
Combining cancer research,
next generation sequencing and
Machine Learning
(so-called Buzzword galore)

Ceren Kocak, Christoffer S. Bangsgaard,
Lau K. Vestergaard & Signe Poulsen

- All members of the group contributed equally to the project.

-The art of applying machine learning to data that is not really fit for it

1

Outline of presentation
● Brief intro
● Understanding the data (and the preprocessing)
● Aim
● Working with data per mutation

○ Dimensionality reduction
○ Clustering

● Working with data per patient
○ PCA
○ Oversampling and auto encoding
○ Classification

● Evaluating results
● Overall conclusion
● Appendix

2

Brief introduction to ovarian cancer
● Ovarian Cancer ranks 5th in cancer deaths among women

and is the most lethal gynecologic malignancy.
● Poor 5 year survival rate in late stages
● There are 5 subtypes of ovarian cancer
● Typed using microscopy
● Data was kindly made available by the Molecular Unit,

Department of Pathology, Herlev Hospital.

3
Adapted from: http://www.bccancer.bc.ca/books/ovary-epithelial-carcinoma/histological-classification-of-ovarian-carcinoma

http://www.bccancer.bc.ca/books/ovary-epithelial-carcinoma/histological-classification-of-ovarian-carcinoma

The data

4

Cancer subtype representation:
High Grade Serous Carcinoma: 38 (76%)
Ovarian Clear Cell Carcinoma: 4 (8%)
Mucinous Carcinoma: 4 (8%)
Endometrioid Carcinoma: 3 (6%)
Fallopian Tube Carcinoma: 1 (2%)

Cancer stage representation:
I II III IV
8 (16%) 5(10%) 30 (60%) 7 (14%)

Patient domain:

Data structure

Observed
mutation Gene Type of location

% frequency of
observed mutation

AA
change
caused
by
mutation

Type of
mutation

Location of
mutation

Mutation domain: ~38.000

5

~3
8.

00
0

Furthermore:
● Protein family (words)
● Gene ontology (words)
● Verdict (Pathogenic,

benign, unknown)

Data cleaning by:
● Removing columns that contain redundant or

limited information
● One hot encode (e.g. Amino acids)
● Term frequency (TF-IDF) to find 100 most

frequent words for protein family and gene
ontology

● Converting character data to numerical ordinal

Aim
Overall aim

● To explore what these large datasets tell us about each patient.
● To investigate the possibility of extracting data on a mutation and patient basis
● Knowing more about patient mutation profiles may help doctors prioritize treatment

options for the individual patient

How will this be obtained?

● Clustering (unsupervised) → Obtain information concerning Unknown mutations.
● Do these group close to Benign mutations or Pathogenic mutations?

○ t-distributed stochastic neighbor embedding (t-SNE)
○ Clustering

● Classification (supervised) → Prediction of cancer subtype
○ Oversampling and Auto Encoding
○ Convolutional Neural Network (CNN)

6

7

Reducing dimensionality with t-SNE
● Look at data in the mutation domain
● t-SNE to two dimensions, color by different features to investigate the

clustering
● Color by all features, some information but not much
● Hyperparameter optimization - perplexity
● At first on 10 patients, nice separation, then applying to all 50 patients, not

as clear picture
● Color by verdict, no clear picture about the unknown mutations
● Mutation distribution: Unknown (15.866), Benign (22.844), Pathogenic (83)

Clustering based on t-SNE
● Input data: 2 dimensions from t-SNE into DBSCAN and K-means
● Colored by cluster number
● DBSCAN and K-means perform a bit different, more clusters in DBSCAN, bigger one in the middle
● Once again illustrates that there are different trends in data, DBSCAN shows big lump of similar mutations

in the middle
● In order to fully extract meaning of t-SNE and clustering more hyperparameter optimization is needed

8

Moving on to classification

● The aim was to classify patients within subtypes of cancer (Multiclass and Binary)

Problems to handle before classification

● Not all patients had same amount of mutations, therefore not the same length
● The classes of cancer subtypes were highly unbalanced
● We needed more patients to train on

9

Dimensionality Reduction with PCA

10

x50 patients

Generating new “patients”

11

Autoencoding
● Use Variational Autoencoder to generate more patients
● Variational Autoencoder was first made for MNIST.
● Encoder: Reducing input X to a lower (gaussian dist.)

dimensional space (Z)
● Decoder: uses input (Z) together with probability distribution

to output.
● Inspecting latent space for multi-classification, no way to

separate groups entirely, therefore decide not to perform
multi-classification.

Oversampling with SMOTE
● Not satisfied with the first generated patients, decided to

oversample class “other” with SMOTE before VAE.
● SMOTE visibly improved the simulated patient

Without SMOTE

Input Output
With SMOTE

 Input Output

Patient representation in the 2D latent space
(binary classes)

Architecture of the CNN

12

maxpool 32 kernels
16 Kernels

16x12x12
maxpool

288, 200 50

reshape -1

2D convolution
2D convolution

Architecture converted from MNIST CNN

16x6x6

6x6

32x6x6

32x3x3*Plots are random weights and kernels applied to a single PCA

12x12

12

1 or
4

How did we perform in classification?
● Chose to benchmark CNN performance with boosted decision tree (LightGBM)
● Classification only on the real patients (train = 40, test = 9)

○ Results sound great right … but inspecting predictions, it predicts all samples as 1 (High Grade
Serous)

● Classification on both simulated and real patients, something seems weird.
● Performs better on the simulated than on the real patients, a bit concerning

13

Accuracy
scores
(test set)

Training and test data:
Real patients (49)

Training data: Both simulated and real patients
Binary classification (697)

Binary
(38+11)

Multiclass
(38+4+4+3)

Only sim. patients
in test-set

Both sim. and real
patients in test-set

Only real patients in
test-set

LightGBM 77,78% 77,78% 100% 98,56% 85,00%

CNN 80% 66,66% 100% 96,00% 66,67%

Why did the classification perform like this?
Plotting CNN convoluted PCAs and reshaped input PCAs (for LGBM)

● Real patients are separated (different) from simulated patients for both CNN and LGBM.
● The input PCAʼs different subtypes are closely clustered.
● CNN shows that the differences are learnable - we just donʼt have enough data.

○ The convoluted real patients are separated by subtype in the training set not in test set

14

Test setCNN Convoluted PCAʼs
All data

Training set Reshaped PCAʼs

Labels show the true cancer subtype, the shapes show the predicted subtypes(1 is Serous, 0 is other.)

Real
Simulated Real

Simulated

Simulated/Real

Overall conclusion

● Find more patients
● Sequencing-data is covered by GDPR legislation, hard to get access to more data/patients publicly in databases
● Divide the real patients into smaller chunks (e.g. chromosomes) and consider them as patients themselves
● Survivability predictor / how responsive a patient may be to a treatment - we have a lot of information for each

patient - this information may be hidden within.

15

● No clear picture for
unknown-effect-mutations but most
trend with Benign.

● Maybe too much information in the
dataset to be mapped to 2 dimensions

● t-SNE showed potential for 10 patients,
more time might have made it possible to
optimize for 50 patients

● ML can be done on DNA sequencing, but we need more
patients to train on

● The simulated patients turned out to be too different
from the real patients

○ Not good to train on, the classification of real
patients were then not good.

● Even though many ML tricks were applied it is the lacking
of real patients that makes the classification performance
poor.

Supervised classification

What to investigate next?

Unsupervised clustering

Appendix

Table of contents:

● Data preprocessing
● Simulating new patients
● CNN
● LightGBM
● Dimensionality reduction and clustering

16

Appendix: Data Preprocessing

17

Protein family and Gene-ontology (text columns)
Term Frequency - Inverse Document Frequency (TF-IDF))

18

Protein family (38793 x 738)

Gene ontology (38793 x 2035)

https://towardsdatascience.com/tf-idf-a-visual-explainer-and-python-implementation-on-presidential-inauguration-speeches-2a7671168550

How the word cells were
transformed into vectors

18

Appendix: Simulating new patients

19

Variational Auto Encoder on MNIST

20

Input
Dataset size: 76 Dataset size: 70000

We tried to applicate our
situation of 76 patient to
the MNIST data set, which
point towards that our
issue is highly related to
data size.

It is clear to see that the
output of the VAE
performs much worse
when input is only 76
cases

Variational Auto-Encoder (VAE)
Trouble alert: Small dataset of 50 patients - the majority being High Grade Serous
Carcinoma leaves an unbalanced data set and an issue for classification.

Solution: Generating 12x12 pixel pictures of “new” patients from the 2D latent space

21

The architecture of the VAE

Latent space, multiclass
Two classes, High grade serous = 1, Clear cell = 2

Because they cannot be separated in the latent space we decided to not do multi-classification

22

2D Latent Space of binary classification

23

Not best separation of classes, but some kind of separation

It was chosen to simulate new patients within
these boxes in the latent space

23

VAE model training with early stopping.

24

SMOTE oversampling technique

Not satisfied with the first simulation of patients, therefore try SMOTE

Simulate as many patients as in the biggest group (38) for the other classes.

Simulate more patients in the other classes, will give autoencoder the possibility to
train better, hopefully make simulated auto-encoded patients better

25

Difference with and without SMOTE

26

Without SMOTE:
100 simulated patients in the High Grade Serous class

With SMOTE:
100 simulated patients in the High Grade Serous class

New simulated patients, binary, with SMOTE

27

Class 1, HGSC Class 0, Other

Comparison of performance of VAE with and
without SMOTE

28

Real patient (target)Simulated patient
without SMOTE

Simulated patient
with SMOTE

Examples of a single patient. - SMOTEing seems to improve simulated patients as it removes some of the
random noise around the diagonal line.
When looking at patients a lot of variation lies around the diagonal, so this might be important to replicate.

29

Generate “new” patients/data
Combining Synthetic Minority Oversampling TEchnique and Variational AutoEncoders

- Machine learning models learns poorly when one class dominates the other.
- Little data compromise model performance.

 jdjd jddd

Appendix: CNN

30

31

With sim

Without sim

Accuracy
scores
(test set)

Training and test
data:

Real patients (49)

Training data: Both simulated
and real patients

Binary classification (697)

Binary (38+11) Both sim.
and real

patients in
test-set

Only real patients
in test-set

CNN 80% 98% 80%

Training CNN without SMOTE

Loss plots have many small spikes, this might hint that the batch
size could be optimized - as too small batch sizes might not span
all the different classes

Training CNN with SMOTE

32

Accuracy
scores
(test set)

Training and test
data:

Real patients (49)

Training data: Both simulated
and real patients

Binary classification (697)

Binary (38+11) Both sim.
and real

patients in
test-set

Only real patients
in test-set

CNN 80% 97% 66%

With sim

Without sim

Seems like the CNN performs worse on real patients after addition
of smote, however since the test-set was randomized this might
be due to chance.

Full CNN architecture
 CNN was programmed in Pytorch based on example code for
classification of MNIST. - visualized with Torchviz

● First convolution: 2d Convolution 16 kernels of size 5 ->
LeakyReLU

● First maxpool: 2d maxpool kernel size 2
● Second convolution: 2d Convolution 32 kernels of size

5 -> LeakyReLU.
● Second maxpool: 2d maxpool size 2
● reshaped to batchsize x 288
● passed through NN with: 200 -> 50 nodes and either 4

or 1 output.
● Last activation function is Sigmoid

33
Architecture inspired by:
https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-network-with-mnist-dataset-4e8a4265e118

CNN “kernels” - Plots of a single PCA passed through each layer
Most seem to accentuate shape of diagonal - which from looking at PCAs as images might be informative,
however the trend is difficult to discern. A lot of the structure is visible in the second convolution as well

From left to right: First convolution, after first maxpool, after second convolution, after second maxpool.

34

Trained on real patients

Trained on real + sim

Appendix: Light GBM

35

Confusion matrix from LGBM models

36

Train: Both sim. and real patients
Test: Both sim and real patients

Train: Both sim. and real patients
Test set: Only real patients

Train: Sim. patients
Test: Real patients

All are predicted as class 0,
even though most of them
really are class 1. They look
more like the simulated class
0.

Boosted Decision Tree on real patients (49)
● LightGBM
● Nothing done about the very unbalanced distribution of patients in cancer

subtype.
● Hyperparameter optimization by random search, 5 fold CV
● Resulted in max_depth: 23, samples_leaf: 72 and best accuracy score: 0.775
● Same for both multi-classification and binary classification
● Multi-classification ended up being binary, test set consisted of 9 samples, only 2

different classes represented.

37

Boosted Decision Tree on real patients (49)

● ROC curve shows that this classifier is
extremely bad, it is guessing. This can be
explained by the overrepresentation of
high-grade serous patients

● Looking into the predictions, for both binary
and multi-class the whole test set was
predicted as high-grade serous

38

ROC curve for binary classification

Boosted Decision Tree on sim. and real patients (697)
● Binary classification with LightGBM
● Train and test: Both real and simulated

patients
● Random search for

hyperparameter-optimization
● Resulted in max_depth: 23,

samples_leaf: 1 and best accuracy
score: 0,979

● Accuracy on test set: 0,9856

39

Why did the classification perform like this, LGBM
● To investigate: PCA on the input data for the LGBM
● Clear to see the real patients are very different from the simulated patients
● Have moved slightly away from the real patients in the simulation
● PCA on only simulated patients, no overlapping, therefore easy to differentiate and

thereby classify.

To investigate the difference further:

● LGBM trained only on sim. patients, test set of only real patients, accuracy score = 22%
● Predicting all real patients as class “other”

40
PC 1

PC
 2

PC 1

PC
 2

Appendix: Dimensionality reduction
and clustering

41

42

t-SNE hyper parameter optimization
Optimizing perplexity in the range from 50 to 225 - done on a subset of the data.
A difference in the clustering is seen especially in the big cluster in the middle of the plots.

t-SNE colored by different features

Discrete feature values

43

t-SNE mappings
colored by
some of the
different meta
data features

Some of them
are more
informative
than others.
Seems that the
discrete values
are more
informative in
this projection

No apparent clustering is visible based on the different features

t-SNE on different number of patients (10 and 50)
The t-SNE projection had a hard time working on the complete dataset compared to a
small fraction of the dataset - So we optimized on a reduced dataset - however we may
need to rerun optimization to get as clear and informative clusters.

44

