
A multimodel appoach on
text classification tasks
By:

Nikhil Ankolkar, Mikkel Peter Lemming, Zhan Su, Ioannis Kritikos and Mikkel
Tonnhøj Petersen

Outline
● Motivation

● Text Classification Task

● Feature Extraction for Text

● Models and Results

● Conclusions and Future work

Motivation

● Is traditional machine learning good enough for our datasets?

● Why deep learning model can get better performance?

● What is the difference of features in traditional ML and NN.

02 - Text Classification Task
Text classification is a common NLP task that assigns a label or class to text.

Dataset
SST2

The Stanford Sentiment Treebank consists of sentences from movie reviews and human annotations of
their sentiment. The task is to predict the sentiment of a given sentence. It uses the two-way
(positive/negative) class split, with only sentence-level labels.

Dataset
MRPC

The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of sentence pairs
automatically extracted from online news sources, with human annotations for whether the sentences
in the pair are semantically equivalent.

Statistics of Dataset
Statistics of MRPC and SST2

train
pairs

dev
pairs

test
pairs

MRPC 3668 408 1725

SST2 67349 872 1821

Feature Extraction from Text
For words to be processed by machine learning models, we need some form of numeric
representation that models can use in their calculation.

 TF-IDF

 Word2vec(Word embedding)

 BERT?

TF-IDF
Not all words have the same impact on the meaning of a document, and should thus not be
treated as so. Each word contributes a TF-IDF value, based on its frequency in the document and
its presence in other documents. TF-IDF thus aims to generate the meaning of a sentence, by
primarily looking for unique words.

Word2Vec
Word embedding creates a vector containing information about its

similarity to other words, in their vectors similarities. The vector is

affected by the words surrounding the target word, this gives the

word some context, for witch it can compare itself for other words.

Words often surrounded by the same words have the same context,

and will in general have some inherent similarity.

03: Our
models

Tree based solutions:

XGBoost

Sklearn Random
forest

LightGBM

1. Good “out-of-the-box” models

2. Easy to train and HP optimize

3. These models are not made for this task

03: Our
models

1. Using standard “tfid” positive / negative
words are not weighted over other kinds of
words

2. Thus acc(SST2) < acc(MRPC)

3. This is also what we found!

4. However the models using SST2 data were
only slightly better than a random guesser

Tree based solutions:

XGBoost

Sklearn
Randomforest

LightGBM

Naive Bayes

● Bayes’ Theorem

● Why Naive?

Assumptions: each feature/variable of the same class
makes an independent, equal contribution to the
outcome.
These assumptions are not in general true in
real-world situations

Traditional
Supervised

Learning
models

 Naive Bayes

 SVM-SVC

 SGDClassifier

Naive Bayes

● How does the model deal with unseen data?

alpha parameter - smoothing

Overall:

1. One of the simplest and fastest classification algorithms

2. can be used for large datasets

3. Requires a small amount of training data to learn the

parameters

SVM-SVC

SVM-SVC

Each observation is plotted as a point in an
n-dimensional space, n is the number of features in
the dataset

Task: find the optimal hyperplane that successfully
classifies the data points into their respective classes

Overall:

It is a good classifier, BUT:
1. slow
2. works on small datasets, impractical for large

datasets

SGDClassifier

SGDClassifier

It applies linear classifiers (SVM, logistic regression, etc.) with
SGD training.
by default: linear support vector machine (SVM)

Almost the same result compared to SVM but in less than 1s

 Accuracy Training time

SGDClassifier 0.8291 0.6275
SVC 0.8348 810.67

 Overall:

1. A good and extremely fast classifier
2. recommended for large datasets

1. Many ways to optimize a CNN model and

detects important features well

2. High potential for other NLP tasks such as

Sentiment Analysis, Spam Detection or Topic

Categorization.

3. Long training time and more difficult to

implement

Deep Learning
solutions:

CNN

1. Implemented through Keras

2. Converted texts to Sequences

3. Continuous bag of words method to create
the Word2Vec embedding layer trained on
both datasets

4. Hyperparameter tuning with Keras Tuner

5. Accuracy (SST2) < Accuracy (MRPC)

CNN with
Word2Vec
Embedding

1. Similar to the CNN model

2. The aim was to use LSTM layers from
Tensorflow

3. However failed to improve the validation set
to more than a random guess model (acc =
0.5)

4. This would be a prime example of future
work.

Deep Learning
solutions:

RNN

BERT
Using BERT to classify single piece of text

Finetuning BERT
BERT is a pre-trained language model. To use BERT to classification task, we need to finetune the
BERT to our datasets (MRPC and SST2).

Model Architecture
The first input token is
supplied with a special
[CLS] token for reasons
that will become apparent
later on. CLS here stands
for Classification.

Model Architecture
For the sentence
classification example
we’ve looked at above, we
focus on the output of only
the first position (that we
passed the special [CLS]
token to)

Bert Performance
evaluation on dev datasets of MRPC and SST2

ACC F1 inference_time

SST2 0.9220 - 1.97

MRPC 0.8504 0.8968 1.14

Training

Evaluation

Conclusions

● Traditional machine learning is more efficient than neural
based model.

● Traditional machine learning models also can give
competitive results.

● Sometimes it is difficult to train a neural based model. It is
not very stable.

● Deep learning model can get the best performance on two
datasets. MRPC and SST2.

References for
Naive Bayes,
SVM-SVC and
SGDClassifier

https://web.stanford.edu/~jurafsky/slp3/4.pdf

https://towardsdatascience.com/text-classification-using-naive-bayes-
theory-a-working-example-2ef4b7eb7d5a

https://scikit-learn.org/stable/modules/naive_bayes.html

https://towardsdatascience.com/https-medium-com-pupalerushikesh
-svm-f4b42800e989

https://www.analyticsvidhya.com/blog/2021/03/beginners-guide-to-s
upport-vector-machine-svm/

https://scikit-learn.org/stable/modules/generated/sklearn.linear_mo
del.SGDClassifier.html

https://michael-fuchs-python.netlify.app/2019/11/11/introduction-to
-sgd-classifier/

https://web.stanford.edu/~jurafsky/slp3/4.pdf
https://towardsdatascience.com/text-classification-using-naive-bayes-theory-a-working-example-2ef4b7eb7d5a
https://towardsdatascience.com/text-classification-using-naive-bayes-theory-a-working-example-2ef4b7eb7d5a
https://scikit-learn.org/stable/modules/naive_bayes.html
https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989
https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989
https://www.analyticsvidhya.com/blog/2021/03/beginners-guide-to-support-vector-machine-svm/
https://www.analyticsvidhya.com/blog/2021/03/beginners-guide-to-support-vector-machine-svm/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://michael-fuchs-python.netlify.app/2019/11/11/introduction-to-sgd-classifier/
https://michael-fuchs-python.netlify.app/2019/11/11/introduction-to-sgd-classifier/

APPENDIx

SST2_full dataset

Linear Support Vector Machine-SVC
default model
Accuracy: 0.8233
Training time: 1601.6370995044708s

Hyperparameter optimisation using
RandomizedSearchCV
Hyperparameters used:
kernel = ['poly', 'rbf', 'sigmoid']
C = [50, 10, 1.0, 0.1, 0.01]
gamma = ['scale','auto']

Best hyperparameters found:{'kernel': 'rbf',
'gamma': 'scale', 'C': 10} Training
time: 1h 48 m

Model after HP optimisation:

Accuracy:0.8348

Training time: 810.6734158992767s

Multinomial Naive Bayes

default model
Accuracy: 0.8004

Training time:0.03961038589477539s

Hyperparameter optimisation using
RandomizedSearchCV
Hyperparameters used:
'alpha': np.linspace(0.1, 1.5, 80),
 'fit_prior': [True, False]
Training time: 7.1049582958221436s
Best hyperparameters found:
'fit_prior': True, 'alpha':
0.18860759493670887

Model after HP optimisation
Accuracy 0.786697247706422
Training time: 0.040918827056884766s

We can see that the default model performs slightly
better than the optimised one. The reason is that
Multinomial Naive Bayes default model uses alpha=1,
which is the Laplace Smoothing (add-one smoothing).
The smoothing priors α≥0 accounts for features not
present in the learning samples and prevents zero
probabilities in further computations. Setting
α=1 is called Laplace smoothing, while
α<1 is called Lidstone smoothing.
(Reference:https://scikit-learn.org/stable/modules/na
ive_bayes.html). So, instead of excluding unseen
words and by extension sentences from the validation
dataset (minimising more our dataset), we give 0 + 1

https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html

probabilities to the unseen data included in the
validation set.

SGDClassifier

The model implements regularized linear models
with stochastic gradient descent (SGD) learning. We
fit a linear SVM with SGD, to compare its results in
performance and training time with SVM-SVC without
SGD. our intuition says that SGDClassifier will be
much faster than SVM-SVC.

SGDClassifier default model
Accuracy: 0.8211009174311926
Training time: 0.16014623641967773s

We can see that its performance is imperceptibly

lower than SVM-SVC but it is, indeed, much

(incredibly) faster. This is the reason why

SGDClassifier is preferred when dealing with

with large datasets.

Hyperparameter optimisation using RandomizedSearchCV

Hyperparameters used:

loss = ['hinge', 'log', 'modified_huber',

'squared_hinge', 'perceptron']

penalty = ['l1', 'l2', 'elasticnet']

alpha = [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]

learning_rate = ['constant', 'optimal',

'invscaling', 'adaptive']

eta0 = [1, 10, 100]

Best hyperparameters found:
penalty= 'l2', loss = 'squared_hinge',
learning_rate='adaptive', eta0= 10,
alpha= 0.0001

Model after HP optimisation

Accuracy: 0.8291
Training time: 0.6275079250335693s

MRPC_ful dataset

SVM-SVC
Default model
Accuracy:0.7230
F-1: 0.8290
Training time: 5.220731735229492s

Hyperparameter optimisation using
RandomizedSearchCV

Hyperparameters used:
kernel = ['poly', 'rbf', 'sigmoid']
C = [100,90, 70, 60, 50, 30, 10, 1.0,
0.1, 0.01]
gamma = ['scale','auto']

Best hyperparameters found:
{'kernel': 'poly', 'gamma': 'scale',
'C': 10}
Training time: 30.388631105422974s
After having found that ‘poly’ is the
best hyperparameter for kernel,we
introduce another hyperparameter,which
is used only when kernel=‘poly’, the
degree parameter.

Hyperparameters used:
kernel = ['poly']
degree = [1, 2,3,4,5,6,7,8]

C = [100,90, 70, 60, 50, 30, 10, 1.0, 0.1, 0.01]
gamma = ['scale','auto']

Best hyperparameters found:
{'kernel': 'poly', 'gamma': 'scale', 'degree': 2,
'C': 90}
Training time: 26.8865807056427s

Model after hyperparameter
optimisation:
Accuracy: 0.7181
F-1: 0.8265
Training time: 3.689194917678833s

Multinomial Naive Bayes

Default model

Accuracy: 0.7058
F-1: 0.8219
Training time: 0.00672459602355957s

Hyperparameters optimisation using
RandomizedSearchCV
Hyperparametres used: {
 'alpha': np.linspace(0.1, 1.5, 80),
 'fit_prior': [True, False]}

Best hyperparameters found:
{'fit_prior': True, 'alpha':
0.6139240506329113}}

Model after hyperparameter optimisation
Accuracy 0.7205
F-11 0.8288
Training time: 0.03725767135620117s

SGDClassifier
Default model
Accuracy: 0.6740
F-1: 0.7718696397941681
Training time: 0.04090237617492676s

Hyperparameter optimisation using
RandomizedSearchCV

Hyperparameters used:

loss = ['hinge', 'log',

'modified_huber', 'squared_hinge',

'perceptron']

penalty = ['l1', 'l2', 'elasticnet']

alpha = [0.0001, 0.001, 0.01, 0.1, 1,

10, 100, 1000]

learning_rate = ['constant', 'optimal',

'invscaling', 'adaptive']

eta0 = [1, 10, 100]

Best hyperparameters found:
{'penalty': 'elasticnet', 'loss': 'log',

'learning_rate': 'invscaling', 'eta0':

1, 'alpha': 0.0001}

Training time: 4.864312171936035s

Model after hyperparamater optimisation:

Accuracy: 0.6985

F-1: 0.8183

Training time: 0.09494614601135254s

MRPC_full dataset using trigrams
SGDClassifier
Default model
Accuracy: 0.7107
F-1: 0.8138
Training time: 0.03121328353881836s

Hyperparameter optimisation using
RandomizedSearchCV

Hyperparameters used: same as in the unigram approach

Hyperparameters found:
 {'penalty': 'elasticnet', 'loss':

'hinge', 'learning_rate': 'invscaling',

'eta0': 100, 'alpha': 0.0001}

Training time: 4.816795349121094s

Model after HP optimisation

Accuracy: 0.7328

F-1: 0.8310

Training time: #0.8315131187438965s

Multinomial Naive Bayes using trigrams

Default model
Accuracy: 0.7156

F-1: 0.8247

Training time: 0.007960796356201172s

Hyperparameters used: same as in the unigram approach

Hyperparameters found:{'fit_prior':

True,

'alpha': 8088607594936708}

Training time 0.6476254463195801s

Model after HP optimisation:
Accuracy: 0.7156
F-1: 0.8247
Training time: 0.014194488525390625s

SVM-SV
Default model
Accuracy: 0.7205
F-1: 0.8298
Training time: 4.433847665786743s

Hyperparameter optimisation using
RandomizedSearchCV
Hyperparameters used:kernel = ['linear',
'poly', 'rbf', 'sigmoid']
C = [100,90, 70, 60, 50, 30, 10, 1.0,
0.1, 0.01]
gamma = ['scale','auto']

Hypeparameters found:
Best: 0.814863 using {'kernel':
'linear', 'gamma': 'scale', 'C': 100}
Training time: 31.55373191833496s

Model after HP optimisation
Accuracy: 0.7205
F-1: 0.8283
Training time: 4.943105220794678s

SST2 Dataset

CNN with Word2Vec embedding

Hyperparameter optimization using Keras tuner
“Random Search”

Hyperparameters used: Conv_layer 1 : [32,64],

Conv_layer 2: [32,64],

Kernel size: [3,5,7],

Learning rate: [0.001, 0.01, 0.1]

Hyperparameters:
conv_layers: 32
kernel_size: 3
units: 64
learning_rate: 0.001
Score: 0.6913140416145325

F1 Score: 0.67477196

Total elapsed time: 857 s
Early stopping implemented at patience
= 3 at a total number of epochs = 5
when max trials = 6

train_tokens = []
for i in (SST2_full["train"]["sentence"]):
 train_tokens.append(i.split())
token = Tokenizer(num_words = 10000)
token.fit_on_texts(SST2_full["train"]["sentence"])
train_seq = token.texts_to_sequences(SST2_full["train"]["sentence"])
train_data = pad_sequences(train_seq, maxlen = 75)

valid_tokens = []
for i in (SST2_full["validation"]["sentence"]):
 valid_tokens.append(i.split())
token = Tokenizer(num_words = 10000)
token.fit_on_texts(SST2_full["validation"]["sentence"])
valid_seq = token.texts_to_sequences(SST2_full["validation"]["sentence"])
valid_data = pad_sequences(valid_seq, maxlen = 75)

tokens = train_tokens + valid_tokens
text = SST2_full["train"]["sentence"] + SST2_full["validation"]["sentence"]

training_labels = np.array(SST2_full['train']['label'])
training_labels = training_labels.astype('float32').reshape(-1,1)
testing_labels = np.array(SST2_full['validation']['label'])
testing_labels = testing_labels.astype('float32').reshape(-1,1)

print('Shape of input data:' , train_data.shape, valid_data.shape)
print('Shape of labels:' , training_labels.shape, testing_labels.shape)

w2v_model = word2vec.Word2Vec(min_count = 1, size = 10000,

sg = 1, window = 5)

w2v_model.build_vocab(tokens)

w2v_model.train(tokens,

 total_examples = w2v_model.corpus_count,

 epochs = w2v_model.iter)

w2v_embedding = w2v_model.wv.get_keras_embedding()

def word2vec_CNN (hp):
 #x = Sequential()
 sequence_input = Input(shape=(75), dtype= 'int32')
 embedded_sequences = w2v_embedding(sequence_input)
 x = Conv1D(filters = hp.Choice('conv_layers' , [32,64]),
 kernel_size = hp.Choice('kernel_size' , [3,5,7]),
 activation = 'relu')(embedded_sequences)
 x = MaxPooling1D()(x)
 x = Conv1D(filters = hp.Choice('conv_layers' , [32,64]),
 kernel_size = hp.Choice('kernel_size' , [3,5,7]),
 activation = 'relu')(x)
 x = MaxPooling1D()(x)
 x = Flatten()(x)
 x = Dropout(0.5)(x)
 preds = Dense(1, activation = 'softmax')(x)
 model = Model(sequence_input, preds)
 learning_rate_choice = hp.Choice('learning_rate' , values = [0.001, 0.01, 0.1])
 model. compile(loss = 'binary_crossentropy' ,
 metrics = 'accuracy' ,
 optimizer = keras.optimizers.Adam(learning_rate = learning_rate_choice))
 return model

random_search = kt.RandomSearch(
 word2vec_CNN,
 objective = 'val_accuracy' ,
 max_trials = 5,
 directory = 'dir',
 project_name = 'search'
)
print(random_search.search_space_summary())
early_stopping = tf.keras.callbacks.EarlyStopping(monitor = 'val_loss' , patience = 2)
random_search.search(train_data, training_labels, validation_split = 0.2, epochs = 1,
callbacks=[early_stopping])

MRPC Dataset

CNN with Word2Vec embedding

Hyperparameter optimization using Keras tuner
“Random Search”

Hyperparameters used: Conv_layer 1 : [32,64,96],

Conv_layer 2: [32,64,96],

Kernel size: [3,5,7],

Learning rate: [0.001, 0.01, 0.1]

Hyperparameters:

conv_layers: 64

kernel_size: 7

Dense: 64

learning_rate: 0.001

Accuracy Score:
0.6948229074478149

F1 score: 0.812227

Total elapsed time: 2820 s

Early stopping implemented at
patience = 3 out of 5 epochs with
max trials = 6

MRPC_full_train = [' '.join(x) for x in

zip(MRPC_full["train"]["sentence1"],MRPC_full["train"]["sentence2"])]

MRPC_full_valid = [' '.join(x) for x in

zip(MRPC_full["validation"]["sentence1"],MRPC_full["validation"]["sentence2"])]

train_tokens = []

for i in (MRPC_full_train):

 train_tokens.append(i.split())

token = Tokenizer(num_words = 10000)

token.fit_on_texts(MRPC_full_train)

train_seq = token.texts_to_sequences(MRPC_full_train)

train_data = pad_sequences(train_seq, maxlen = 75)

print(train_data)

valid_tokens = []

for i in (MRPC_full_valid):

 valid_tokens.append(i.split())

token = Tokenizer(num_words = 10000)

token.fit_on_texts(MRPC_full_valid)

valid_seq = token.texts_to_sequences(MRPC_full_valid)

valid_data = pad_sequences(valid_seq, maxlen = 75)

print(valid_data)

training_labels = np.array(MRPC_full['train']['label'])

training_labels = training_labels.astype('float32').reshape(-1,1)

testing_labels = np.array(MRPC_full['validation']['label'])

testing_labels = testing_labels.astype('float32').reshape(-1,1)

print('Shape of input data:' , train_data.shape, valid_data.shape)

print('Shape of labels:' , training_labels.shape, testing_labels.shape)

tokens = list(train_tokens + valid_tokens)

print(tokens)

w2v_model = word2vec.Word2Vec(min_count = 1, size = 10000,

sg = 1, window = 5)

w2v_model.build_vocab(tokens)

w2v_model.train(tokens,

 total_examples = w2v_model.corpus_count,

 epochs = w2v_model.iter)

w2v_embedding = w2v_model.wv.get_keras_embedding()

def word2vec_CNN (hp):

 sequence_input = Input(shape=(75), dtype= 'int32')

 embedded_sequences = w2v_embedding(sequence_input)

 x = Conv1D(filters = hp.Choice('conv_layers' , [32,64,96]),

 kernel_size = hp.Choice('kernel_size' , [3,5,7]),

 activation = 'relu')(embedded_sequences)

 x = MaxPooling1D()(x)

 x = Conv1D(filters = hp.Choice('conv_layers' , [32,64,96]),

 kernel_size = hp.Choice('kernel_size' , [3,5,7]),

 activation = 'relu')(x)

 x = MaxPooling1D()(x)

 x = Flatten()(x)

 x = Dropout(0.5)(x)

 preds = Dense(1, activation = 'softmax')(x)

 model = Model(sequence_input, preds)

 learning_rate_choice = hp.Choice('learning_rate' , values = [0.001, 0.01, 0.1])

 model. compile(loss = 'binary_crossentropy' ,

 metrics = 'accuracy' ,

 optimizer = keras.optimizers.Adam(learning_rate = learning_rate_choice))

 return model

rs = kt.RandomSearch(

 word2vec_CNN,

 objective = 'val_accuracy' ,

 max_trials = 5,

 directory = 'dir',

 project_name = 'newproj'

)

print(rs.search_space_summary())

early_stopping = tf.keras.callbacks.EarlyStopping(monitor = 'val_loss' , patience = 2)

random_search.search(train_data, training_labels, validation_split = 0.2, epochs = 1,

callbacks=[early_stopping])

pipeline = Pipeline(
 [
 ("vect", CountVectorizer()),
 ("tfidf", TfidfTransformer()),
 ("clf", xgb.XGBClassifier()),
]
)

parameters = {
 #"vect__max_df": (0.5, 0.75, 1.0),
 "vect__ngram_range": ((1, 1), (2, 2), (3,3)), # unigrams or bigrams
 "clf__n_estimators": (50, 100, 150),
 "clf__max_depth": (2, 3),
 "clf__learning_rate": (0.05, 0.1, 0.2),
}
t1 = time.time()
Find the best parameters for both the feature extraction and the
classifier
grid_search = RandomizedSearchCV(pipeline, parameters, scoring="accuracy",
n_jobs=-2, verbose=1)
grid_search.fit(SST2_full["train"]["sentence"], SST2_full["train"]["label"]) #Add
early stopping and calidation sets...
print(f"Time for the fit was: {time.time()-t1}s")
print(f"Refit done in {grid_search.refit_time_} s!")
print(f"Best model is: {grid_search.best_params_}")
val_func(grid_search, SST2_full["validation"]["sentence"],
SST2_full["validation"]["label"])

Fitting 5 folds for each of 10 candidates, totalling 50

fits

Time for the fit was: 481.15140414237976s

Refit done in 5.674318790435791 s!

Best model is: {'vect__ngram_range': (1, 1),

'clf__n_estimators': 100, 'clf__max_depth': 2,

'clf__learning_rate': 0.1}

Best 5-fold log_loss was: 0.680134413923536

Best 5-fold accuracy was: 0.6954022988505747

Best 5-fold roc_auc was: 0.7231989424983477

Best 5-fold f1 score was: 0.7195767195767195

pipeline = Pipeline(

 [

 ("vect", CountVectorizer()),

 ("tfidf", TfidfTransformer()),

 ("clf", xgb.XGBClassifier()),

]

)

parameters = {

 #"vect__max_df": (0.5, 0.75, 1.0),

 "vect__ngram_range": ((1, 1), (2, 2), (3,3)), # unigrams or bigrams

 "clf__n_estimators": (50, 100, 150),

 "clf__max_depth": (2, 3),

 "clf__learning_rate": (0.05, 0.1, 0.2),

}

X_train = [' '.join(x) for x in

zip(MRPC_full["train"]["sentence1"],MRPC_full["train"]["sentence2"])]

X_val = [' '.join(x) for x in

zip(MRPC_full["validation"]["sentence1"],MRPC_full["validation"]["sentence2"])]

t1 = time.time()

Find the best parameters for both the feature extraction and the

classifier

grid_search = RandomizedSearchCV(pipeline, parameters, scoring= "accuracy", n_jobs=-2, verbose=1)

grid_search.fit(X_train, MRPC_full["train"]["label"]) #Add early stopping and calidation sets...

print(f"Time for the fit was: {time.time()-t1}s")

print(f"Refit done in {grid_search.refit_time_} s!")

print(f"Best model is: {grid_search.best_params_} ")

val_func(grid_search, X_val,MRPC_full["validation"]["label"])

Fitting 5 folds for each of 10 candidates,
totalling 50 fits
Time for the fit was: 174.78201842308044s
Refit done in 1.939793586730957 s!
Best model is: {'vect__ngram_range': (1, 1),
'clf__n_estimators': 150, 'clf__max_depth': 2,
'clf__learning_rate': 0.2}
Best 5-fold log_loss was: 0.8300971963397432
Best 5-fold accuracy was: 0.7317073170731707
Best 5-fold roc_auc was: 0.5906593406593407
Best 5-fold f1 score was: 0.8253968253968255

pipeline = Pipeline(
 [
 ("vect", CountVectorizer()),
 ("tfidf", TfidfTransformer()),
 ("clf", RandomForestClassifier()),
]
)

parameters = {
 #"vect__max_df": (0.5, 0.75, 1.0),
 "vect__ngram_range": ((1, 1), (2, 2), (3,3)), # unigrams or bigrams
 "clf__n_estimators": (50,100,150),
 "clf__max_depth": (2, 3),
 "clf__min_samples_leaf": (1, 2, 4),
 "clf__max_features": ("sqrt", "log2"),
}
t1 = time.time()
Find the best parameters for both the feature extraction and the
classifier
grid_search = RandomizedSearchCV(pipeline, parameters, scoring="accuracy",
n_jobs=-2, verbose=1)
grid_search.fit(SST2_full["train"]["sentence"], SST2_full["train"]["label"])
print(f"Time for the fit was: {time.time()-t1}s")
print(f"Refit done in {grid_search.refit_time_} s!")
print(f"Best model is: {grid_search.best_params_}")
val_func(grid_search, SST2_full["validation"]["sentence"],
SST2_full["validation"]["label"])

Fitting 5 folds for each of 10 candidates,
totalling 50 fits
Time for the fit was: 86.17250180244446s
Refit done in 1.5549530982971191 s!
Best model is: {'vect__ngram_range': (1, 1),
'clf__n_estimators': 100, 'clf__min_samples_leaf':
4, 'clf__max_features': 'sqrt', 'clf__max_depth':
3}
Best 5-fold log_loss was: 0.685187301753825
Best 5-fold accuracy was: 0.6149425287356322
Best 5-fold roc_auc was: 0.696298744216788
Best 5-fold f1 score was: 0.6909090909090908

pipeline = Pipeline(
 [
 ("vect", CountVectorizer()),
 ("tfidf", TfidfTransformer()),
 ("clf", RandomForestClassifier()),
]
)

parameters = {
 #"vect__max_df": (0.5, 0.75, 1.0),
 "vect__ngram_range": ((1, 1), (2, 2), (3,3)), # unigrams or bigrams
 "clf__n_estimators": (50,100,150),
 "clf__max_depth": (2, 3),
 "clf__min_samples_leaf" : (1, 2, 4),
 "clf__max_features": ("sqrt", "log2"),
}
Find the best parameters for both the feature extraction and the
classifier
X_train = [' '.join(x) for x in
zip(MRPC_full["train"]["sentence1"],MRPC_full["train"]["sentence2"])]
X_val = [' '.join(x) for x in
zip(MRPC_full["validation"]["sentence1"],MRPC_full["validation"]["sentence2"])]
t1 = time.time()
Find the best parameters for both the feature extraction and the
classifier
grid_search = RandomizedSearchCV(pipeline, parameters, scoring= "accuracy", n_jobs=-2, verbose=1)
grid_search.fit(X_train, MRPC_full["train"]["label"]) #Add early stopping and calidation sets...
print(f"Time for the fit was: {time.time()-t1}s")
print(f"Refit done in {grid_search.refit_time_} s!")
print(f"Best model is: {grid_search.best_params_} ")
val_func(grid_search, X_val,MRPC_full["validation"]["label"])

Fitting 5 folds for each of 10 candidates,
totalling 50 fits
Time for the fit was: 22.05402970314026s
Refit done in 0.18636751174926758 s!
Best model is: {'vect__ngram_range': (1, 1),
'clf__n_estimators': 50, 'clf__min_samples_leaf':
4, 'clf__max_features': 'sqrt', 'clf__max_depth':
2}
Best 5-fold log_loss was: 0.6283055605626955
Best 5-fold accuracy was: 0.691358024691358
Best 5-fold roc_auc was: 0.6164148351648351
Best 5-fold f1 score was: 0.8175182481751825

pipeline = Pipeline(
 [
 ("vect", CountVectorizer()),
 ("tfidf", TfidfTransformer()),
 ("clf", lgb.LGBMClassifier(objective = "binary")),
]
)

parameters = {
 #"vect__max_df": (0.5, 0.75, 1.0),
 "vect__ngram_range": ((1, 1), (2, 2), (3,3)), # unigrams or bigrams
 "clf__n_estimators": (50, 100),
 "clf__eta": (0.05, 0.1),
 "clf__tree_learner": ("serial", "feature"),
 "clf__max_depth": (2, 3,),
 #"clf__max_features": ("sqrt", "log2"),
}
t1 = time.time()
Find the best parameters for both the feature extraction and the
classifier
grid_search = RandomizedSearchCV(pipeline, parameters, scoring="accuracy",
n_jobs=-2, verbose=1)
grid_search.fit(SST2_full["train"]["sentence"], SST2_full["train"]["label"])
print(f"Time for the fit was: {time.time()-t1}s")
print(f"Refit done in {grid_search.refit_time_} s!")
print(f"Best model is: {grid_search.best_params_}")
val_func(grid_search, SST2_full["validation"]["sentence"],
SST2_full["validation"]["label"])

Fitting 5 folds for each of 10 candidates,
totalling 50 fits
Time for the fit was: 77.44142413139343s
Refit done in 1.2774310111999512 s!
Best model is: {'vect__ngram_range': (1, 1),
'clf__tree_learner': 'feature',
'clf__n_estimators': 50, 'clf__max_depth': 2,
'clf__eta': 0.05}
Best 5-fold log_loss was: 0.6758634524301005
Best 5-fold accuracy was: 0.6436781609195402
Best 5-fold roc_auc was: 0.6801057501652347
Best 5-fold f1 score was: 0.6555555555555556

pipeline = Pipeline(

 [

 ("vect", CountVectorizer()),

 ("tfidf", TfidfTransformer()),

 ("clf", lgb.LGBMClassifier(objective = "binary")),

]

)

parameters = {

 #"vect__max_df": (0.5, 0.75, 1.0),

 "vect__ngram_range": ((1, 1), (2, 2), (3,3)), # unigrams or bigrams

 "clf__n_estimators": (50, 100),

 "clf__eta": (0.05, 0.1),

 "clf__tree_learner": ("serial", "feature"),

 "clf__max_depth": (2, 3,),

 #"clf__max_features": ("sqrt", "log2"),

}

X_train = [' '.join(x) for x in

zip(MRPC_full["train"]["sentence1"],MRPC_full["train"]["sentence2"])]

X_val = [' '.join(x) for x in

zip(MRPC_full["validation"]["sentence1"],MRPC_full["validation"]["sentence2"])]

t1 = time.time()

Find the best parameters for both the feature extraction and the

classifier

grid_search = RandomizedSearchCV(pipeline, parameters, scoring= "accuracy", n_jobs=-2, verbose=1)

grid_search.fit(X_train, MRPC_full["train"]["label"]) #Add early stopping and calidation sets...

print(f"Time for the fit was: {time.time()-t1}s")

print(f"Refit done in {grid_search.refit_time_} s!")

print(f"Best model is: {grid_search.best_params_} ")

val_func(grid_search, X_val,MRPC_full["validation"]["label"])

Fitting 5 folds for each of 10 candidates,
totalling 50 fits
Time for the fit was: 19.30900764465332s
Refit done in 0.25750041007995605 s!
Best model is: {'vect__ngram_range': (1, 1),
'clf__tree_learner': 'feature',
'clf__n_estimators': 50, 'clf__max_depth': 3,
'clf__eta': 0.1}
Best 5-fold log_loss was: 0.6965631128939668
Best 5-fold accuracy was: 0.6790123456790124
Best 5-fold roc_auc was: 0.5913461538461539
Best 5-fold f1 score was: 0.8

01 - Why we choose this project

● Paper about a
Deep learning
model

● Bert was really
good at text
classification

BERT

● 4 weeks wasn’t
enough time for a
complex model

● “Is this good
enough” - every
student as NBI at
some point

Got us
thinking

● Test several
models to compare
to BERT

● Great opportunity
to code/test a lot

● Can we get close
enough?

Many
models

