Thank You!

It's Getting
Hot In Here

Alicja Katucka
Amit Singh

Bence Takacs
Daniel Dalsgaard
Fabiano Tracanna

Goal

Trying to come up with a geomodel of the
weather stations and trying to predict data for
the future

Motivation

- It would be nice to compare it with a data that
is already there and check how good the
model is

« Maybe we can predict the data for the future
and see some threats for the future climate

D a ta Data preprocessing

DMI - stationvalue

DMI Open Data - file portal

Jv2/elimateData/bulk

Bornholm

Antal: 60-70 stk

- The raw data we got

- CSV file with 90 million
entries

- We pivoted it

- Use only Synop stations

- Remove ALL NaN's
4.5 million entries

"geometry": {
"coordinates":
0.988,
54.8528

"type": "Point"

\
I

"properties":
"calculatedAt": "2022-01-03T07:53:31.106000+00:00",
“"created": "2022-02-24T720:02:28.313101+00:00",
"from": '"2022-01-02T00:00:00.001000+01:00",
"noValuesInCalculation": 24,
"parameterId": "mean_pressure",
"qcStatus": "manual",
cstationTd s A6I195s
"timeResolution": "day",
“"to": "2022-01-03T00:00:00+01:00",
"validity": -
"value": 1006.1

1
I

"type": "Feature",
"id": "00ald43c2-cdab6-445a-ef2b-653alb94a34c"

coordinates to parameterld stationld timeResolution value

0 [9.1229, 54.8986] 2021-03-27T09:00:00+00:00 mean_temp 6116 hour 5.3
1 [9.1229, 54.8986] 2021-03-27T09:00:00+00:00 mean_wind_dir 6116 hour 239.0
2 [9.1229, 54.8986] 2021-03-27T09:00:00+00:00 mean_wind_speed 6116 hour 3.1
3 [9.1229, 54.8986] 2021-03-27T09:00:00+00:00 min_temp 6116 hour 4.9
4 [9.1229, 54.8986] 2021-03-27T09:00:00+00:00 temp_grass 6116 hour 54
5 [9.1229, 54.8986]) 2021-03-27T09:00:00+00:00 temp_soil_10 6116 hour 6.1
6 [9.1229, 54.8986] 2021-03-27T09:00:00+00:00 temp_soil_30 6116 hour 6.1
7 [9.1229, 54.8986] 2021-03-27T09:00:00+00:00 vapour_pressure_deficit_mean 6116 hour 0.1
8 [9.1594, 56.0372] 2021-03-27T09:00:00+00:00 acc_precip 5276 hour 0.1
9 [9.1674, 55.7379] 2021-03-27T09:00:00+00:00 acc_precip 6104 hour 0.5
10 [9.1674, 55.7379] 2021-03-27T09:00:00+00:00 max_temp_w_date 6104 hour 3.8
11 [9.1674, 55.7379] 2021-03-27T09:00:00+00:00 max_wind_speed_10min 6104 hour 46
12 [9.1674, 55.7379] 2021-03-27T709:00:00+00:00 max_wind_speed_3sec 6104 hour 6.2
13 [9.1674, 55.7379] 2021-03-27T709:00:00+00:00 mean_pressure 6104 hour 1008.9
14 [9.1674, 55.7379] 2021-03-27T09:00:00+00:00 mean_relative_hum 6104 hour 93.3
15 [9.1674, 55.7379] 2021-03-27T09:00:00+00:00 mean_temp 6104 hour 3.5
16 [9.1674, 55.7379] 2021-03-27T09:00:00+00:00 mean_wind_dir 6104 hour 255.0

parameterld acc_precip bright_sunshine leaf_moisture max_temp_w_date max_wind_speed_10min max_wind_speed_3sec mean_pressure
to stationid

2021-03- 5009 1.3 NaN NaN NaN NaN NaN NaN
27T09:00:00+00:00

5065 04 NaN NaN NaN NaN NaN NaN

5075 0.2 NaN NaN NaN NaN NaN NaN

5081 0.2 NaN NaN NaN NaN NaN NaN

5085 0.2 NaN NaN NaN NaN NaN NaN

2021-03- 6032 NaN NaN NaN 2.7 4.9 7 1007.0
27T710:00:00+00:00

6041 33 1.6 NaN 28 9.1 12.8 1006.1

6049 NaN NaN NaN 3.1 5.5 i 1007.9

6051 0.0 NaN NaN 6.1 NaN NaN NaN

6052 0.0 NaN NaN 6.5 5.7 6.6 1008.4

- The raw data we got

- CSV file with 90 million
entries

- We pivoted it

- Use only Synop stations

- Remove ALL NaN's
4.5 million entries

Bornholm is well-known island for
its beautiful landscapes, but it's
also known for quite a temperate
climate (long, warm-ish summers
and wild winters)

12,

13.

In order to see whether it's
possible to predict next
timestamps, we tried to use:
- We tried to use a simple
NN just to check

- GNN
- GRU
- LSTM

14.

Features

description

Feature Correlation Heatmap
to] |
max_termp_w._date

max_wind_speed_10min
max_win speed_3sec
mean_pressure
mean_relative_hum

mean_temg
mean_wing_air
mean_wind_speed
min_temp.
vapour_pressura_deficit_mean

e

mean_mind_dir
mean_ wind_speed

o w_date
max_wind_speed_3sec

s
speed 10min
mean temy
. deficit_mean

max_wi

MAE: 2.136

RMSE; 3.121

15.

nap

—
o C
;8
Blg
E.*:'
=S
SR =
[}
=
[
| .
-
()]
w
[}
| -
Q
s._I
3
o
o
(]
>

0.75

0.50

0.25

0.00

=029

-0.50

-0.75

max Temperature (C) - max_temp_w_date

max Wind Speed (10 min) - max_wind_speed_10min

max Wind Speed (10 min)

20
15
10
5
—— max Temperature (C) o
o P 40 20 20 20t 2% 2 20° 2° 2%° 20
o to
max Wind Speed (3 sec) - max_wind_speed_3sec mean Pressure - mean_pressure
—_ Wind Speed (3
max Wind Speed (3 sec) 1040
1020
1000
g0
—— mean Pressure
fo 204 20° 20° 2880 2w 2 2 20 o 20 282
to to
mean Relative Humidity - mean_relative_hum mean Temperature (C) - mean_temp
30
20
10
o
—— mean Relative Humidity -10 —— mean Temperature (C)
2 2 20® 20® 2w oy P Fo 20 2w 20 2
to to
mean Wind direction (deg) - mean_wind_dir mean Wind speed - mean_wind_speed
20 —— mean Wind speed
15
10
5
mean Wind direction (deg) 0
2 20 2® 208® 2 2 F o* 2° 0* 20® 27
to to
min Temperature (C) - min_temp mean Vapor pressure deficit - vapour_pressure_deficit_mean
45 mean Vapor pressure deficit
20
15
10
05
—— min Temperature (C)
in Temperatur -

2ov 20V ° ® 20 o

O

o 20° o 2 287

16.

1.00

max Te

Feature Correlation Heatmap

to 0.75
max_temp_w_date
max_wind_speed_10min 0.50 =
max_wind_speed_3sec max Wind
025
mean_pressure
mean_relative_hum
- - 0.00
mean_temp
. . v 200
mean_wind_dir
._ - _0'25 mean Rel
mean_wind_speed
min_temp -0.50
vapour_pressure_deficit mean —4+———————————7——
O m .E (@] w E D. _t -D Q_ c —— mean Relative Humidity
+ Jf-U‘ E g ‘5 3 E -O| 8 E 8 _0'75 2 o
T o mMm v o VU o g @ E
= '3 P2 e o Y oo MSACM
2 9 8 9 3 e U
Il ® g 2 g = T = =
o g o =1 I g 9
£ 0 2 c© c 3 =
5 a v e o £ 08 2 L
) | v = Q I ©
J"'l |-O | E C |
x o £ € ¢ © 2
T £ 3 o GEJ =] . ;
E= 0 £ i T
x @© bt A 1
o £ aQ
£ | W
3
o
Q
(0]
>

17.

temperature (C)

2000 hours prediction by Simple NN

”H“f h Hpi o

0 |

Mokl ““d' | .|f~.“l‘”‘ﬂj~u” ’*Hﬁl*) JJ“’JI“H”‘L” m'n

l

—— mean_temp
—— predicted_temp

1 L1t

2020-12-15

RMSE: 3.121

2021-01-01

MAE: 2.136

2021-01-15

timeline

2021-02-01

2021-02-15

2021-03-01

18.

Snte soap prescton

A
\ ¥

Training and Validation Loss

—— Training loss
— validation loss

LSTM {1 LSTM layer with 32 units, activation="tanh",
recurrent_activation="sigmaid" }

E 0.040 7 features (without feature engg.) & 13 features (with feature engg.)

g HP:

E 0035 learn. rate: 0.001

£ ooz

H epochs: 30

= 0025 sequence length: 120 -
£ o020 Loss fun. : MSE

RMSE (test): 0.7935 deg C (with Fengg.) & 1.0191 deg C (without F engg.)
MAE (test): 0.5756 deg C (with F engg.) & 0.7248 deg C (without F engg.)

)

il),Jy Y
i,

y fr“-‘fqmw,h,vﬁ '

19.

Mean Squared Error Loss

Training and Validation Loss

0.050 A

0.045 -

©c o o o ©O

o o o o o

N N w w =

o Ul o wu o
I 1 I] I

— Training loss
—— Validation loss

LSTM
recur
7 feat
HP:

learn
batck
epocl
sequt
Loss -
RMSE
MAE |

20.

Single Step Prediction

1
—e— History &
X True Future
07 e Model Prediction
_1 _
-120 -100 —-80 -60 -40 -20 0

LSTM (1 LSTM layer with 32 units, activation="tanh",
recurrent_activation="sigmoid")
7 features (without feature engg.) & 13 features (with feature engg.)

21.

RMSE (test): 0.7935 deg C (with Fengg.) & 1.0191 deg C (without F engg.)
MAE (test): 0.5756 deg C (with F engg.) & 0.7248 deg C (without F engqg.)

Comparing the predicted temperature trend

temperature (C)
o

22.

LSTM vol. 2

- Sequence length: 50
- Forecast horizon: 5
- RMSE = 0.09

23.

[Em}
=)
9]
— B
= g
= 9
5=
o
— = °
= =
5 B2 & =
£ & & =
L&
10
-)
|5}
<
[a W) L1
=
w2
—_
=
5
=]
=
]
=t
L LD
o
jan] i} e i} (=] 10D (e} LD
o o™ o™ — — |

—10

(Do) @myeradway, ueapy

24.

GRU

- Sequence length: 96 (4 days)
- Epochs: 15

- Learn rate: scheduler

- Dropout: 0.2

+ RMSE =0.62 °C

25.

7.5

Test predicitons

= prediction
—— target
J
‘,
A
: \
\
200 400 600 800 1000 1200
sample

26.

It runs, but ShaghdE il ane
- Computationally expensive

- Takes 100's of hours of GPU

compute

27.

Conclusions

- We can predict temperature
with an acceptable error for
everyday people

- Extend predictions over a few
days

- GNN looks promising but
takes more work

- Combine more (all) stations to
make a global model

28.

Thank You!

It's Getting
Hot In Here

Alicja Katucka
Amit Singh

Bence Takacs
Daniel Dalsgaard
Fabiano Tracanna

Appendix

Alicja, Amit, Bence, Daniel, and Fabiano

{
"geometry": {
"coordinates":
9.988,
54.8528

Data Preprocessing

"properties": {
"calculatedAt": "2022-01-03T07:53:31.106000+00: 00",
""created": "2022-02-24T720:02:28.313101+00:00",
“from": "2022-01-02T00:00:00.001000+01:00",
. "noValuesInCalculation": 24,
[] D I d d t f DMI 1 "parameterId": "mean_pressure"
ownioading raw data 1rom e ’
: ’
"“stationId": "06119",

* Contains ALL weather stations and all their , “tineResolution": “day",

"to": "2022-01-03T00:00:00+01:00",

measurements for ~10 years ; ralidiny's i
* Stations in Greenland as well as Denmark S

’
"type": "Feature",
"id": "@0al43c2-cda6-445a-ef2b-653alb94a34c"
}

* JSON dictionary format for each measurement

* One measurement is one feature per station per
time

* RAM intensive to ingest and process

Data Preprocessing - continued

* Steps:
* Ingest data
* Save relevant datapoints in pandas dataframe
* This includes feautere name, feature value, coordinate, station id, time resolution

* Reduces file size about 50% by not saving the rest of the JSON dictionary
* Save dataframe as single csv
* Split data by time resolution and keep working with hourly data
* Pivot dataframe so columns are feature names and indices are timestep AND
stationID
* Many missing values.
* Drop features with more than 10% missing values (not all stations measure everything)
* Drop ALL NaN’s to have some data to work with

Data Preprocessing — continued 2

* Split dataset into stations only for Bornholm and pick just station
6190

* Models don’t support the previous way of storing all data, so we had to stick
with just one station (see slide on GNN for more info on all stations)

e Save station 6190 in one file, and save the rest with NaN’s removed in
10 files to reduce the RAM requirements to work with it.

* The process can be found in data_processing.ipynb files 1-5
* Split in 5 amongst other reasons for RAM considerations

* In the end we have a total of 36 stations that have the data for all
features we use for all timesteps.

Alicja’s Deep Neural Network

* Note: This code had some algorithmic errors.

e Using TensorFlow Keras and Sk-learn

e Data scaled with Sklearn’s Standard scaler.

* Taking all the 16 input features from data file and predicting one output.
e Loss function was MAE.

* Model description (Sequential model):
* 6 hidden layers (units : 100,200,200,200,100,20 respectively from layer 1 to 6)
* 1 output layer
* activation function — ReLu (for hidden layers)

* Hyper-parameters:
* optimizer — Adam
* epochs—10
* batch_size — 100

16

—— train loss
validation loss

Amit’s Deep Neural Network .

* Note: This regular NN ignores timeseries order i
and deals it as a simple regression model.

* Using TensorFlow Keras and Sk-learn
* Data scaled with Sklearn’s Standard scaler. °

e Taking 7 input features from data file and ; b b 5 % %
predicting one output. -

8

e Loss function was MSE.

* Model description (Sequential model): ;
4 hidden layers (units : 256,256,128,128 respectively -

15

from |ayer 1 to 4) h 2021-01 2021-03 202105 2021 -07 2021-09 2021-11 2022-01 2022-03 2022-05
* activation function — ReLu (for hidden layers) - e
* 1 output layer .
* Hyper-parameters: BT, ST W.. g UL Hiilth,
. . . ‘ ‘ e V LN
* optimizer — Adam (with learning_rate = 0.001)) pill
Sgggﬂsce;so)Soo (Early stopping callback with Fig: The loss function (top) doesn’t seem converging; the first 2000 prediction

e batch size — 50 (bottom) looks very noisy and bad with RMSE- 3.121 °C ; MAE: 2.136 °C.

Amit’s LSTM

* Using TensorFlow Keras and Pandas

 Normalisation - Standard Scaling the
whole data w.r.t training data.

* Features used:
e 7 without feature engineering
e 7 + 6 (self-made) with feature
engineering (the additional 6 features
were made to preserve the daily and
yearly periodicity of the temperature
data in our model)

* lIgnored the feature “wind direction”
because its values were angles.

20.0
175
15.0

v

Ens
o
2100
°
£
2 75

]
]

Wind speed vs. Wind direction Breaking Wind speed in components

Wind speed Y [m/s]

-10

-15

=20

o

0 50 100 150 200 250 300 350 -15 -10 5 0

= 5
Wind Direction [deg] Wind speed X [m/s]

10
Fig: wind speed visualization before and after vectorizing it.

Angles do not make good model inputs: 360° and
0° should be close to each other and wrap around
smoothly. Direction shouldn't matter if the wind is not
blowing. But this will be easier for the model to
interpret if you convert the wind direction and speed
columns to a wind vector. The distribution of wind
vectors is much simpler for the model to correctly
interpret. (For good model always keep data in same
coordinate system)

60

40

20

Amit’s LSTM - continued

max Temperature (C) - max_temp_w_date max Wind Speed (10 min) - max_wind_speed_10min

max Wind Speed (10 min)

— max Temperature (C)

200 ot 200° ® 200 2o 20 oGl pold 20® 20 207
to to

max Wind Speed (3 sec) - max_wind_speed_3sec mean Pressure - mean_pressure

—— max Wind Speed (3 sec

—— mean Pressure

2 2 o° ° 290 2o 2o [2° ® 202 2o
to to

mean Relative Humidity - mean_relative_hum mean Temperature (C) - mean_temp

— mean

208 ot 200° ® 200 g 20 200 20%© 20® 2020 20
to to

mean Wind direction (deg) - mean_wind_dir mean Wind speed - mean_wind_speed

20 —— mean Wind speed

mean Wind direction (deg)

20 2 ° ° 2 2o o o ° 2° 2 2o
to to

min Temperature (C) - min_temp mean Vapor pressure deficit - vapour_pressure_deficit_mean

mean Vapor pressure deficit

25
20
15
10
05
— minTemperature (€) | o o
2o 2o 2o° 2° 2° 2o 2o 2 ° o° 20 2

to to

Being weather data, it has clear daily and yearly
periodicity. There are many ways we could deal to
preserve periodicity feature of our data.

We can get usable signals by using sine and cosine
transforms to clear "Time of day/year" signals.

This gives the model access to the most important
frequency features. In this case we knew which frequencies
were important.

If we don't have that information, we can determine which
frequencies are important by extracting features with Fast
Fourier Transform. To check the assumptions, here is the fft
of the temperature over time. Note the obvious peaks at
frequencies near 1/year and 1/day.

Frequency importance of Mean temperature
400000

350000 A

300000 A

250000 A

200000 A

Importance

150000

100000 -
50000 WJ L,

0 T T
1/Year 1/month 1/day
Frequency (log scale)

Amit’s LSTM — continued 2

. Hyper—parameters
* batch_size =20
e epochs = 30 (with early stopping callback)
e optimizer = Adam
* learning_rate =0.001
* sequence_length =120
e sampling_rate=1
* Loss function = MSE

* Model description :

* Input layer : (batch_size, sequence_length, features)
* shape (20, 120, 13) with feature engg.
* shape (20, 120, 7) without feature engg.
e LSTM layer with 32 units
* shape (20, 32)
 activation function - tanh
* recurrent activation function - sigmoid
e QOutput layer with shape (20, 1)

LSTM Loss function without feature engineering

—— Training loss
0.050 A —— Validation loss

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

Training and Validation Loss

0.050 + —— Training loss

—— Validation loss
0.045 4

w0
w0
9 0.040
= 0.035 A
£ 0.030
o
¥ 0.025
c
©
L]
= 0.020

0.015 A

(I) 2I All I6 é 1|0 1|2 1|4
Epochs
Fig: loss function without feature engg. (above)
vs. with feature engg. (below) which converges

faster than above.

Mean temperature (C)

Amit’s LSTM — cont]nued 3

Single Step Prediction

; X
—e— History
Single time-step prediction for 1 hr (forecast] X Tuefuture
® Model Prediction
horizon) in future by taking past 120 hrs (sequence
length). 1
-120 —1I00 —IBO —iISO —;10 —I20 (I)

Comparing the predicted temperature trend

— true values

= eacion Results with feature engineering model.

(RMSE: 0.794 °C and MAE: 0.576 °C) Plotted all the
1233 single time-step predictions together to
compare the general trend of temperature.

1“\9”9 1“10'@ 1“1“’“5 101“’“9 mﬂ’“\ 101"“5 10"“”“9 —L“"ln\ 1“11’“5

Comparing the predicted temperature trend

Results without feature engineering model. » T eiion
(RMSE: 1.019 °C and MAE: 0.725 °C) Plotted all the

1233 single time-step predictions together to
compare the general trend of temperature. (looks
kind of worse than above plotted results as you can ’
see more blue part around minimum)

Mean temperature (C)

_L“@.@ 1“1@‘— wﬁn‘) 1010.\9 wﬁm 1“1\.@ 1“1\»‘3 1011,0\ _L“ﬂ.u‘)

Bence’s LSTM

One Feature LSTM (OFLSTM):

Model built using PyTorch.

Model structure is an LSTM layer of hidden size 8 with one input and a final linear layer with one
output.

Data scaled with sklearn's MinMaxScaler

Data shaped into a special format for RNN use. Basically many sequences of data which roll by
one value for each sequence. For example: data =[O0, 1, 2, 3, 4, 5]. Sequences are [0, 1, 2], [1, 2,
3], [2, 3, 4] for a sequence length of 3.

Model was trained and optimized with Adam optimizer. Loss function was RMSE = 0.84

As this model only took one feature in, we used the mean temperature and predicted the mean
temperature. Only one timestep ahead could be predicted

Bence's LSTM — continued

Hyperparameters of OFLSTM: 2

—o— Past
m Future (Predicted)

* Learningrate = 5e-3 181 A Future (Truth)
* N_epochs =1000
* Sequence Length =10

* Forecast Horizon =1 (number of
future timesteps to predict)

erature [°C]

Temperature [°C

—
o
L

Results:

Predicting one hour ahead with 10 8-
hours of data from June 8, 2022.

Predicted value was 5.8% off from : /
truth value, although the gradient Hours
change should also be considered.

Bence’s LSTM — continued 2

Multi-feature LSTM (MFLSTM):

* Model built using Keras TensorFlow

* Model structure is a 10-unit LSTM with 0.01 dropout and a final linear activation layer
* Data scaled with sklearn's MinMaxScaler

e Data shaped into a special format for RNN use, same as for OFLSTM

* Model was trained and optimized with Adam optimizer. Loss function was RMSE = 0.09

* This model took in all input features and could predict on one feature. Can predict multiple
timesteps into the future

Bence's LSTM — continued 3

Hyperparameters of MFLSTM:
* Learningrate = 1le-3

* N_epochs=15

* Batchsize =50

g

* Sequence Length =50

. Forecast Horizon =5

Mean Temperature [°

Results:

Predicting 5 hours ahead with 50
hours of data

Predicted values were, on average,
6.3% off from truth value (less than
3% excluding hour 52), and generally
agreed with gradient changes

30

251

201

151

101

Past

—e— Past
= Future (Truth)

—+— Future (Predicted)

Future

Hours

50

55

GRU

Implemented in Pytorch (cpu)

Data scaling: MinMaxScaler (from scikit-learn)

* This is justified because after cleaning the data no strong outliers were present.
* Tried StandardScaler too, did not change appreciably.

Loss function: MSE

Model structure:

GRUNet(
(gru): GRU(input_size=8, hidden_size=256, num_layers=2, batch_first=True, dropout=0.2)
(fc): Linear(in_features=256, out_features=1, bias=True)
(relu): ReLU()

)

GRU -- continued

Learning rates at each epoch

0.010+
* Hyperparameters:

* Sequence length: 96 (i.e. 4 days)
* Forecast horizon: 1 0.0061
* Batch size: 512
* Learning rate: Exponential Scheduler (gamma=0.7)
* Epochs: 15 0.002 1
* Dropout rate: 0.2

0.008 1

0.004 1

0.000 1
* Tried a few values of
* Epochs

* learning rates (both constants and gamma value in scheduler)
* Sequence length
* Batch size (smaller gave worse results)

* Overfitting prevention

* Visually inspected validation loss history

Training time: 98 min on Intel Core i5-1135G7
* Dropout layer after each GRU layer

GRU: wind speed

* Wind speed as target — Test predicitons

._.
=~

g

a3

—_
[\

e« Same structure as final GRU

e Same HP as final GRU, except for:
* Epochs: 10

Wind speed [m/s]
o o s
=
et
—_—
?
—_
—_—

[\S) e
e
_—

* RMSE (test): 0.88

(=]

0 25 50 75 100 125 150 175 200
sample

GNN

e Using pytorch geometric

* We had MANY issues installing this, and in the end it ONLY worked on Google
Colab with the help of Rasmus @rsge (TA for the course in 2021).

* GNN’s ingest data as graph, where in this case each station is
considered a node in the graph

* This is rather hard to structure and read in the data properly with a “rea
dataset instead of example datasets.

e Through correspondence with Rasmus we made this work after a while of
trying

|"

G N N — CO nt| N ued Graph of DMI Stations

Sample graph of 36 DMI

stations

* Edges selected based on K-
Nearest Neighbours in
coordinate space

2 groups of stations

e Thesmalloneis
presumably Bornholm, and
the larger one is the rest of
Denmark

. [1] 1 class GCN(torch.nn.Module):
G N N — CO ntl n u ed 2 2 def __init_ (self, num_node_features = 12):
3 super().__init_ ()
4 self.convl = NN.SAGEConv(num_node_features, 32, aggr = 'mean')
5 self.conv2 = NN.SAGEConv(num_node_features, 32, aggr = 'mean')
6 self.conv3 = NN.SAGEConv(num_node_features, 32, aggr = 'mean')
7 self.mlpl = torch.nn.Linear(32%3 + num_node_features, 32)
) ‘ 8 self.mlp2 = torch.nn.Linear(32, 64%2)
StrUCture Of the GN N 9 self.mlp3 = torch.nn.Linear(64%2, 1)
10 self.lrelu = torch.nn.LeakyReLU()

® Slmllar to a generahsed CNN 11 self.norm = NN.GraphNorm(num_node_features)

12 self.concat_norm = NN.GraphNorm(32%3 + num_node_features)

* Needs “conv” layers, altough Ta| | [o ety datal:
L 15 #x = 1f. (x)
these are GNN SpeCIfIC 16 esge_siﬁdexnzrtn)r:_graph(x[:,0:3], 24)
17 8 = 1f. 1(x, edge_index)
 Here we use SAGEConv, " e G e
. . i = (x[:,0:31,)
which is one of the standards i RS s e s s
. 21 x_4 = self.lrelu(x_4)
* 3 linear layers after GNN 22 edge_index = knn_graph(x[:,0:3], 2)
23 x_2 = self.conv3(x, edge_index)
|ayerS 24 x_2 = self.lrelu(x_2)
25 x = torch.concat([x_8,x_4,x_2,x], dim = 1)
. = self.mlpl(x)
* PyTorch requires forward 27 = seltrelut)
. 28 x = self.mlp2(x)
function and other standard 2 % = self. Lrelu(x)
30 x = self.mlp3(x)

“Boilerplate” code. 31 return x

GNN - continued 3

* We made the model run, BUT each epoch takes many hours to run,
even on a datacenter GPU and a largely reduced dataset
* Google Colab provides Nvidia Tesla T4 GPU with 16GB VRAM

* 1% of the dataset takes ~2 hours per epoch, and a few epochs gave no usable
results

* More epochs or more data would exceed the available time, both clock-time and GPU
compute time

* GNN'’s look really promising for this kind of data but will require more
time to work out small bugs along with access to more GPU compute
(either more GPU’s or more time for one GPU)

e Can become very expensive

