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-The art of applying machine learning to data that is not really fit for it
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Outline of presentation
● Brief intro
● Understanding the data (and the preprocessing) 
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○ Oversampling and auto encoding
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● Evaluating results
● Overall conclusion
● Appendix
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Brief introduction to ovarian cancer
● Ovarian Cancer ranks 5th in cancer deaths among women 

and is the most lethal gynecologic malignancy.
● Poor 5 year survival rate in late stages
● There are 5 subtypes of ovarian cancer
● Typed using microscopy
● Data was kindly made available by the Molecular Unit, 

Department of Pathology, Herlev Hospital. 
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Adapted from: http://www.bccancer.bc.ca/books/ovary-epithelial-carcinoma/histological-classification-of-ovarian-carcinoma 

http://www.bccancer.bc.ca/books/ovary-epithelial-carcinoma/histological-classification-of-ovarian-carcinoma


The data
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Cancer subtype representation:
High Grade Serous Carcinoma: 38 (76%)
Ovarian Clear Cell Carcinoma: 4 (8%)
Mucinous Carcinoma: 4 (8%)
Endometrioid Carcinoma: 3 (6%)
Fallopian Tube Carcinoma: 1 (2%)

Cancer stage  representation: 
I II III IV
8 (16%)  5(10%) 30 (60%) 7 (14%)

Patient domain:



Data structure 

Observed 
mutation Gene Type of location

% frequency of 
observed mutation

AA 
change 
caused 
by 
mutation

Type of 
mutation

Location of 
mutation

Mutation domain: ~38.000
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Furthermore: 
● Protein family (words)
● Gene ontology (words)
● Verdict (Pathogenic, 

benign, unknown)

Data cleaning by: 
● Removing columns that contain redundant or 

limited information
● One hot encode (e.g. Amino acids)
● Term frequency (TF-IDF) to find 100 most 

frequent words for protein family and gene 
ontology

● Converting character data to numerical ordinal 



Aim
Overall aim

● To explore what these large datasets tell us about each patient.
● To investigate the possibility of extracting data on a mutation and patient basis 
● Knowing more about patient mutation profiles may help doctors prioritize treatment 

options for the individual patient

How will this be obtained?

● Clustering (unsupervised) → Obtain information concerning Unknown mutations. 
● Do these group close to Benign mutations or Pathogenic mutations?

○ t-distributed stochastic neighbor embedding (t-SNE)
○ Clustering

● Classification (supervised) → Prediction of cancer subtype
○ Oversampling and Auto Encoding
○ Convolutional Neural Network (CNN)
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Reducing dimensionality with t-SNE
● Look at data in the mutation domain
● t-SNE to two dimensions, color by different features to investigate the 

clustering
● Color by all features, some information but not much
● Hyperparameter optimization - perplexity
● At first on 10 patients, nice separation, then applying to all 50 patients, not 

as clear picture
● Color by verdict, no clear picture about the unknown mutations
● Mutation distribution: Unknown (15.866), Benign (22.844),  Pathogenic (83)



Clustering based on t-SNE
● Input data: 2 dimensions from t-SNE into DBSCAN and K-means
● Colored by cluster number
● DBSCAN and K-means perform a bit different, more clusters in DBSCAN, bigger one in the middle
● Once again illustrates that there are different trends in data, DBSCAN shows big lump of similar mutations 

in the middle
● In order to fully extract meaning of t-SNE and clustering more hyperparameter optimization is needed

8



Moving on to classification

● The aim was to classify patients within subtypes of cancer (Multiclass and Binary)

Problems to handle before classification 

● Not all patients had same amount of mutations, therefore not the same length
● The classes of cancer subtypes were highly unbalanced 
● We needed more patients to train on
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Dimensionality Reduction with PCA
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x50 patients



Generating new “patients”
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Autoencoding
● Use Variational Autoencoder to generate more patients
● Variational Autoencoder was first made for MNIST.
● Encoder: Reducing input X to a lower (gaussian dist. ) 

dimensional space (Z)
● Decoder: uses input (Z) together with probability distribution 

to output.
● Inspecting latent space for multi-classification, no way to 

separate groups entirely, therefore decide not to perform 
multi-classification. 

Oversampling with SMOTE
● Not satisfied with the first generated patients, decided to 

oversample class “other” with SMOTE before VAE. 
● SMOTE visibly improved the simulated patient

Without SMOTE

Input                        Output
With SMOTE

   Input         Output

Patient representation in the 2D latent space 
(binary classes)



Architecture of the CNN 
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maxpool 32 kernels
16 Kernels

16x12x12
maxpool

288, 200 50

reshape -1

2D convolution
2D convolution

Architecture converted from MNIST CNN

16x6x6

6x6

32x6x6

32x3x3*Plots are random weights and kernels applied to a single PCA

12x12

12
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How did we perform in classification?
● Chose to benchmark CNN performance with boosted decision tree (LightGBM)
● Classification only on the real patients (train = 40, test = 9) 

○ Results sound great right … but inspecting predictions, it predicts all samples as 1 (High Grade 
Serous)

● Classification on both simulated and real patients, something seems weird. 
● Performs better on the simulated than on the real patients, a bit concerning
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Accuracy 
scores
(test set)

Training and test data: 
Real patients (49)

Training data: Both simulated and real patients
Binary classification (697)

Binary 
(38+11)

Multiclass 
(38+4+4+3)

Only sim. patients 
in test-set

Both sim. and real 
patients in test-set

Only real patients in 
test-set

LightGBM 77,78% 77,78% 100% 98,56% 85,00%

CNN 80% 66,66% 100% 96,00% 66,67%



Why did the classification perform like this?
Plotting CNN convoluted PCAs and reshaped input PCAs (for LGBM)

● Real patients are separated (different) from simulated patients for both CNN and LGBM. 
● The input PCAʼs different subtypes are closely clustered. 
● CNN shows that the differences are learnable - we just donʼt have enough data. 

○ The convoluted real patients are separated by subtype in the training set not in test set
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Test setCNN Convoluted PCAʼs
All data

Training set Reshaped PCAʼs

Labels show the true cancer subtype, the shapes show the predicted subtypes( 1 is Serous, 0 is other.)

Real 
Simulated Real 

Simulated

Simulated/Real



Overall conclusion

● Find more patients
● Sequencing-data is covered by GDPR legislation, hard to get access to more data/patients publicly in databases
● Divide the real patients into smaller chunks (e.g. chromosomes) and consider them as patients themselves
● Survivability predictor  / how responsive a patient may be to a treatment - we have a lot of information for each 

patient - this information may be hidden within.  
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● No clear picture for 
unknown-effect-mutations but most 
trend with Benign. 

● Maybe too much information in the 
dataset to be mapped to 2 dimensions

● t-SNE showed potential for 10 patients, 
more time might have made it possible to 
optimize for 50 patients

● ML can be done on DNA sequencing, but we need more 
patients to train on

● The simulated patients turned out to be too different 
from the real patients

○ Not good to train on, the classification of real 
patients were then not good. 

● Even though many ML tricks were applied it is the lacking 
of real patients that makes the classification performance 
poor. 

Supervised classification

What to investigate next? 

Unsupervised clustering



Appendix

Table of contents: 

● Data preprocessing
● Simulating new patients
● CNN
● LightGBM
● Dimensionality reduction and clustering
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Appendix: Data Preprocessing
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Protein family and Gene-ontology (text columns)
Term Frequency - Inverse Document Frequency (TF-IDF))
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Protein family (38793 x 738)

Gene ontology (38793 x 2035 )

https://towardsdatascience.com/tf-idf-a-visual-explainer-and-python-implementation-on-presidential-inauguration-speeches-2a7671168550

How the word cells were 
transformed into vectors
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Appendix: Simulating new patients
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Variational Auto Encoder on MNIST
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Input
Dataset size: 76 Dataset size: 70000

We tried to applicate our 
situation of 76 patient to 
the MNIST data set, which 
point towards that our 
issue is highly related to 
data size.

It is clear to see that the 
output of the VAE 
performs much worse 
when input is only 76 
cases



Variational Auto-Encoder (VAE)
Trouble alert: Small dataset of 50 patients - the majority being High Grade Serous 
Carcinoma leaves an unbalanced data set and an issue for classification.

Solution: Generating 12x12 pixel pictures of “new” patients from the 2D latent space 
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The architecture of the VAE



Latent space, multiclass
Two classes, High grade serous = 1, Clear cell = 2

Because they cannot be separated in the latent space we decided to not do multi-classification
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2D Latent Space of binary classification
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Not best separation of classes, but some kind of separation

It was chosen to simulate new patients within
these boxes in the latent space
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VAE model training with early stopping.
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SMOTE oversampling technique

Not satisfied with the first simulation of patients, therefore try SMOTE 

Simulate as many patients as in the biggest group (38) for the other classes. 

Simulate more patients in the other classes, will give autoencoder the possibility to 
train better, hopefully make simulated auto-encoded patients better
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Difference with and without SMOTE
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Without SMOTE: 
100 simulated patients in the High Grade Serous class

With SMOTE: 
100 simulated patients in the High Grade Serous class



New simulated patients, binary, with SMOTE
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Class 1, HGSC Class 0, Other



Comparison of performance of VAE with and 
without SMOTE
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Real patient (target)Simulated patient 
without SMOTE

Simulated patient 
with SMOTE

Examples of a single patient. - SMOTEing seems to improve simulated patients as it removes some of the 
random noise around the diagonal line. 
When looking at patients a lot of variation lies around the diagonal, so this might be important to replicate.
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Generate “new” patients/data
Combining Synthetic Minority Oversampling TEchnique and Variational AutoEncoders

- Machine learning models learns poorly when one class dominates the other.
- Little data compromise model performance.

                  jdjd   jddd



Appendix: CNN
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With sim

Without sim

Accuracy 
scores
(test set)

Training and test 
data: 

Real patients (49)

Training data: Both simulated 
and real patients

Binary classification (697)

Binary (38+11) Both sim. 
and real 

patients in 
test-set

Only real patients 
in test-set

CNN 80% 98% 80%

Training CNN without SMOTE

Loss plots have many small spikes, this might hint that the batch 
size could be optimized - as too small batch sizes might not span 
all the different classes



Training CNN with SMOTE

32

Accuracy 
scores
(test set)

Training and test 
data: 

Real patients (49)

Training data: Both simulated 
and real patients

Binary classification (697)

Binary (38+11) Both sim. 
and real 

patients in 
test-set

Only real patients 
in test-set

CNN 80% 97% 66%

With sim

Without sim

Seems like the CNN performs worse on real patients after addition 
of smote, however since the test-set was randomized this might 
be due to chance. 



Full CNN architecture
 CNN was programmed in Pytorch based on example code for 
classification of MNIST. - visualized with Torchviz

● First convolution: 2d Convolution 16 kernels of size 5 -> 
LeakyReLU

● First maxpool: 2d maxpool kernel size 2
● Second convolution: 2d Convolution 32 kernels of size 

5 -> LeakyReLU.
● Second maxpool: 2d maxpool size 2
● reshaped to batchsize x 288
● passed through NN with: 200 -> 50 nodes and either 4 

or 1 output. 
● Last activation function is Sigmoid
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Architecture inspired by: 
https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-network-with-mnist-dataset-4e8a4265e118



CNN “kernels” - Plots of a single PCA passed through each layer
Most seem to accentuate shape of diagonal - which from looking at PCAs as images might be informative, 
however the trend is difficult to discern. A lot of the structure is visible in the second convolution as well

From left to right: First convolution, after first maxpool, after second convolution, after second maxpool.
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Trained on real patients

Trained on real + sim



Appendix: Light GBM
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Confusion matrix from LGBM models
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Train: Both sim. and real patients
Test: Both sim and real patients

Train: Both sim. and real patients
Test set: Only real patients

Train: Sim. patients
Test: Real patients

All are predicted as class 0, 
even though most of them 
really are class 1. They look 
more like the simulated class 
0. 



Boosted Decision Tree on real patients (49)
● LightGBM
● Nothing done about the very unbalanced distribution of patients in cancer 

subtype. 
● Hyperparameter optimization by random search, 5 fold CV
● Resulted in max_depth: 23, samples_leaf: 72 and best accuracy score: 0.775
● Same for both multi-classification and binary classification
● Multi-classification ended up being binary, test set consisted of 9 samples, only 2 

different classes represented. 
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Boosted Decision Tree on real patients (49)

● ROC curve shows that this classifier is 
extremely bad, it is guessing. This can be 
explained by the overrepresentation of 
high-grade serous patients

● Looking into the predictions, for both binary 
and multi-class the whole test set was 
predicted as high-grade serous
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ROC curve for binary classification



Boosted Decision Tree on sim. and real patients (697)
● Binary classification with LightGBM
● Train and test: Both real and simulated 

patients
● Random search for 

hyperparameter-optimization
● Resulted in max_depth: 23, 

samples_leaf: 1 and best accuracy 
score: 0,979

● Accuracy on test set: 0,9856

39



Why did the classification perform like this, LGBM
● To investigate: PCA on the input data for the LGBM
● Clear to see the real patients are very different from the simulated patients
● Have moved slightly away from the real patients in the simulation
● PCA on only simulated patients, no overlapping, therefore easy to differentiate and 

thereby classify. 

To investigate the difference further: 

● LGBM trained only on sim. patients, test set of only real patients, accuracy score = 22%
● Predicting all real patients as class “other”
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Appendix: Dimensionality reduction 
and clustering
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t-SNE hyper parameter optimization  
Optimizing perplexity in the range from 50 to 225 - done on a subset of the data. 
A difference in the clustering is seen especially in the big cluster in the middle of the plots.



t-SNE colored by different features

Discrete feature values 

43

t-SNE mappings 
colored by 
some of the 
different meta 
data features

Some of them 
are more 
informative 
than others. 
Seems that the 
discrete values 
are more 
informative in 
this projection

No apparent clustering is visible based on the different features



t-SNE on different number of patients (10 and 50)
The t-SNE projection had a hard time working on the complete dataset compared to a 
small fraction of the dataset - So we optimized on a reduced dataset - however we may 
need to rerun optimization to get as clear and informative clusters. 
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