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Introduction

Seaice is frozen seawater that floats on the surface of the ocean

The rapid loss of Arctic sea ice (ASl) in the last decades is one of the most
evident manifestations of anthropogenic climate change

An ice-free Arctic would impact climate and ecosystems, both regionally and
globally
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Knowing the history of the ASl is crucial to understanding its future evolution



Problem

Satellite observations for the ASI start from 1979

We have an incomplete spatiotemporal dataset of ASI concentration (1901-
2013)

We want to reconstruct the missing data
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How can we fill the (massive) gaps in the dataset?



Dataset
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Preprocessing
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Methods

Regression at every site (90-10% split training-validation)
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Methods

Regression at every site (90-10% split training-validation)
Linear regression
Ridge regression
Single Layer Perceptron
Multi Layer Perceptron

Partial CNN-based image inpainting (90-10% split training-validation on ERA5
daily ASI concentration dataset)



Prediction (Multi Layer)
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| Results

Linear Regression 643.8
Ridge Regression 643.8
Single Layer Perceptron 314
Multi Layer Perceptron 242
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Attempt with partial convolution
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| Attempt with partial convolution
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Application of a Partial Convolutional Neural Network for Estimating Geostationary Aerosol Optical Depth Data, Lops et al. (2021)



Sea ice especially suitable for this approach since yearly
seasonal behavior ~ global warming-induced changes
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Several problems:

* Continent distribution different between
train and test data

* How to deal with continents?

100

; * We didn’t use anomalies (normalize images)

* Some missing data in training data?
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Conclusions

All the regression methods underestimated the observed sea ice concentration

The multi layer perceptron showed the best performance in terms of MSE
compared to the other regression models

The partial convolution might be a better approach, but it requires additional
work (especially in the data preprocessing phase)



Future work

Goal: complete dataset of monthly sea ice concentration on a 0.25°x0.25° grid
from the year 1900

Reconstruction using PConv Network where enough data are available
“Forecast” of the past using ConvLSTM or similar method

Explore more recent methods for image inpainting



Appendix



Datasets

ERA5 monthly temperature data (1950 - 2021): DOI: 10.24381/cds.f17050d7

Sea ice concentration data by Vasily Smolyanitsky, Arctic and Antarctic Research
Institute (unpublished)

Observational sea ice concentration data: https://doi.org/10.7265/ji4s-tq79

ERAS hourly sea ice concentration data (1979 - 2021): DOI: 10.24381/cds.adbb2d47



https://doi.org/10.24381/cds.f17050d7
https://doi.org/10.7265/jj4s-tq79
https://doi.org/10.24381/cds.adbb2d47

Preprocessing

The data used as input for the regression methods were regridded to a 2.5°x2.5°
resolution

The data used as input for the partial convolution method were regridded to a
squared 72x72 cells grid (5°x0.625°)

The regridding assigned values between 100 (maximum for SIC) and 122 (default
value for land cells) to some cells, that we manually set to land

The daily data used in the partial convolution was downloaded as hourly data (24
files per day) and then averaged to daily data



| Partial convolutional layer
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The partial convolutional layer is defined as: «{,;, = { | -
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with X as input, M as mask, and W as filter weight matrix.

: : : , L, if |[M |1 =0
The mask is updated after each partial convolution as: ], , = { i [IMa ol
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Source: Liu et al. (2018), Partial Convolution based Padding, DOI: 1811.11718.pdf (arxiv.org)



https://arxiv.org/pdf/1811.11718.pdf

Partial convolutional layer
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Image by Chu-Tak Li (Pushing the Limits of Deep Image Inpainting Using Partial Convolutions | by Chu-Tak Li | Towards Data Science)



https://towardsdatascience.com/pushing-the-limits-of-deep-image-inpainting-using-partial-convolutions-ed5520775ab4

| Network architecture

Module Name m # Filters/Channels Batch Norm Nonlinearity

PConvl RelLU
PConv2 5x5 36 Yes RelLU
PConv3 5x5 72 Yes RelLU

NearestUpSamplel 72

Concatl(w/PConv2) 3x3 72+36 Yes LeakyRelu(0.2)
PConv4 36

NearestUpSample2 36

Concat2(w/ PConvl) 3x3 36+18 Yes LeakyRelu(0.2)
PConv5 18

NearestUpSample3 18

Concat3(w/ Input) 3x3 18 +3 No -

PConvb 3



Partial convolutional network sources

* The code we use for the partial convolutional U-net is based on the paper Artificial
intelligence reconstructs missing climate information by Kadow et al. (2021)
(https://www.nature.com/articles/s41561-020-0582-5 & https://github.com/FREVA-

CLINT/climatereconstructionAl)

* which is a modified version of https://github.com/naoto0804/pytorch-inpainting-
with-partial-cony, a “ready-to-go” implementation of the paper Image Inpainting for
Irreqular Holes Using Partial Convolutions by Liu et al (2018)
(https://arxiv.org/pdf/1804.07723.pdf & https://github.com/NVIDIA/partialconv)



https://www.nature.com/articles/s41561-020-0582-5
https://github.com/FREVA-CLINT/climatereconstructionAI
https://github.com/naoto0804/pytorch-inpainting-with-partial-conv
https://arxiv.org/pdf/1804.07723.pdf
https://github.com/NVIDIA/partialconv

PConv loss function

The total loss function is the sum of several different loss functions, including a
per-pixel loss, perceptual loss, style loss, and a total variation loss:

f'tﬂtai — ﬁi.lﬂlid —l_ﬁﬁhofe +0-O5ﬁpﬁ?*ceptimi + 120(£51‘.y56mu + ﬁSl‘-nymmp ) —l_U l[:’f’b‘

The perceptual loss is the L' distance between the ground truth and the raw
image/computed image after projecting these images into higher-level feature
spaces using an ImageNet-pre-trained VGG-16.

The style loss is similar to the perceptual loss but with applied autocorrelation
(Gram matrix) on each feature map before calculating the L' distance.

The total variation loss is a smoothing penalty on the region of 1-pixel dilation of
the holes.

Source: Liu et al. (2018), Image Inpainting for Irreqgular Holes Using Partial Convolutions (https://arxiv.org/abs/1804.07723)



https://arxiv.org/abs/1804.07723

Running the PConv UNef

We run the model on an NVidia Tesla V100 GPU on the HPC at the Potsdam Institute
for Climate Impact Research (Germany) with an average of 27 iterations/second

We train the model for 500000 iterations and run 500000 more iterations of fine-
tuning using a batch size of 18 (total duration ca. 10 — 12 hours)

Our implementation is available at GitHub - spinOr/image reconstruction: Image
reconstruction for climate using Al



https://github.com/spin0r/image_reconstruction

