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Motivation

● Is traditional machine learning good enough for our datasets?

● Why deep learning model can get better performance?

● What is the difference of features in traditional ML and NN.



02 - Text Classification Task
Text classification is a common NLP task that assigns a label or class to text. 



Dataset
SST2

The Stanford Sentiment Treebank consists of sentences from movie reviews and human annotations of 
their sentiment. The task is to predict the sentiment of a given sentence. It uses the two-way 
(positive/negative) class split, with only sentence-level labels.



Dataset
MRPC

The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of sentence pairs 
automatically extracted from online news sources, with human annotations for whether the sentences 
in the pair are semantically equivalent.



Statistics of Dataset
Statistics of MRPC and SST2

train 
pairs

dev 
pairs

test 
pairs

MRPC 3668 408 1725

SST2 67349 872 1821



Feature Extraction from Text
For words to be processed by machine learning models, we need some form of numeric 
representation that models can use in their calculation.

 TF-IDF 

 Word2vec(Word embedding)

 BERT?



TF-IDF
Not all words have the same impact on the meaning of a document, and should thus not be 
treated as so. Each word contributes a TF-IDF value, based on its frequency in the document and 
its presence in other documents. TF-IDF thus aims to generate the meaning of a sentence, by 
primarily looking for unique words. 



Word2Vec
Word embedding creates a vector containing information about its 

similarity to other words, in their vectors similarities. The vector is 

affected by the words surrounding the target word, this gives the 

word some context, for witch it can compare itself for other words. 

Words often surrounded by the same words have the same context, 

and will in general have some inherent similarity. 



03: Our 
models

Tree based solutions:

XGBoost

Sklearn Random 
forest

LightGBM

1. Good “out-of-the-box” models

2. Easy to train and HP optimize

3. These models are not made for this task

        



03: Our 
models

1. Using standard “tfid” positive / negative 
words are not weighted over other kinds of 
words

2. Thus acc(SST2) < acc(MRPC)

3. This is also what we found! 

4. However the models using SST2 data were 
only slightly better than a random guesser

Tree based solutions:

XGBoost

Sklearn 
Randomforest

LightGBM



Naive Bayes

● Bayes’ Theorem

● Why Naive?

Assumptions: each feature/variable of the same class  
makes an independent, equal contribution to the  
outcome.
These assumptions are not in general true in 
real-world situations

Traditional 
Supervised 

Learning 
models

  Naive Bayes

  SVM-SVC

 SGDClassifier



Naive Bayes

● How does the model deal with unseen data?

alpha parameter - smoothing

Overall:

1. One of the simplest and fastest classification algorithms

2. can be used for  large datasets

3. Requires a small amount of training data to learn the 

parameters



SVM-SVC

SVM-SVC

Each observation is plotted as a point in an 
n-dimensional space, n is the number of features in 
the dataset

Task:  find the optimal hyperplane that successfully 
classifies the data points into their respective classes

Overall:

It is a good classifier, BUT:
1. slow
2. works on small datasets, impractical for large  

datasets



SGDClassifier

SGDClassifier

It applies linear classifiers (SVM, logistic regression, etc.) with 
SGD training.
by default: linear support vector machine (SVM)

Almost the same result compared to SVM but in less than 1s

      Accuracy           Training time

SGDClassifier 0.8291  0.6275
SVC   0.8348  810.67

 Overall:

1. A good and extremely fast classifier
2. recommended for large datasets



1. Many ways to optimize a CNN model and 

detects important features well

2. High potential for other NLP tasks such as 

Sentiment Analysis, Spam Detection or Topic 

Categorization.

3. Long training time and more difficult to 

implement

Deep Learning 
solutions:

CNN



1. Implemented through Keras

2. Converted texts to Sequences

3. Continuous bag of words method to create 
the Word2Vec embedding layer trained on 
both datasets 

4. Hyperparameter tuning with Keras Tuner

5. Accuracy (SST2) < Accuracy (MRPC)

CNN with 
Word2Vec 
Embedding



1. Similar to the CNN model

2. The aim was to use LSTM layers from 
Tensorflow

3. However failed to improve the validation set 
to more than a random guess model (acc = 
0.5)

4. This would be a prime example of future 
work.

Deep Learning 
solutions:

RNN 



BERT
Using BERT to classify single piece of text 



Finetuning BERT
BERT is a pre-trained language model. To use BERT to classification task, we need to finetune the 
BERT to our datasets (MRPC and SST2). 



Model Architecture
The first input token is 
supplied with a special 
[CLS] token for reasons 
that will become apparent 
later on. CLS here stands 
for Classification.



Model Architecture
For the sentence 
classification example 
we’ve looked at above, we 
focus on the output of only 
the first position (that we 
passed the special [CLS] 
token to)



Bert Performance
evaluation on dev datasets of MRPC and SST2

ACC F1 inference_time

SST2 0.9220 - 1.97

MRPC 0.8504 0.8968 1.14



Training 



Evaluation



Conclusions

● Traditional machine learning is more efficient than neural 
based model. 

● Traditional machine learning models also can give    
competitive results. 

● Sometimes it is difficult to train a neural based model. It is 
not very stable. 

● Deep learning model can get the best performance on two 
datasets. MRPC and SST2.
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Naive Bayes, 
SVM-SVC and 
SGDClassifier
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https://towardsdatascience.com/https-medium-com-pupalerushikesh
-svm-f4b42800e989

https://www.analyticsvidhya.com/blog/2021/03/beginners-guide-to-s
upport-vector-machine-svm/

https://scikit-learn.org/stable/modules/generated/sklearn.linear_mo
del.SGDClassifier.html

https://michael-fuchs-python.netlify.app/2019/11/11/introduction-to
-sgd-classifier/ 
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APPENDIx

SST2_full dataset

Linear Support Vector Machine-SVC 
default model
Accuracy: 0.8233
Training time: 1601.6370995044708s

Hyperparameter optimisation using 
RandomizedSearchCV
Hyperparameters used:
kernel = ['poly', 'rbf', 'sigmoid']
C = [50, 10, 1.0, 0.1, 0.01]
gamma = ['scale','auto']



Best hyperparameters found:{'kernel': 'rbf', 
'gamma': 'scale', 'C': 10}   Training 
time: 1h 48 m

Model after HP optimisation: 

Accuracy:0.8348

Training time: 810.6734158992767s

Multinomial Naive Bayes 

default model
Accuracy: 0.8004

Training time:0.03961038589477539s



Hyperparameter optimisation using 
RandomizedSearchCV
Hyperparameters used:
'alpha': np.linspace(0.1, 1.5, 80),
 'fit_prior': [True, False]
Training time: 7.1049582958221436s
Best hyperparameters found: 
'fit_prior': True, 'alpha': 
0.18860759493670887

Model after HP optimisation
Accuracy 0.786697247706422
Training time: 0.040918827056884766s



We can see that the default model performs slightly 
better than the optimised one. The reason is that 
Multinomial Naive Bayes default model uses alpha=1, 
which is the Laplace Smoothing (add-one smoothing).
The smoothing priors α≥0 accounts for features not 
present in the learning samples and prevents zero 
probabilities in further computations. Setting 
α=1 is called Laplace smoothing, while 
α<1 is called Lidstone smoothing. 
(Reference:https://scikit-learn.org/stable/modules/na
ive_bayes.html). So, instead of excluding unseen 
words and by extension sentences from the validation 
dataset (minimising more our dataset), we give 0 + 1 

https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html


probabilities to the unseen data included in the 
validation set.

SGDClassifier

The model  implements regularized linear models 
with stochastic gradient descent (SGD) learning. We 
fit a linear SVM with SGD, to compare its results in 
performance and training time with SVM-SVC without 
SGD. our intuition says that SGDClassifier will be 
much faster than SVM-SVC.

SGDClassifier default model
Accuracy: 0.8211009174311926
Training time: 0.16014623641967773s



We can see that its performance is imperceptibly 

lower than SVM-SVC but it is, indeed, much 

(incredibly) faster. This is the reason why 

SGDClassifier is preferred when dealing with

with large datasets.

Hyperparameter optimisation using RandomizedSearchCV

Hyperparameters used:

loss = ['hinge', 'log', 'modified_huber', 

'squared_hinge', 'perceptron']

penalty = ['l1', 'l2', 'elasticnet']

alpha = [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]

learning_rate = ['constant', 'optimal', 

'invscaling', 'adaptive']

eta0 = [1, 10, 100]



Best hyperparameters found:
penalty= 'l2', loss = 'squared_hinge', 
learning_rate='adaptive', eta0= 10, 
alpha= 0.0001

Model after HP optimisation

Accuracy: 0.8291
Training time: 0.6275079250335693s



MRPC_ful dataset

SVM-SVC
Default model 
Accuracy:0.7230
F-1: 0.8290
Training time: 5.220731735229492s

Hyperparameter optimisation using 
RandomizedSearchCV

Hyperparameters used:
kernel = ['poly', 'rbf', 'sigmoid']
C = [100,90, 70, 60, 50, 30, 10, 1.0, 
0.1, 0.01]
gamma = ['scale','auto']



Best hyperparameters found:
{'kernel': 'poly', 'gamma': 'scale', 
'C': 10}
Training time: 30.388631105422974s
After having found that ‘poly’ is the 
best hyperparameter for kernel,we 
introduce another hyperparameter,which
is used only when kernel=‘poly’, the 
degree parameter.

Hyperparameters used: 
kernel = ['poly']
degree = [1, 2,3,4,5,6,7,8]



C = [100,90, 70, 60, 50, 30, 10, 1.0, 0.1, 0.01]
gamma = ['scale','auto']

Best hyperparameters found:
{'kernel': 'poly', 'gamma': 'scale', 'degree': 2,  
'C': 90}
Training time: 26.8865807056427s

Model after hyperparameter 
optimisation:
Accuracy: 0.7181
F-1: 0.8265
Training time: 3.689194917678833s



Multinomial Naive Bayes

Default model 

Accuracy: 0.7058
F-1: 0.8219
Training time: 0.00672459602355957s

Hyperparameters optimisation using 
RandomizedSearchCV
Hyperparametres used: {
 'alpha': np.linspace(0.1, 1.5, 80),
 'fit_prior': [True, False]}

Best hyperparameters found:
{'fit_prior': True, 'alpha': 
0.6139240506329113}}



Model after hyperparameter optimisation
Accuracy  0.7205
F-11 0.8288
Training time: 0.03725767135620117s

SGDClassifier
Default model
Accuracy:  0.6740
F-1:   0.7718696397941681
Training time: 0.04090237617492676s

Hyperparameter optimisation using 
RandomizedSearchCV



Hyperparameters used:

loss = ['hinge', 'log', 

'modified_huber', 'squared_hinge', 

'perceptron']

penalty = ['l1', 'l2', 'elasticnet']

alpha = [0.0001, 0.001, 0.01, 0.1, 1, 

10, 100, 1000]

learning_rate = ['constant', 'optimal', 

'invscaling', 'adaptive']

eta0 = [1, 10, 100]



Best hyperparameters found:
{'penalty': 'elasticnet', 'loss': 'log', 

'learning_rate': 'invscaling', 'eta0': 

1, 'alpha': 0.0001}

Training time: 4.864312171936035s

Model after hyperparamater optimisation:

Accuracy: 0.6985

F-1: 0.8183

Training time: 0.09494614601135254s



MRPC_full dataset using trigrams 
SGDClassifier
Default model
Accuracy: 0.7107
F-1: 0.8138
Training time: 0.03121328353881836s

Hyperparameter optimisation using 
RandomizedSearchCV

Hyperparameters used: same as in the unigram approach



Hyperparameters found:
 {'penalty': 'elasticnet', 'loss': 

'hinge', 'learning_rate': 'invscaling', 

'eta0': 100, 'alpha': 0.0001}

Training time: 4.816795349121094s

Model after HP optimisation

Accuracy: 0.7328

F-1: 0.8310

Training time: #0.8315131187438965s



Multinomial Naive Bayes using trigrams

Default model 
Accuracy: 0.7156

F-1: 0.8247

Training time: 0.007960796356201172s

Hyperparameters used: same as in the unigram approach

Hyperparameters found:{'fit_prior': 

True, 

'alpha': 8088607594936708}

Training time 0.6476254463195801s



Model after HP optimisation:
Accuracy: 0.7156
F-1: 0.8247
Training time: 0.014194488525390625s

SVM-SV
Default model
Accuracy: 0.7205
F-1: 0.8298
Training time: 4.433847665786743s



Hyperparameter optimisation using 
RandomizedSearchCV
Hyperparameters used:kernel = ['linear', 
'poly', 'rbf', 'sigmoid']
C = [100,90, 70, 60, 50, 30, 10, 1.0, 
0.1, 0.01]
gamma = ['scale','auto']

Hypeparameters found:
Best: 0.814863 using {'kernel': 
'linear', 'gamma': 'scale', 'C': 100}
Training time: 31.55373191833496s

Model after HP optimisation
Accuracy: 0.7205
F-1: 0.8283
Training time: 4.943105220794678s



SST2 Dataset

CNN with Word2Vec embedding

Hyperparameter optimization using Keras tuner 
“Random Search”

Hyperparameters used: Conv_layer 1 : [32,64],

Conv_layer 2: [32,64],

Kernel size: [3,5,7],

Learning rate: [0.001, 0.01, 0.1]



Hyperparameters:
conv_layers: 32
kernel_size: 3
units: 64
learning_rate: 0.001
Score: 0.6913140416145325

F1 Score: 0.67477196

Total elapsed time: 857 s
Early stopping implemented at patience 
= 3 at a total number of epochs = 5 
when max trials = 6



train_tokens = []
for i in (SST2_full[ "train"]["sentence"]):
  train_tokens.append(i.split())
token = Tokenizer(num_words = 10000)
token.fit_on_texts(SST2_full[ "train"]["sentence"])
train_seq = token.texts_to_sequences(SST2_full[ "train"]["sentence"])
train_data = pad_sequences(train_seq, maxlen = 75)

valid_tokens = []
for i in (SST2_full[ "validation" ]["sentence"]):
  valid_tokens.append(i.split())
token = Tokenizer(num_words = 10000)
token.fit_on_texts(SST2_full[ "validation" ]["sentence"])
valid_seq = token.texts_to_sequences(SST2_full[ "validation" ]["sentence"])
valid_data = pad_sequences(valid_seq, maxlen = 75)

tokens = train_tokens + valid_tokens
text = SST2_full[ "train"]["sentence"] + SST2_full[ "validation" ]["sentence"]

training_labels = np.array(SST2_full[ 'train']['label'])
training_labels = training_labels.astype( 'float32').reshape(-1,1)
testing_labels = np.array(SST2_full[ 'validation' ]['label'])
testing_labels = testing_labels.astype( 'float32').reshape(-1,1)

print('Shape of input data:' , train_data.shape, valid_data.shape)
print('Shape of labels:' , training_labels.shape, testing_labels.shape)



w2v_model = word2vec.Word2Vec(min_count = 1, size = 10000, 

sg = 1, window = 5)

w2v_model.build_vocab(tokens)

w2v_model.train(tokens,

                total_examples = w2v_model.corpus_count,

                epochs = w2v_model.iter)

w2v_embedding = w2v_model.wv.get_keras_embedding()



def word2vec_CNN (hp):
  #x = Sequential()
  sequence_input = Input(shape=( 75), dtype= 'int32')
  embedded_sequences = w2v_embedding(sequence_input)
  x = Conv1D(filters = hp.Choice( 'conv_layers' , [32,64]),        
                   kernel_size = hp.Choice( 'kernel_size' , [3,5,7]), 
                   activation = 'relu')(embedded_sequences)
  x = MaxPooling1D()(x)
  x = Conv1D(filters = hp.Choice( 'conv_layers' , [32,64]), 
             kernel_size = hp.Choice( 'kernel_size' , [3,5,7]), 
             activation = 'relu')(x)
  x = MaxPooling1D()(x)
  x = Flatten()(x)
  x = Dropout( 0.5)(x)
  preds = Dense( 1, activation = 'softmax' )(x)
  model = Model(sequence_input, preds)
  learning_rate_choice = hp.Choice( 'learning_rate' , values = [ 0.001, 0.01, 0.1])
  model. compile(loss = 'binary_crossentropy' ,
                metrics = 'accuracy' ,
                optimizer = keras.optimizers.Adam(learning_rate = learning_rate_choice))
  return model

random_search = kt.RandomSearch(
    word2vec_CNN,
    objective = 'val_accuracy' ,
    max_trials = 5,
    directory = 'dir',
    project_name = 'search'
)
print(random_search.search_space_summary())
early_stopping = tf.keras.callbacks.EarlyStopping(monitor = 'val_loss' , patience = 2)
random_search.search(train_data, training_labels, validation_split = 0.2, epochs = 1, 
callbacks=[early_stopping])



MRPC Dataset

CNN with Word2Vec embedding

Hyperparameter optimization using Keras tuner 
“Random Search”

Hyperparameters used: Conv_layer 1 : [32,64,96],

Conv_layer 2: [32,64,96],

Kernel size: [3,5,7],

Learning rate: [0.001, 0.01, 0.1]



Hyperparameters:

conv_layers: 64

kernel_size: 7

Dense: 64

learning_rate: 0.001

Accuracy Score: 
0.6948229074478149

F1 score: 0.812227

Total elapsed time: 2820 s

Early stopping implemented at 
patience = 3 out of 5 epochs with 
max trials = 6



MRPC_full_train = [ ' '.join(x) for x in 

zip(MRPC_full[ "train"]["sentence1" ],MRPC_full[ "train"]["sentence2" ])]

MRPC_full_valid = [ ' '.join(x) for x in 

zip(MRPC_full[ "validation" ]["sentence1" ],MRPC_full[ "validation" ]["sentence2" ])]

train_tokens = []

for i in (MRPC_full_train):

  train_tokens.append(i.split())

token = Tokenizer(num_words = 10000)

token.fit_on_texts(MRPC_full_train)

train_seq = token.texts_to_sequences(MRPC_full_train)

train_data = pad_sequences(train_seq, maxlen = 75)

print(train_data)

valid_tokens = []

for i in (MRPC_full_valid):

  valid_tokens.append(i.split())

token = Tokenizer(num_words = 10000)

token.fit_on_texts(MRPC_full_valid)

valid_seq = token.texts_to_sequences(MRPC_full_valid)

valid_data = pad_sequences(valid_seq, maxlen = 75)

print(valid_data)

training_labels = np.array(MRPC_full[ 'train']['label'])

training_labels = training_labels.astype( 'float32' ).reshape( -1,1)

testing_labels = np.array(MRPC_full[ 'validation' ]['label'])

testing_labels = testing_labels.astype( 'float32' ).reshape( -1,1)

print('Shape of input data:' , train_data.shape, valid_data.shape)

print('Shape of labels:' , training_labels.shape, testing_labels.shape)



tokens = list(train_tokens + valid_tokens)

print(tokens) 

w2v_model = word2vec.Word2Vec(min_count = 1, size = 10000, 

sg = 1, window = 5)

w2v_model.build_vocab(tokens)

w2v_model.train(tokens,

                total_examples = w2v_model.corpus_count,

                epochs = w2v_model.iter)

w2v_embedding = w2v_model.wv.get_keras_embedding()



def word2vec_CNN (hp):

  sequence_input = Input(shape=( 75), dtype= 'int32')

  embedded_sequences = w2v_embedding(sequence_input)

  x = Conv1D(filters = hp.Choice( 'conv_layers' , [32,64,96]),        

             kernel_size = hp.Choice( 'kernel_size' , [3,5,7]), 

             activation = 'relu')(embedded_sequences)

  x = MaxPooling1D()(x)

  x = Conv1D(filters = hp.Choice( 'conv_layers' , [32,64,96]), 

             kernel_size = hp.Choice( 'kernel_size' , [3,5,7]), 

             activation = 'relu')(x)

  x = MaxPooling1D()(x)

  x = Flatten()(x)

  x = Dropout( 0.5)(x)

  preds = Dense( 1, activation = 'softmax' )(x)

  model = Model(sequence_input, preds)

  learning_rate_choice = hp.Choice( 'learning_rate' , values = [ 0.001, 0.01, 0.1])

  model. compile(loss = 'binary_crossentropy' ,

                metrics = 'accuracy' , 

                optimizer = keras.optimizers.Adam(learning_rate = learning_rate_choice))

  return model

rs = kt.RandomSearch(

    word2vec_CNN,

    objective = 'val_accuracy' ,

    max_trials = 5,

    directory = 'dir',

    project_name = 'newproj'

)

print(rs.search_space_summary())

early_stopping = tf.keras.callbacks.EarlyStopping(monitor = 'val_loss' , patience = 2)

random_search.search(train_data, training_labels, validation_split = 0.2, epochs = 1, 

callbacks=[early_stopping])



pipeline = Pipeline(
   [
       ("vect", CountVectorizer()),
       ("tfidf", TfidfTransformer()),
       ("clf", xgb.XGBClassifier()),
   ]
)

parameters = {
   #"vect__max_df": (0.5, 0.75, 1.0),
   "vect__ngram_range": ((1, 1), (2, 2), (3,3)),  # unigrams or bigrams
   "clf__n_estimators": (50, 100, 150),
   "clf__max_depth": (2, 3),
   "clf__learning_rate": (0.05, 0.1, 0.2 ),
}
t1 = time.time()
# Find the best parameters for both the feature extraction and the
# classifier
grid_search = RandomizedSearchCV(pipeline, parameters, scoring="accuracy", 
n_jobs=-2, verbose=1)
grid_search.fit(SST2_full["train"]["sentence"], SST2_full["train"]["label"]) #Add 
early stopping and calidation sets...
print(f"Time for the fit was: {time.time()-t1}s")
print(f"Refit done in {grid_search.refit_time_} s!")
print(f"Best model is: {grid_search.best_params_}")
val_func(grid_search, SST2_full["validation"]["sentence"], 
SST2_full["validation"]["label"])



Fitting 5 folds for each of 10 candidates, totalling 50 

fits

Time for the fit was: 481.15140414237976s

Refit done in 5.674318790435791 s!

Best model is: {'vect__ngram_range': (1, 1), 

'clf__n_estimators': 100, 'clf__max_depth': 2, 

'clf__learning_rate': 0.1}

Best 5-fold log_loss was: 0.680134413923536

Best 5-fold accuracy was: 0.6954022988505747

Best 5-fold roc_auc was: 0.7231989424983477

Best 5-fold f1 score was: 0.7195767195767195



pipeline = Pipeline(

   [

       ("vect", CountVectorizer()),

       ("tfidf", TfidfTransformer()),

       ("clf", xgb.XGBClassifier()),

   ]

)

parameters = {

   #"vect__max_df": (0.5, 0.75, 1.0),

   "vect__ngram_range": ((1, 1), (2, 2), (3,3)),  # unigrams or bigrams

   "clf__n_estimators": (50, 100, 150),

   "clf__max_depth": (2, 3),

   "clf__learning_rate": (0.05, 0.1, 0.2 ),

}

X_train = [' '.join(x) for x in 

zip(MRPC_full["train"]["sentence1"],MRPC_full["train"]["sentence2"])]

X_val = [' '.join(x) for x in 

zip(MRPC_full["validation"]["sentence1"],MRPC_full["validation"]["sentence2"])]

t1 = time.time()

# Find the best parameters for both the feature extraction and the

# classifier

grid_search = RandomizedSearchCV(pipeline, parameters, scoring= "accuracy", n_jobs=-2, verbose=1)

grid_search.fit(X_train, MRPC_full[ "train"]["label"]) #Add early stopping and calidation sets...

print(f"Time for the fit was: {time.time()-t1}s")

print(f"Refit done in {grid_search.refit_time_}  s!")

print(f"Best model is: {grid_search.best_params_} ")

val_func(grid_search, X_val,MRPC_full[ "validation"]["label"])



Fitting 5 folds for each of 10 candidates,  
totalling 50 fits
Time for the fit was: 174.78201842308044s
Refit done in 1.939793586730957 s!
Best model is: {'vect__ngram_range': (1, 1),  
'clf__n_estimators': 150, 'clf__max_depth': 2,  
'clf__learning_rate': 0.2}
Best 5-fold log_loss was: 0.8300971963397432
Best 5-fold accuracy was: 0.7317073170731707
Best 5-fold roc_auc was: 0.5906593406593407
Best 5-fold f1 score was: 0.8253968253968255



pipeline = Pipeline(
   [
       ("vect", CountVectorizer()),
       ("tfidf", TfidfTransformer()),
       ("clf", RandomForestClassifier()),
   ]
)

parameters = {
   #"vect__max_df": (0.5, 0.75, 1.0),
   "vect__ngram_range": ((1, 1), (2, 2), (3,3)),  # unigrams or bigrams
   "clf__n_estimators": (50,100,150),
   "clf__max_depth": (2, 3),
   "clf__min_samples_leaf": (1, 2, 4),
   "clf__max_features": ("sqrt", "log2"),
}
t1 = time.time()
# Find the best parameters for both the feature extraction and the
# classifier
grid_search = RandomizedSearchCV(pipeline, parameters, scoring="accuracy", 
n_jobs=-2, verbose=1)
grid_search.fit(SST2_full["train"]["sentence"], SST2_full["train"]["label"])
print(f"Time for the fit was: {time.time()-t1}s")
print(f"Refit done in {grid_search.refit_time_} s!")
print(f"Best model is: {grid_search.best_params_}")
val_func(grid_search, SST2_full["validation"]["sentence"], 
SST2_full["validation"]["label"])



Fitting 5 folds for each of 10 candidates,  
totalling 50 fits
Time for the fit was: 86.17250180244446s
Refit done in 1.5549530982971191 s!
Best model is: {'vect__ngram_range': (1, 1),  
'clf__n_estimators': 100, 'clf__min_samples_leaf':  
4, 'clf__max_features': 'sqrt', 'clf__max_depth':  
3}
Best 5-fold log_loss was: 0.685187301753825
Best 5-fold accuracy was: 0.6149425287356322
Best 5-fold roc_auc was: 0.696298744216788
Best 5-fold f1 score was: 0.6909090909090908



pipeline = Pipeline(
   [
       ("vect", CountVectorizer()),
       ("tfidf", TfidfTransformer()),
       ("clf", RandomForestClassifier()),
   ]
)

parameters = {
   #"vect__max_df": (0.5, 0.75, 1.0),
   "vect__ngram_range": ((1, 1), (2, 2), (3,3)),  # unigrams or bigrams
   "clf__n_estimators": (50,100,150),
   "clf__max_depth": (2, 3),
   "clf__min_samples_leaf" : (1, 2, 4),
   "clf__max_features": ("sqrt", "log2"),
}
# Find the best parameters for both the feature extraction and the
# classifier
X_train = [' '.join(x) for x in 
zip(MRPC_full["train"]["sentence1"],MRPC_full["train"]["sentence2"])]
X_val = [' '.join(x) for x in 
zip(MRPC_full["validation"]["sentence1"],MRPC_full["validation"]["sentence2"])]
t1 = time.time()
# Find the best parameters for both the feature extraction and the
# classifier
grid_search = RandomizedSearchCV(pipeline, parameters, scoring= "accuracy", n_jobs=-2, verbose=1)
grid_search.fit(X_train, MRPC_full[ "train"]["label"]) #Add early stopping and calidation sets...
print(f"Time for the fit was: {time.time()-t1}s")
print(f"Refit done in {grid_search.refit_time_}  s!")
print(f"Best model is: {grid_search.best_params_} ")
val_func(grid_search, X_val,MRPC_full[ "validation"]["label"])



Fitting 5 folds for each of 10 candidates,  
totalling 50 fits
Time for the fit was: 22.05402970314026s
Refit done in 0.18636751174926758 s!
Best model is: {'vect__ngram_range': (1, 1),  
'clf__n_estimators': 50, 'clf__min_samples_leaf':  
4, 'clf__max_features': 'sqrt', 'clf__max_depth':  
2}
Best 5-fold log_loss was: 0.6283055605626955
Best 5-fold accuracy was: 0.691358024691358
Best 5-fold roc_auc was: 0.6164148351648351
Best 5-fold f1 score was: 0.8175182481751825



pipeline = Pipeline(
   [
       ("vect", CountVectorizer()),
       ("tfidf", TfidfTransformer()),
       ("clf", lgb.LGBMClassifier(objective = "binary")),
   ]
)

parameters = {
   #"vect__max_df": (0.5, 0.75, 1.0),
   "vect__ngram_range": ((1, 1), (2, 2), (3,3)),  # unigrams or bigrams
   "clf__n_estimators": (50, 100),
   "clf__eta": (0.05, 0.1),
   "clf__tree_learner": ("serial", "feature"),
   "clf__max_depth": (2, 3,),
   #"clf__max_features": ("sqrt", "log2"),
}
t1 = time.time()
# Find the best parameters for both the feature extraction and the
# classifier
grid_search = RandomizedSearchCV(pipeline, parameters, scoring="accuracy", 
n_jobs=-2, verbose=1)
grid_search.fit(SST2_full["train"]["sentence"], SST2_full["train"]["label"])
print(f"Time for the fit was: {time.time()-t1}s")
print(f"Refit done in {grid_search.refit_time_} s!")
print(f"Best model is: {grid_search.best_params_}")
val_func(grid_search, SST2_full["validation"]["sentence"], 
SST2_full["validation"]["label"])



Fitting 5 folds for each of 10 candidates,  
totalling 50 fits
Time for the fit was: 77.44142413139343s
Refit done in 1.2774310111999512 s!
Best model is: {'vect__ngram_range': (1, 1),  
'clf__tree_learner': 'feature',  
'clf__n_estimators': 50, 'clf__max_depth': 2,  
'clf__eta': 0.05}
Best 5-fold log_loss was: 0.6758634524301005
Best 5-fold accuracy was: 0.6436781609195402
Best 5-fold roc_auc was: 0.6801057501652347
Best 5-fold f1 score was: 0.6555555555555556



pipeline = Pipeline(

   [

       ("vect", CountVectorizer()),

       ("tfidf", TfidfTransformer()),

       ("clf", lgb.LGBMClassifier(objective = "binary")),

   ]

)

parameters = {

   #"vect__max_df": (0.5, 0.75, 1.0),

   "vect__ngram_range": ((1, 1), (2, 2), (3,3)),  # unigrams or bigrams

   "clf__n_estimators": (50, 100),

   "clf__eta": (0.05, 0.1),

   "clf__tree_learner": ("serial", "feature"),

   "clf__max_depth": (2, 3,),

   #"clf__max_features": ("sqrt", "log2"),

}

X_train = [' '.join(x) for x in 

zip(MRPC_full["train"]["sentence1"],MRPC_full["train"]["sentence2"])]

X_val = [' '.join(x) for x in 

zip(MRPC_full["validation"]["sentence1"],MRPC_full["validation"]["sentence2"])]

t1 = time.time()

# Find the best parameters for both the feature extraction and the

# classifier

grid_search = RandomizedSearchCV(pipeline, parameters, scoring= "accuracy", n_jobs=-2, verbose=1)

grid_search.fit(X_train, MRPC_full[ "train"]["label"]) #Add early stopping and calidation sets...

print(f"Time for the fit was: {time.time()-t1}s")

print(f"Refit done in {grid_search.refit_time_}  s!")

print(f"Best model is: {grid_search.best_params_} ")

val_func(grid_search, X_val,MRPC_full[ "validation"]["label"])



Fitting 5 folds for each of 10 candidates, 
totalling 50 fits
Time for the fit was: 19.30900764465332s
Refit done in 0.25750041007995605 s!
Best model is: {'vect__ngram_range': (1, 1), 
'clf__tree_learner': 'feature', 
'clf__n_estimators': 50, 'clf__max_depth': 3, 
'clf__eta': 0.1}
Best 5-fold log_loss was: 0.6965631128939668
Best 5-fold accuracy was: 0.6790123456790124
Best 5-fold roc_auc was: 0.5913461538461539
Best 5-fold f1 score was: 0.8



01 - Why we choose this project

● Paper about a 
Deep learning 
model

● Bert was really 
good at text 
classification

BERT

● 4 weeks wasn’t 
enough time for a 
complex model

● “Is this good 
enough” - every 
student as NBI at 
some point

Got us 
thinking

● Test several 
models to compare 
to BERT

● Great opportunity 
to code/test a lot

● Can we get close 
enough?

Many 
models


