
1.



2.



3.



4.



5.



6.



7.



8.



9.



10.



11.



12.



13.



14.



15.



16.



17.



18.



19.



20.



21.



22.



23.



24.



25.



26.



27.



28.



29.



Appendix
Alicja, Amit, Bence, Daniel, and Fabiano



Data Preprocessing

• Downloading raw data from DMI
• Contains ALL weather stations and all their

measurements for ~10 years
• Stations in Greenland as well as Denmark

• JSON dictionary format for each measurement
• One measurement is one feature per station per 

time

• RAM intensive to ingest and process



Data Preprocessing - continued

• Steps:
• Ingest data
• Save relevant datapoints in pandas dataframe 

• This includes feautere name, feature value, coordinate, station id, time resolution
• Reduces file size about 50% by not saving the rest of the JSON dictionary
• Save dataframe as single csv

• Split data by time resolution and keep working with hourly data
• Pivot dataframe so columns are feature names and indices are timestep AND 

stationID
• Many missing values.
• Drop features with more than 10% missing values (not all stations measure everything)
• Drop ALL NaN’s to have some data to work with



Data Preprocessing – continued 2

• Split dataset into stations only for Bornholm and pick just station 
6190
• Models don’t support the previous way of storing all data, so we had to stick 

with just one station (see slide on GNN for more info on all stations)

• Save station 6190 in one file, and save the rest with NaN’s removed in 
10 files to reduce the RAM requirements to work with it.
• The process can be found in data_processing.ipynb files 1-5 
• Split in 5 amongst other reasons for RAM considerations

• In the end we have a total of 36 stations that have the data for all 
features we use for all timesteps.



Alicja’s Deep Neural Network
• Note: This code had some algorithmic errors. 
• Using TensorFlow Keras and Sk-learn
• Data scaled with Sklearn’s Standard scaler.
• Taking all the 16 input features from data file and predicting one output.
• Loss function was MAE.
• Model description (Sequential model):

• 6 hidden layers (units : 100,200,200,200,100,20 respectively from layer 1 to 6)
• 1 output layer
• activation function – ReLu (for hidden layers)

• Hyper-parameters:
• optimizer – Adam
• epochs – 10
• batch_size – 100 



Amit’s Deep Neural Network
• Note: This regular NN ignores timeseries order

and deals it as a simple regression model.
• Using TensorFlow Keras and Sk-learn
• Data scaled with Sklearn’s Standard scaler.
• Taking 7 input features from data file and

predicting one output.
• Loss function was MSE.
• Model description (Sequential model):

• 4 hidden layers (units : 256,256,128,128 respectively
from layer 1 to 4)

• activation function – ReLu (for hidden layers)
• 1 output layer

• Hyper-parameters:
• optimizer – Adam (with learning_rate = 0.001)
• epochs – 500 (Early stopping callback with

patience=50)
• batch_size – 50

Fig: The loss function (top) doesn’t seem converging; the first 2000 prediction 
(bottom) looks very noisy and bad with RMSE- 3.121 ᵒC ; MAE: 2.136 ᵒC.



Amit’s LSTM

Angles do not make good model inputs: 360° and
0° should be close to each other and wrap around
smoothly. Direction shouldn't matter if the wind is not
blowing. But this will be easier for the model to
interpret if you convert the wind direction and speed
columns to a wind vector. The distribution of wind
vectors is much simpler for the model to correctly
interpret. (For good model always keep data in same
coordinate system)

• Using TensorFlow Keras and Pandas
• Normalisation - Standard Scaling the

whole data w.r.t training data.

• Features used :
• 7 without feature engineering
• 7 + 6 (self-made) with feature

engineering (the additional 6 features
were made to preserve the daily and
yearly periodicity of the temperature
data in our model)

• Ignored the feature “wind direction”
because its values were angles.

Fig: wind speed visualization before and after vectorizing it.



Amit’s LSTM - continued
• Being weather data, it has clear daily and yearly 

periodicity. There are many ways we could deal to 
preserve periodicity feature of our data.

• We can get usable signals by using sine and cosine 
transforms to clear "Time of day/year" signals.

• This gives the model access to the most important 
frequency features. In this case we knew which frequencies 
were important.

• If we don't have that information, we can determine which 
frequencies are important by extracting features with Fast 
Fourier Transform. To check the assumptions, here is the fft
of the temperature over time. Note the obvious peaks at 
frequencies near 1/year and 1/day.



Amit’s LSTM – continued 2
• Hyper-parameters :

• batch_size = 20
• epochs = 30 (with early stopping callback)
• optimizer = Adam
• learning_rate = 0.001
• sequence_length = 120
• sampling_rate = 1
• Loss function = MSE

• Model description :
• Input layer : (batch_size, sequence_length, features)

• shape (20, 120, 13) with feature engg.
• shape (20, 120, 7) without feature engg.

• LSTM layer with 32 units
• shape (20, 32)
• activation function - tanh
• recurrent activation function - sigmoid

• Output layer with shape (20, 1)
Fig: loss function without feature engg. (above)
vs. with feature engg. (below) which converges
faster than above.



Amit’s LSTM – continued 3
Single time-step prediction for 1 hr (forecast
horizon) in future by taking past 120 hrs (sequence
length).

Results with feature engineering model.
(RMSE: 0.794 ᵒC and MAE: 0.576 ᵒC) Plotted all the
1233 single time-step predictions together to
compare the general trend of temperature.

Results without feature engineering model.
(RMSE: 1.019 ᵒC and MAE: 0.725 ᵒC) Plotted all the
1233 single time-step predictions together to
compare the general trend of temperature. (looks
kind of worse than above plotted results as you can
see more blue part around minimum)



One Feature LSTM (OFLSTM):
• Model built using PyTorch.
• Model structure is an LSTM layer of hidden size 8 with one input and a final linear layer with one 

output.
• Data scaled with sklearn's MinMaxScaler
• Data shaped into a special format for RNN use. Basically many sequences of data which roll by 

one value for each sequence. For example: data = [0, 1, 2, 3, 4, 5]. Sequences are [0, 1, 2], [1, 2, 
3], [2, 3, 4] for a sequence length of 3.

• Model was trained and optimized with Adam optimizer. Loss function was RMSE = 0.84
• As this model only took one feature in, we used the mean temperature and predicted the mean 

temperature. Only one timestep ahead could be predicted

Bence’s LSTM



Bence's LSTM – continued 
Hyperparameters of OFLSTM:
• Learning rate = 5e-3
• N_epochs = 1000
• Sequence Length = 10
• Forecast Horizon = 1 (number of 

future timesteps to predict)

Results:
Predicting one hour ahead with 10 
hours of data from June 8, 2022.
Predicted value was 5.8% off from 
truth value, although the gradient 
change should also be considered.



Multi-feature LSTM (MFLSTM):
• Model built using Keras TensorFlow
• Model structure is a 10-unit LSTM with 0.01 dropout and a final linear activation layer
• Data scaled with sklearn's MinMaxScaler
• Data shaped into a special format for RNN use, same as for OFLSTM
• Model was trained and optimized with Adam optimizer. Loss function was RMSE = 0.09
• This model took in all input features and could predict on one feature. Can predict multiple 

timesteps into the future

Bence’s LSTM – continued 2



Bence's LSTM – continued 3 
Hyperparameters of MFLSTM:
• Learning rate = 1e-3
• N_epochs = 15
• Batch size = 50
• Sequence Length = 50
• Forecast Horizon = 5

Results:
Predicting 5 hours ahead with 50 
hours of data
Predicted values were, on average, 
6.3% off from truth value (less than 
3% excluding hour 52), and generally 
agreed with gradient changes



GRU

• Implemented in Pytorch (cpu)

• Data scaling: MinMaxScaler (from scikit-learn)
• This is justified because after cleaning the data no strong outliers were present.
• Tried StandardScaler too, did not change appreciably.

• Loss function: MSE

• Model structure:
GRUNet(
(gru): GRU(input_size=8, hidden_size=256, num_layers=2, batch_first=True, dropout=0.2)
(fc): Linear(in_features=256, out_features=1, bias=True)
(relu): ReLU()

)



GRU -- continued
• Hyperparameters:

• Sequence length: 96 (i.e. 4 days)
• Forecast horizon: 1
• Batch size: 512
• Learning rate: Exponential Scheduler (gamma=0.7)
• Epochs: 15
• Dropout rate: 0.2

• HP optimization: manual
• Tried a few values of

• Epochs
• learning rates (both constants and gamma value in scheduler)
• Sequence length
• Batch size (smaller gave worse results)

• Overfitting prevention
• Visually inspected validation loss history
• Dropout layer after each GRU layer

Training time: 98 min on Intel Core i5-1135G7



GRU: wind speed

• Wind speed as target

• Same structure as final GRU

• Same HP as final GRU, except for:
• Epochs: 10

• RMSE (test): 0.88



GNN

• Using pytorch geometric
• We had MANY issues installing this, and in the end it ONLY worked on Google

Colab with the help of Rasmus Ørsøe (TA for the course in 2021).

• GNN’s ingest data as graph, where in this case each station is 
considered a node in the graph
• This is rather hard to structure and read in the data properly with a “real” 

dataset instead of example datasets.
• Through correspondence with Rasmus we made this work after a while of 

trying



GNN – continued 

• Sample graph of 36 DMI 
stations
• Edges selected based on K-

Nearest Neighbours in 
coordinate space

• 2 groups of stations
• The small one is 

presumably Bornholm, and 
the larger one is the rest of 
Denmark



GNN – continued 2

• Structure of the GNN 
• Similar to a generalised CNN
• Needs “conv” layers, altough 

these are GNN specific
• Here we use SAGEConv, 

which is one of the standards
• 3 linear layers after GNN 

layers

• PyTorch requires forward 
function and other standard 
“Boilerplate” code.



GNN - continued 3

• We made the model run, BUT each epoch takes many hours to run, 
even on a datacenter GPU and a largely reduced dataset
• Google Colab provides Nvidia Tesla T4 GPU with 16GB VRAM
• 1% of the dataset takes ~2 hours per epoch, and a few epochs gave no usable 

results
• More epochs or more data would exceed the available time, both clock-time and GPU 

compute time

• GNN’s look really promising for this kind of data but will require more 
time to work out small bugs along with access to more GPU compute 
(either more GPU’s or more time for one GPU)
• Can become very expensive


