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Brief introduction to ovarian cancer

e Ovarian Cancer ranks 5th in cancer deaths among women
and is the most lethal gynecologic malignancy.

Poor 5 year survival rate in late stages

There are 5 subtypes of ovarian cancer

Typed using microscopy

Data was kindly made available by the Molecular Unit,
Department of Pathology, Herlev Hospital.

Origin

Fallopian Tube
Epithelium

Endometriosis
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Endometriosis

Fallopian Tube
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?Unknown

High-Grade Serous |Clear Cell Endometrioid Low-Grade Serous |Mucinous

Carcinoma Carcinoma Carcinoma Carcinoma Carcinoma
% of all Ovarian ~70% ~10% ~10% <5% <5%
Carcinomas

Adapted from: http://www.bccancer.bc.ca/books/ovary-epithelial-carcinoma/histological-classification-of-ovarian-carcinoma



http://www.bccancer.bc.ca/books/ovary-epithelial-carcinoma/histological-classification-of-ovarian-carcinoma

The data
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with ovarian cancer
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Patient domain:

Cancer subtype representation:
High Grade Serous Carcinoma: 38 (76%)

Ovarian Clear Cell Carcinoma: 4 (8%)

Mucinous Carcinoma: 4 (8%)

Endometrioid Carcinoma: 3 (6%)

Fallopian Tube Carcinoma: 1(2%)

Cancer stage representation:
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8 (16%) 5(10%) 30 (60%) 7 (14%)

Software
Analysis report Mapping sequence
Data structure: per patient to human genome
~2000x68x50
Data structure:
~38700x256
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mutation,
frequency, change >
in ?:8 ?tc. Observed mutation,
: ’ frequency, change in AA
Extensive data cleaning etc. (one hot encoded)
(256)
Position of observed
mutations All patients, position
(~2000) A s of observed
50 mutations
L) (~38700)




Data structure AA

~38.000
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. .
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utation domain: ~38.000 caused
i 0
Location of Opserved Type of % frequency of by
mutation  muytation mutation Gene  Type of location observed mutation muytation
A B C D E F G H I J K L M N (] P Q R S T U
1 locus | genotype Iﬂlter| ref |served_all4 type | subtype Ino_call_reason ] cnv_p-value | genes I location | length ||ine_vm' f i _se"ebpv_numbd cytoband I info | variant_id lariant_naml %_frequency] amino_acid_change |
2 chr1:2491:T/T PASS C T SNV TNFRSF14 TNFRSF14:intronic:NM_003820.3 1 ve.novel.3 99,59 p.?
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e Converting character data to numerical ordinal 5



Aim

e To explore what these large datasets tell us about each patient.

e To investigate the possibility of extracting data on a mutation and patient basis

e Knowing more about patient mutation profiles may help doctors prioritize treatment
options for the individual patient

How will this be obtained?

e Clustering (unsupervised) » Obtain information concerning Unknown mutations.

e Do these group close to Benignh mutations or Pathogenic mutations?
o t-distributed stochastic neighbor embedding (t-SNE)
o  Clustering
e Classification (supervised) » Prediction of cancer subtype
o  Oversampling and Auto Encoding
o  Convolutional Neural Network (CNN)




t-SNE 2

T-sne projection of mutations on all patients, colored by Verdict

Reducing dimensionality with t-SNE ..

e ook atdatainthe mutation domain N 1
e t-SNE to two dimensions, color by different features to investigate the z °
clustering 01

e Color by all features, some information but not much 407
60

e Hyperparameter optimization - perplexity

e Atfirst on 10 patients, nice separation, then applying to all 50 patients, not
as clear picture

e Color by verdict, no clear picture about the unknown mutations

e Mutation distribution: Unknown (15.866), Benign (22.844), Pathogenic (83)
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tSNE2

Clustering based on t-SNE

Input data: 2 dimensions from t-SNE into DBSCAN and K-means

Colored by cluster number

DBSCAN and K-means perform a bit different, more clusters in DBSCAN, bigger one in the middle
Once again illustrates that there are different trends in data, DBSCAN shows big lump of similar mutations

in the middle

In order to fully extract meaning of t-SNE and clustering more hyperparameter optimization is needed

DBSCAN, colored by Verdict
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Moving on to classification

e The aim was to classify patients within subtypes of cancer (Multiclass and Binary)

Problems to handle before classification

e Not all patients had same amount of mutations, therefore not the same length
e The classes of cancer subtypes were highly unbalanced
e We needed more patients to train on



Dimensionality Reduction with PCA

Components: 12

EEEE—
Transpose matrix P 1 P: 2 P 3 P a4
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Features: 260
One
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PCA on features
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Patient representation in the 2D latent space

Generating new “patients” | (binary classes)

Autoencoding 3
Use Variational Autoencoder to generate more patients .
Variational Autoencoder was first made for MNIST. .

e Encoder: Reducing input X to a lower (gaussian dist. )
dimensional space (Z) ) ) ) D
e Decoder: uses input (Z) together with probability distribution .. WithoutSMOTE
to output. ° . ° ]
e Inspecting latent space for multi-classification, no way to o :
separate groups entirely, therefore decide not to perform : o 1
multi-classification. : L
Oversampling with SMOTE MPUE T With smote 0P
e Not satisfied with the first generated patients, decided to :
oversample class “other” with SMOTE before VAE. :
e SMOTE visibly improved the simulated patient :

3 0
2 2
1 4
6
0
8
-1
10
-2
0

p
0 2 4 6 8 10
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Architecture of the CNN

Architecture converted from MNIST CNN

2D convolution
16 Kernels

1 convolution

6 8 10

12x12 ' 16x12x12

maxpool

*Plots are random weights and kernels applied to a single PCA 32x3x3

maxpool

1 maxpool

16x6x6

reshape -1

288,

2D convolution
32 kernels

convolution

hidden layer 1  hidden layer 2

200

50
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How did we perform in classification?

e Choseto benchmark CNN performance with boosted decision tree (LightGBM)
e Classification only on the real patients (train =40, test = 9)

o Results sound great right ... but inspecting predictions, it predicts all samples as 1 (High Grade
Serous)

e Classification on both simulated and real patients, something seems weird.
e Performs better on the simulated than on the real patients, a bit concerning

Accuracy Training and test data: Training data: Both simulated and real patients
scores Real patients (49) Binary classification (697)
(test set)
Binary Multiclass Only sim. patients Both sim. and real Only real patients in
(38+11) | (38+4+4+3) in test-set patients in test-set test-set
LightGBM 77,78% 77,78% 100% 98,56% 85,00%

CNN 80% 66,66 % 100% 96,00% 66,67 %

13
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Why did the classification perform like this?

Plotting CNN convoluted PCAs and reshaped input PCAs (for LGBM)

Real patients are separated (different) from simulated patients for both CNN and LGBM.
The input PCA’s different subtypes are closely clustered.

CNN shows that the differences are learnable - we just don’t have enough data.

(@]

The convoluted real patients are separated by subtype in the training set not in test set

Reshaped PCA’s
/ \All data
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Labels show the true cancer subtype, the shapes show the predicted subtypes( 1 is Serous, 0 is other.)

1

1

125
100
75
5.0
25
0.0
-25
-5.0

—1.5

Simulated/Real

0 10 20 0

AP ao oo

Sim_seres

Sim_other

Real_serast adenocarcinom
Real_clear cell adenocarcinom
Real_mucinest adenocarcinom
Real_endometrioid adenocarcinon

14



Overall conclusion
Unsupervised clustering

e Noclear picture for e ML can be done on DNA sequencing, but we need more
unknown-effect-mutations but most patients to train on
trend with Benign. e Thesimulated patients turned out to be too different

e Maybe too much information in the from the real patients
dataset to be mapped to 2 dimensions o Not good to train on, the classification of real

e t-SNE showed potential for 10 patients, patients were then not good.
more time might have made it possible to e Eventhough many ML tricks were applied itis the lacking
optimize for 50 patients of real patients that makes the classification performance

poor.

hat to investigate next?

Find more patients

Sequencing-data is covered by GDPR legislation, hard to get access to more data/patients publicly in databases
Divide the real patients into smaller chunks (e.g. chromosomes) and consider them as patients themselves
Survivability predictor / how responsive a patient may be to a treatment - we have a lot of information for each
patient - this information may be hidden within.

15
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Table of contents:
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Dimensionality reduction and clustering
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Appendix: Data Preprocessing



Protein family and Gene-ontology (text columns)

How the word cells were
transformed into vectors

Term Frequency - Inverse Document Frequency (TF-IDF)

TR SRy~ TR = Inverse Document Frequency = \ogEDF) = log (N/DFt) = . TF-IDF = TF * IDF =
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Appendix: Simulating new patients



Variational Auto Encoder on MNIST

Dataset size
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Dataset size

76

1 Y Y Y Y Y Y YYYY

Y'Y Y Y YOPYYYYyYY
Y Y Y Y Y Y YVYYYYESN
F- Y9999 ¥y
r Y Y Y Y Y Y Y YT Y Y Y
r Y Y Y Y Yy Y YT Y
199999999958 §%

B B 8 b S i i
Ll b e e & S S B o o Gl

RN
N
N
4
N
N
B
~N
N
~N
~
™~
™~
~

45 500 A8 A8 8 O i e S 5 B

~ OO0
N VVAQVQQ
~ N ! SENENENENEN]
N\ Y 2 s %s %a ASINENENEN
N QVAIVWQ
N QIR
N 3 VNVNVNVQ

g

yrreevy e el

300 J

400
500

8

LL L L L L L L L L L L L L L L N
LA L L L L L LLLALLLLELE LR L.
LA L L AL L AL LLLLLELLELLE LR L.
LA L L L L L L L L LELLLLLLLNLN.
LA L L L L L L LLLLLELELLLNLNEN.
LA L LA LALLLLLLLLELLLE LR L.
LALL L L L L L L L ELLLLLNL L L LN
LLL L L L L L L L L L L L L L L LN N
LL L L L L L L L L LEL L L L L L LN N
LAL L L L L L LLELLLLLLLLNLN.)
LA L L L L L L L L LLLLLLLLNLN]
LA L L L L L LLLLLELLLLLLNLN.)
LAAL L L L L LLLLLLLLELLLNLN.]
LA L L L LLLLLALLLLLLALLLNR.
LA L L L L L LLLLLALLLLELLN.]
LA AL L L LLLLLLLLLLLLNLN.
LA L L L L L LLALLLLLLLLLLR.
LAL L L L L L L LLELLLLLELLNLN.)
LA L L L L L L LLLLLLLLLLNLN.)
LALL L L L L LLLLLLLLLLLNLNR.)
LA L L L L L LLLELLELLELLE LR N
LALA L L L L L LLLLLLLELLNL LN
LA AL L L L L L L LA L L L LLLNRN.
LL L L L L L L L L L L L N N
LLL L L L L L L L LELLLLLLLNLN.
LLL L L L L L L L L L L L L LN
LL L L L L L L L L L L L L L L L L N
LL L L L L L N R
LL L L L L L L L N N N
LA L L L L L L L L L L L L

L L L L )
Y
Y
LT
L
LY
L L L
L L L
L L L
LY
L L L L)
NN
LY
LY
LR
LN
LR
LN
LY
T
NN
Y
LY
L L L L B
LB BB )
L L L L
T LT L
-
L L L L )
LB L L)

SRR R R RRRRRRRR R R R R R R R R R RN

o
o
o
o

500

600

700

We tried to applicate our
situation of 76 patient to
the MNIST data set, which
point towards that our
issue is highly related to
data size.
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Variational Auto-Encoder (VAE)

Trouble alert: Small dataset of 50 patients - the majority being High Grade Serous
Carcinoma leaves an unbalanced data set and an issue for classification.

Solution: Generating 12x12 pixel pictures of “new” patients from the 2D latent space

The architecture of the VAE

Encoder-Input-Layer | input: | [(None, 144)] Input-Z-Sampling | input: | [(None, 2)]
I Layer i None, 144
nputLayer loulput [(None. )] TnputLayer output: | [(None, 2)]
Encoder-Hidden-Layer-1 input: | (None, 144)
Dense output: | (None, 64) Decoder-Hidden-Layer-1 input: (None, 2) Patient representation in the 2D Latent Space
l Dense output: | (None, 8) . color
® 0
Encoder-Hidden-Layer-2 | input: | (None, 64) ® 1
Dense output: | (None, 16)
l Decoder-Hidden-Layer-2 | mput: | (None, 8)
2
- - Dense output: | (None, 16) LS o
Encoder-Hidden-Layer-3 | input: | (None, 16) o’
Dense output: | (None, 8) = ".
/ \ Decoder-Hidden-Layer-3 | input: | (None, 16)
Z-Mean | iput: | (None, 8) Z-Log-Sigma | iput: | (None, 8) Dense output: (None, 64)
Dense | output: | (None, 2) Dense output: | (None, 2)
' / .
Z-Sampling-Layer | input: | [(None, 2), (None, 2)] Decoder-Output-Layer mput: (None, 64)

Lambda output: (None, 2) Dense output: (None, 144)
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Latent space, multiclass

Two classes, High grade serous = 1, Clear cell =2

Because they cannot be separated in the latent space we decided to not do multi-classification

Patient representation in the 2D Latent Space

6 color

® 2
- 1
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2D Latent Space of binary classification

Not best separation of classes, but some kind of separation

Patient representation in the 2D Latent Space

8
oo

S
- o

’ It was chosen to simulate new patients within
these boxes in the latent space

Patient representation in the 2D Latent Space

23



Loss

VAE model training with early stopping.

Model Loss by Epoch

35 6/6 [= ] - 0s 1lms/step - loss: 0.1567 - val loss: 0.1691 — Training Data
Epoch 67/100 —— Test Data
6/6 [ ] - 0s 10ms/step - loss: 0.1497 - val loss: 0.1631
30 4 Epoch 68/100
6/6 [ ] - 0s 10ms/step - loss: 0.1457 - val loss: 0.1503
Epoch 69/100
25 A 6/6 [ ] - 0s 13ms/step - loss: 0.1512 - val loss: 0.1574
Epoch 70/100
6/6 [ ] - 0s 1llms/step - loss: 0.1449 - val loss: 0.1672
20 A Epoch 71/100
6/6 [ ] - 0s 13ms/step - loss: 0.1505 - val loss: 0.1513
Epoch 72/100
15 A 6/6 [ ] - 0s 10ms/step - loss: 0.1507 - val loss: 0.1714
Epoch 73/100
10 6/6 [ ] - 0s 12ms/step - loss: 0.1449 - val loss: 0.1714
5_
o_
~ Mm 1n N O ~ M 1NN N O N M In N O ~4 M In N O N M n N O ~4 M In N O o M 1N N O ~ m
~N ~ ~ ~ ~ ON N N N N M m m mM M T T T T N N N N N O O L L L NN

Epoch



SMOTE oversampling technique

Not satisfied with the first simulation of patients, therefore try SMOTE
Simulate as many patients as in the biggest group (38) for the other classes.

Simulate more patients in the other classes, will give autoencoder the possibility to
train better, hopefully make simulated auto-encoded patients better

O|0 Majority class samples

@) O = Minority class samples
® O

R ok + Randomly selected minority
class sample x;
O/ 8 #n0 | |
O ) o B O % 5 K-nearest neighbors of x;

[ xi 1 =
‘."l" ~ O & Randomly selected sample x,
‘ from the 5 neighbors

P O |+ Generated synthetic minority
""" instance
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Difference with and without SMOTE

Without SMOTE: With 'SMOTE: . . .
100 simulated patients in the High Grade Serous class 100 simulated patients in the High Grade Serous class
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New simulated patients, binary, with SMOTE

Class 0, Other

P:2 P:3




Comparison of performance of VAE with and
without SMOTE

Examples of a single patient. - SMOTEing seems to improve simulated patients as it removes some of the
random noise around the diagonal line.
When looking at patients a lot of variation lies around the diagonal, so this might be important to replicate.

Simulated patient Simulated patient Real patient (target)
without SMOTE with SMOTE
1 patient 1 patient 1 patient

w
w

N
~N

~N

—
-

o
(=]

ol | 3 0 0
2 2
2
4 4 4
1
6 6 6
0
8 8 8
-1
-1
10 10 -1 10
-2
o 2 4 6 8 10 © 2 4 6 8 10
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Generate “new” patients/data

Combining Synthetic Minority Oversampling TEchnique and Variational AutoEncoders

Machine learning models learns poorly when one class dominates the other.
Little data compromise model performance. .

Before SMOTE

100 1
75 0 P: 1
T: sergst

50

25

PCA2
o

-25

-50

=75

.I L
5 .I-!
10 I.
-600 -400 -200 O 200 400 600 800 0 ; 10 - v
PC : "
¥ -

A1l
After SMOTE T. Clea r

100 1
75
50

25

PCA2

-25

-50

-75
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Appendix: CNN



Training CNN without SMOTE

Accuracy Training and test
scores data:
(test set) Real patients (49)

Binary (38+11)

CNN 80%

Loss plots have many small spikes, this might hint that the batch
size could be optimized - as too small batch sizes might not span

all the different classes

Training data: Both simulated
and real patients
Binary classification (697)

Both sim.
and real
patients in

Only real patients
in test-set

0.5 1
0.4

03 A

0.1

001

Without sim

— Train_Loss
Test_Loss

20 40 60 80 100

With sim
% — Tain_Loss
"\l Tst_Loss
\
\
\
\
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Training CNN with SMOTE

Accuracy Training and test Training data: Both simulated
scores data: and real patients
(test set) Real patients (49) Binary classification (697)
Binary (38+11) Both sim. Only real patients
and real in test-set
patients in
test-set
CNN 80% 97% 66%

Seems like the CNN performs worse on real patients after addition
of smote, however since the test-set was randomized this might
be due to chance.
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Full CNN architecture

CNN was programmed in Pytorch based on example code for
classification of MNIST. - visualized with Torchviz

e First convolution: 2d Convolution 16 kernels of size 5 ->
LeakyRelLU

e First maxpool: 2d maxpool kernel size 2

e Second convolution: 2d Convolution 32 kernels of size
5 -> LeakyRelU.

e Second maxpool: 2d maxpool size 2
reshaped to batchsize x 288

e passed through NN with: 200 -> 50 nodes and either 4
or 1 output.

e Lastactivation function is Sigmoid

Architecture inspired by:

https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-network-with-mnist-dataset-4e8a4265e118

convl.weight
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convl.bias
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ConvolutionBackward0

conv2.weight
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conv2.bias
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CNN “kernels” - plotsof a single PCA passed through each layer

Most seem to accentuate shape of diagonal - which from looking at PCAs as images might be informative,
however the trend is difficult to discern. A lot of the structure is visible in the second convolution as well

From left to right: First convolution, after first maxpool, after second convolution, after second maxpool.

Trained on real patients

Trained on real + sim
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Appendix: Light GBM



Confusion matrix from LGBM models

Train: Both sim. and real patients

Train: Both sim. and real patients
Test: Both sim and real patients

Test set: Only real patients

Train: Sim. patients
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Predicted label
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Test: Real patients

0.0 10
Predicted label

All are predicted as class 0,
even though most of them
really are class 1. They look
more like the simulated class
0.
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Boosted Decision Tree on real patients (49)

LightGBM

Nothing done about the very unbalanced distribution of patients in cancer
subtype.

Hyperparameter optimization by random search, 5 fold CV

Resulted in max_depth: 23, samples_leaf: 72 and best accuracy score: 0.775
Same for both multi-classification and binary classification

Multi-classification ended up being binary, test set consisted of 9 samples, only 2
different classes represented.
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Boosted Decision Tree on real patients (49)

ROC curve shows that this classifier is
extremely bad, it is guessing. This can be
explained by the overrepresentation of
high-grade serous patients

Looking into the predictions, for both binary
and multi-class the whole test set was
predicted as high-grade serous
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ROC curve for binary classification
Model ROC Comparison

— Our LightGBM model (AUC = 0.500)

00 02 04 06 08 10
False Postive Rate
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Boosted Decision Tree on sim. and real patients (697)

Model ROC Comparison

e Binary classification with LightGBM

e Train and test: Both real and simulated
patients

e Random search for
hyperparameter-optimization

e Resulted in max_depth: 23,
samples_leaf: 1 and best accuracy
score: 0,979

® Accuracy on test set: 0,9856 02

10

08

True Positive Rate

=]
-

0.0 —— Our LightGBM model (AUC = 0.986)

00 02 04 06 08 10
False Postive Rate



Why did the classification perform like this, LGBM

To investigate: PCA on the input data for the LGBM

Clear to see the real patients are very different from the simulated patients

Have moved slightly away from the real patients in the simulation

PCA on only simulated patients, no overlapping, therefore easy to differentiate and
thereby classify.

To investigate the difference further:

e LGBM trained only on sim. patients, test set of only real patients, accuracy score =22%
e Predicting all real patients as class “other”
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Appendix: Dimensionality reduction
and clustering



t-SNE 2

t-SNE hyper parameter optimization

Optimizing perplexity in the range from 50 to 225 - done on a subset of the data.
A difference in the clustering is seen especially in the big cluster in the middle of the plots.
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t-SNE colored by different features

No apparent clustering is visible based on the different features

Discrete feature values

Colored by Patient

Colored by chromosome

Colored by start
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Seems that the
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are more
informative in
this projection
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t-SNE 2

40 A

20 A

—20

_40 4

t-SNE on different number of patients (10 and 50)

The t-SNE projection had a hard time working on the complete dataset compared to a
small fraction of the dataset - So we optimized on a reduced dataset - however we may

need to rerun optimization to get as clear and informative clusters.

t-SNE on 10 patients, colored by amino_acid_change
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