Predicting gene expression from random promotor sequences

Gabija Kavaliauskaite
(gkav@sdu.dk), Andreas Fønss
Møller (andreasfm@bmb.sdu.dk)

Contents

- Gene regulation crash course
- Dataset
- Data preprocessing
- Data pipeline
- Model breakdown
- Results
- Appendix

Transcriptional regulation

- Regulatory proteins with DNA binding TFs
 domains
- Usually bind in promoter regions

- Positive or negative regulation of proximal genes

Promoter
Gene

Cis-regulatory logic is complicated!

Many TFs (human ~ 1700, yeast ~ 210)

- Concentrations
- Action (activating/repressing)
- Position specific effect
- Chromatin organization
- TF interactions

The dataset

Step 1: Construct random sequence library Random 80-mer (N^{80}) Promoter scaffold

Step 2: Sort by expression

18 Expression Bins

Step 2: Sequence promoters

Promoter sequences and expression levels

$\operatorname{Bin} 1$

$\begin{aligned} & \\ & \text { ataiga } \operatorname{Bin} 2\end{aligned}$
atadga
tTGAGA.
Bin 18
-

$$
\begin{aligned}
& \text { CGAGGA } \\
& \text { TTGAA }
\end{aligned}
$$

Data Preprocessing

Onehot encode sequences (5' to 3^{\prime})

TGCATTTTTTTCACATCTATGTTGCGTTAGAACGATATTGGAACACTTGTCAACAAGCTCATCTGAACTAATAGAGATGTATTCATAGGCTTCAGGTGGTTACGGCTGTT

Data Preprocessing

 CTTACGCACTGAAGATGTCTTAGCCForward strand (5' to 3')

Data Preprocessing

Distribution of expressions

Data Pipeline

large dataset and TPU training
TFRecord

- Saving data in 68 files (100k seqs per file) for parallel read/write
- Sequences as binary BytesList, Expression values as FloatList
- Define how to read from them using a streaming approach GCS + TPU
- Write files to GCS for TPU acces
- Authenticaiton of TPU runtime
- Different batch size systems on TPU

Model architecture

Model designed with 4 major parts:

Optimizer - Adam;
Learning_rate - 0.001;
Dropout_rate - 0.3;
Number of heads - 8;
Filters (Conv1D) - 128;
Filters (Conv2D) - 256;
Number of residual layers - 5;
Number of attention layers - 5;
Kernel size - 7;
Loss function - MSE;

Stacked CNN with forward-and reverse-sequences

Convolution of forward and reverse sequence

Stack of convolutional blocks with residual connection

Transformer with stacked bidirectional LSTM

Evaluation of the method

- Training data: 0.95 of the data to train (6402295 sequences)
- Validation and test: 0.025 each (168481 seq for validation and test)

Evaluation of the method

- The max R^{2} on validation data: 0.97518
- The lowest loss on validation data: 0.0311

Prediction on withheld testing data (>150k) $\mathrm{R}^{\wedge} 2=0.98$

Conclusion and future perspectives

- The model is capable of reaching $0.97518\left(R^{2}\right)$ on validation and 0.98 on the test data;
- Test the model with independent dataset;
- Possibility to optimize the model further (hyperparameter tuning);
- Pre-filtering by removing the sequences that are similar in both training and test datasets;

Appendix

Custom onehot encode sequences

```
def seq2feature(data):
    A_onehot = np.array([1,0,0,0] , dtype=np.bool)
    C_onehot = np.array([0,1,0,0] , dtype=np.bool)
    G_onehot = np.array([0,0,1,0] , dtype=np.bool)
    T onehot = np.array([0,0,0,1] , dtype=np.bool)
    N_onehot = np.array([0,0,0,0] , dtype=np.bool)
    mapper = {'A':A_onehot,'C':C_onehot,'G':G_onehot,'T':T_onehot,'N':N_onehot}
    worddim = len(mapper['A'])
    ###Make sure the length is 110bp
    for i in (range(0,len(data))) :
        if (len(data[i]) > 110) :
            data[i] = data[i][-110:]
        elif (len(data[i]) < 110) :
            while (len(data[i]) < 110) :
                    data[i] = 'N'+data[i]
    transformed = np.asarray(([[mapper[k] for k in (data[i])] for i in (range(len(data)))]))
    return transformed
seqdata_transformed = seq2feature(sequences)
```

files_per_record $=100000$
nfiles = ceil(onehot sequences.shape[0]/ files per record)

Save TFRecord to GCS

tfrecord filename $=$ gcs output + ' $\}$. tfrecords
print('Saving \{\} records, in \{\} files'.format(onehot_sequences.shape[0],nfiles))
for index in range(nfiles): \# Number of splits
\#writer = tf.data.experimental.TFRecordWriter(tfrecord_filename.format(index)) with tf.io.TFRecordWriter(tfrecord_filename.format(index)) as writer:

```
if index == nfiles:
    subset_lims = range(index*nfiles, onehot_sequences.shape[0])
else:
    subset_lims = range(index*nfiles, index*nfiles + files_per_record)
sub_X = onehot_sequences[subset_lims, :,:]
sub y = expressions[subset lims]
for i in range(len(sub_x)):
x = sub_X[i]
y = sub_y[i]
serialized array = serialize_array(x)
seq_feature = tf.train.Feature(bytes_list=_bytes_feature(serialized_array)
exp_feature = tf.train.Feature(float_list=tf.train.FloatList(value=[y]))
example = tf.train.Example(
features=tf.train.Features(feature={
                                    "sequence": seq feature,
                                    "expression": exp_feature
                    })
            )
writer.write(example.SerializeToString())
```

```
filenames = tf.io.gfile.glob('gs://dream_tfrecords/training_data_*.tfrecords')
from tensorflow.python.data.experimental import AUTOTUNE
```

```
feature_description = {
```

feature_description = {
sequence": tf.io.FixedLenFeature([], tf.string),
sequence": tf.io.FixedLenFeature([], tf.string),
"expression": tf.io.FixedLenFeature([], tf.float32),
"expression": tf.io.FixedLenFeature([], tf.float32),
}
}
def _parse_data(unparsed_example):
def _parse_data(unparsed_example):
return tf.io.parse single example(unparsed example, feature description)
return tf.io.parse single example(unparsed example, feature description)
def bytestring to seq(parsed example):
def bytestring to seq(parsed example):
byte_string = parsed_example['sequence']
byte_string = parsed_example['sequence']
\#seq = tf.sparse.to_dense(byte_string)
\#seq = tf.sparse.to_dense(byte_string)
seq = tf.io.parse_tensor(byte_string, bool)
seq = tf.io.parse_tensor(byte_string, bool)
seq = tf.reshape(seq, shape=(110,4))
seq = tf.reshape(seq, shape=(110,4))
exp = tf.cast(parsed_example["expression"], tf.float32)
exp = tf.cast(parsed_example["expression"], tf.float32)
return seq, exp
return seq, exp
def load and extract sequences(filepath):
def load and extract sequences(filepath):
option_no_order = tf.data.Options()
option_no_order = tf.data.Options()
option_no_order.experimental_deterministic = False
option_no_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filepath, num parallel reads=AUTOTUNE)
dataset = tf.data.TFRecordDataset(filepath, num parallel reads=AUTOTUNE)
dataset = dataset.with_options(option_no_order)
dataset = dataset.with_options(option_no_order)
dataset = dataset.map(_parse_data, num_parallel_calls=AUTOTUNE)
dataset = dataset.map(_parse_data, num_parallel_calls=AUTOTUNE)
dataset = dataset.map(_bytestring_to_seq, num_parallel_calls=AUTOTUNE) \# .cache()
dataset = dataset.map(_bytestring_to_seq, num_parallel_calls=AUTOTUNE) \# .cache()
return dataset
return dataset
dataset = load_and_extract_sequences(filenames)

```
dataset = load_and_extract_sequences(filenames)
```

1. We created convolutions of forward and reverse sequences using Conv1D.
\#https://arxiv.org/pdf/1801.05134.pdf
conv_hidden = 256
\#reverse complement block (convolution of forward and reverse)
x_f,x_rc = rc_Conv1D(motif_conv_hidden,
initial_conv_width,
padding='same'
kernel_regulariźer = l1_l2(l1=l1_weight, l2=l2_weight),
kernel_initializer='he_normal' ,
data_format $=$ 'channelss_last' ,
use_bias=False) (input_layer)
$x_{-} f=$ BatchNormalization()(x_f)
$x_{-} r c=$ BatchNormalization() (\bar{x} _rc
$x-f=$ Activation('gelu') ($x-f$)
x^{\prime} _rc $=$ Activation('gelu') $\left(\bar{x} _r c\right)$

2. Convolutions with reverse and forward sequences were concatenate and fed to Conv2D.

\#Co-operativity layer (of the forvard and reverse)
x_f = Lambda(lambda x : K.expand_dims (x,axis=1)) (x_f)
x^{\prime} _rc = Lambda(lambda x : K. expand_dims $(x, a x i s=1)$) ($\bar{x}_{-} r c$)
$x=$ Concatenate(axis=1) ([x f, x rc] $)$
$\mathrm{x}=$ keras. layers.ZeroPadding2D(padding $=((0,0)$, (int(initial_conv_width/2),int(initial_conv_width/2))),
data format = 'channels last') (\bar{x})
x = Conv2D(conv_hidden, \#N filters
(2,initial_conv_width), \#Kernel size
(2,initial_conv
padding='valid
kernel_regularizer $=~ l 1 _l 2\left(l 1=l 1 _w e i g h t, ~ l 2=l 2 _w e i g h t\right), ~$
kernel_initializer='he_normal' ,
kernel_initializer='he_normal' data format = 'channels last',
data format $=$ 'chan
$x=$ BatchNormalization() (x)
$x=$ Activation('gelu') (x)
$\mathrm{x}=$ Lambda(lambda x : K.squeeze($\mathrm{x}, \mathrm{axis}=1$))(x)
*Custom build layers

3. Stack of convolution blocks with residual connections.

```
#Stack of convolutional blocks (residual connections)
    or i in range(n_residual_layers) :
    x_input = x
    = Conv1D(conv_hidden,
        (residual_kernel_size),
            padding='same'
            kernel_regularizer = l1_l2(l1=l1_weight, l2=l2_weight),
            kernel_initializer='he_normal' ,
            data format = 'channels last'
            use_\overline{bias=False)(x)}
    x = BatchNorma\ization()(x
    x = Activation('gelu')(x)
    x = Conv1D(conv hidden,
                    residual_kernel_size),
                    padding='same
                    kernel_regularizer = l1_l2(l1=l1_weight, l2=l2_weight)
            kernel_initializer='he_normal',
            data_format = channels_last ,
            use_bias=False)(x
    x = Add()([x_input, x])
    = BatchNormalization()(x)
    x = LeakyRRLU()(x)
    # Final Block
    flatten = Flatten()(x)
    bottleneck = Dense(conv_hidden)(flatten)
```

4. The output of the stacked CNN was flattened and and embendded, this new input was fed to transformer with multi-head attention.
\#transformer block with scaled dot product MHA
for i in range(n attention layers) :
r i in range (n attention_layers)
$\mathrm{x}=$ MultiHeadAttention(head_num=n_heads, name='Multi-Head'+str(i),
if dropout rate > 0.0 : ${ }^{\text {kernel_regulārizer }=11 _l 2\left(l 1=11 _w e i g h t, ~\right.} l 2=12 _$weight $\left.)\right)(x)$
$x=$ Dropout (rate=attention_dropout_rate) (x)
x $=$
$x=$ Add ()$($ (mha input, $x])$
$x=$ Layentormalization($)(x)$

$\mathrm{x}=$ FeedForward(units= n_heads, kernel_regularizer $=$ l1_l2(l1=l1_weight, l2=l2_weight))(x)
$x=$ Dropout (rate=attention_dropout_rate)(x)
else: $x=x$
$\left.x=\begin{array}{l}x= \\ \text { Add } \\ \text { (}\end{array}\right)([f f$ input, $x])$
$x=\operatorname{Add}()([f f$ input,$x])$
$x=\operatorname{LayerNormalization()}(x)$

Multi-Head Attention is defined as:
$\operatorname{MultiHead}(Q, K, V)=\operatorname{Concat}\left(\right.$ head $_{1}, \ldots$, head $\left._{h}\right) W^{O}$
where head $_{i}=\operatorname{Attention}\left(Q W_{i}^{Q}, K W_{i}^{K}, V W_{i}^{V}\right)$.
*Custom build layers
5. Later the output of transformers were passed to the stacked bidirectional LSTM that preserves the infromation in a bidirectional fashion.

```
#LSTM layer (swap for GNN)
x = Bidirectional(LSTM(n_heads,
                            return_sequences=True,
                            kernel_regularizer = l1_l2(l1=l1_weight, l2=l2_weight),
                            kernel_initializer='he_normal' ,
                            dropout = dropout_rate))(x)
x = Dropout(dropout_rate)(x)
x = Bidirectional(LSTMM(n_heads,
                            return_sequences=True,
                            kernel_regularizer = l1_l2(l1=l1_weight, l2=l2_weight),
            kernel_initializer='he_nörmal' ,
            dropout = dropout_rate))(x)
if(len(x.get_shape())>2):
    x = Flatten()(x)
```

6. After LSTM we put additional stack layers to decrease the dimensionality into the linear output.
\#Dense layers
$x=$ Dense(int(n_hidden),
kernē̄_regularizer = l1_l2(l1=l1_weight, l2=l2_weight),
kernel_initializer='he_normal' ,
use bias=True) (x)
$x=\operatorname{Activation('gelu')(x)} \quad \# x=$ tf.keras.activations.gelu(approximate=True) (x)
$x=$ Dropout(dropout_rate) (x) \#https://arxiv.org/pdf/1801.05134.pdf
$x=\operatorname{Dense}(($ int (n_hidden) $/ 2)$,
kernel_regularizer = l1_l2(l1=l1_weight, l2=l2_weight),
kernel_initializer='he_normal',
use_bias=True) (x)
$x=\operatorname{Activation}(' g e l u ')(x) \quad \# x=$ tf.keras.activations.gelu(approximate=True) (x)
x = Dropout(dropout_rate)(x) \#https://arxiv.org/pdf/1801.05134.pdf
\#Linar output layer
output_layer $=$ Dense(1,
kernel_regularizer = l1_l2(l1=l1_weight, $12=12 _$weight $)$,
activation='linear',
kernel_initializer='he_normal',
use_bias=True) (x)
7. Optimization for the model was chose Adar model $=$ Model l (input layer, output layer) opt $=$ tf.keras.optimizers.Adam(lr)

State of the art models

Biochemical model
(de Boer et al. 2020)

Transformer Neural Network
(Vaishnav et al. 2022)

