 Yes ReLU

PConv3 5x5 72 Yes ReLU

NearestUpSample1
Concat1(w/PConv2)

PConv4
3x3

72
72+36

36
Yes LeakyRelu(0.2)

NearestUpSample2
Concat2(w/ PConv1)

PConv5
3x3

36
36+18

18
Yes LeakyRelu(0.2)

NearestUpSample3
Concat3(w/ Input)

PConv6
3x3

18
18 +3

3
No -

Network architecture



Partial convolutional network sources

• The code we use for the partial convolutional U-net is based on the paper Artificial
intelligence reconstructs missing climate information by Kadow et al. (2021)
(https://www.nature.com/articles/s41561-020-0582-5 & https://github.com/FREVA-
CLINT/climatereconstructionAI)

• which is a modified version of https://github.com/naoto0804/pytorch-inpainting-
with-partial-conv, a “ready-to-go” implementation of the paper Image Inpainting for
Irregular Holes Using Partial Convolutions by Liu et al. (2018)
(https://arxiv.org/pdf/1804.07723.pdf & https://github.com/NVIDIA/partialconv)

https://www.nature.com/articles/s41561-020-0582-5
https://github.com/FREVA-CLINT/climatereconstructionAI
https://github.com/naoto0804/pytorch-inpainting-with-partial-conv
https://arxiv.org/pdf/1804.07723.pdf
https://github.com/NVIDIA/partialconv


The total loss function is the sum of several different loss functions, including a
per-pixel loss, perceptual loss, style loss, and a total variation loss:

The perceptual loss is the L¹ distance between the ground truth and the raw
image/computed image after projecting these images into higher-level feature
spaces using an ImageNet-pre-trained VGG-16.

The style loss is similar to the perceptual loss but with applied autocorrelation
(Gram matrix) on each feature map before calculating the L¹ distance.

The total variation loss is a smoothing penalty on the region of 1-pixel dilation of
the holes.

Source: Liu et al. (2018), Image Inpainting for Irregular Holes Using Partial Convolutions (https://arxiv.org/abs/1804.07723)

PConv loss function

https://arxiv.org/abs/1804.07723


Running the PConv UNet  

• We run the model on an NVidia Tesla V100 GPU on the HPC at the Potsdam Institute
for Climate Impact Research (Germany) with an average of 27 iterations/second

• We train the model for 500000 iterations and run 500000 more iterations of fine-
tuning using a batch size of 18 (total duration ca. 10 – 12 hours)

• Our implementation is available at GitHub - spin0r/image_reconstruction: Image
reconstruction for climate using AI

https://github.com/spin0r/image_reconstruction

