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“ It is indisputable that human
activities are causing climate
change, making extreme climate
events, including heat waves,
heavy rainfall, and droughts,
more frequent and severe.




‘ ‘ To limit global warming, strong,
rapid, and sustained reductions in
CO2, methane, and other
greenhouse gases are necessary.

This would not only reduce the
consequences of climate change
but also improve air quality.
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CLIMATE
ACTION
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SDG 13 - Take urgent action to combat climate change
and its impacts

Combatting climate change requires a comprehensive and multi-pronged strategic approach. Impacts
of climate change are felt around the world, with an increase in climate-related disasters anticipated.
Parties to the Ramsar Convention agreed in 2015 “wetlands in all parts of the world play an important
role in disaster risk reduction if the wetlands are effectively managed and restored where necessary”2.

Wetland soils contain over a third (35%) of the world’s organic carbon?. Coastal ecosystems and
particularly mangroves, saltmarshes and seagrass beds sequester two to four times more carbon
than terrestrial forests?® and these “blue carbon ecosystems” play an important role in climate change
mitigation. This carbon is stored for the long-term in wetland soils. Preventing further degradation,
drainage and loss of wetlands ecosystems is critical to preventing further GHG emissions.

Given the scale of the climate change challenge, partnerships can mobilize expertise and funding more
effectively. The International Partnership for Blue Carbon —announced during the Paris Climate Change
conference in 2015 — aims to bring together diverse partners, from government to non-government
and research organizations, to conserve coastal ecosystems. Already, 28 countries have included
coastal blue carbon ecosystems in their nationally determined contributions (NDCs) under the United
Nations Framework Convention on Climate Change (UNFCCC) while 59 countries have included these
ecosystems in their adaptation strategies.



SDG 17 - PARTNERSHIPS FOR THE GOALS 809.1 - NO POVERTY
The Ramsar Convention works in partnership with other MEAs More than a billion people depend
to support governments in achieving the SDGs. on wetlands for a living.

SDG 16 - PEACE, JUSTICE & STRONG INSTITUTIONS
Effective management of transboundary wetlands contributes
to peace and security.

SDG 15 - LIFE ON LAND

40% of all the world's species live and

breed in wetlands.

SDG 14 - LIFE BELOW WATER 17
Healthy and productive oceans rely on well

functioning coastal and marine wetlands.

SDG 13 — CLIMATE ACTION
Peatlands cover only 3% of global land
but store twice as much carbon as the

entire world's forest biomass.

SDG 2 -ZERO HUNGER
Rice, grown in wetland paddies,
is the staple diet of 3.5 billion people.

SDG 3 - GOOD HEALTH & WELL BEING
Half of international tourists seek relaxation in
a wetland areas, especially coastal zones.

SDG 4 - QUALITY EDUCATION
Safe water access enhances educational
SDG 11 - SUSTAINABLE CITIES &

opportunities, especially for girls.
COMMUNITIES 7

Urban wetlands play a vital role in making 11

cities safe, resilient and sustainable. E ﬂ 9
SDG 10 - REDUCED INEQUALITY

Healthy wetlands mitigate the risk to an estimated

5 billion people living with poor access to water by 2050.

SDG 9 - INDUSTRY, INNOVATION & INFRASTRUCTURE

SDG 5 - GENDER EQUALITY
Women play a central role in
the provision, management and
safeguarding of water.

SDG 12 - RESPONSIBLE
CONSUMPTION & PRODUCTION

Wetland areas properly managed can
sustainably support increased demands
for water in all sectors.

SDG 6 — CLEAN WATER & SANITATION
Almost all of the world’s consumption

of freshwater is drawn either directly or
indirectly from wetlands.

SDG 7 - AFFORDABLE & CLEAN ENERGY
Sustainable upstream water management can
provide affordable and clean energy.

SDG 8 ~ DECENT WORK & ECONOMIC GROWTH
Wetlands sustain 266 million jobs in wetland

Healthy wetlands form a natural buffer against the increasing number
tourism and travel.

of natural disasters.




Wetland Carbon
Seq uestration: Trees and vegetation
fix atmospheric
carbon through

Trees and vegetation
fix atmospheric
carbon through
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Source: Minnesota Board of Water and Soil Resources



Wetland + Trees =

HOWEVER, very few trees flourish in
standing water
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Big Cypress National Preserve, Florida, USA

- Most common vegetation class: Cypress Forest, Cypress Scrub, Pine
Woodlands, and Mixed Graminoid Freshwater Marshes and Prairies

Photo from Vegetation Mapping Inventory
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https://irma.nps.gov/DataStore/Reference/Profile/2177237

Biogeosciences, 12, 2285-2300, 2015 S /;Pczié\\{\
. . S N,
www.biogeosciences.net/12/2285/2015/ Biogeosciences > '&f,f\:f“ﬂ
\Y4
“

doi:10.5194/bg-12-2285-2015 >/
© Author(s) 2015. CC Attribution 3.0 License. )
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Carbon exchange between the atmosphere and subtropical forested ypress Swamp
1

cypress and pine wetlands

W. B. Shoemaker', F. Anderson, J. G. Barr?, S. L. Graham?, and D. B. Botkin®

'U.S. Geological Survey, Florida Water Science Center, 7500 SW 36th St, Davie, FL 33314, USA

2U.S. Geological Survey, California Water Science Center, Placer Hall, 6000 J Street, Sacramento, CA, USA
3South Florida Natural Resource Center, Everglades National Park, Homestead, FL 33030, USA

4National Institute of Water and Atmospheric Research (NIWA), Christchurch, New Zealand

SDepartment of Biology, University of Miami, Coral Gables, FL, USA

C. Dwarf Cypress

Corr dence to: W. B. Shc ker (bsh k@usgs.gov) and F. Anderson (fanders@usgs.gov)

P

Received: 30 September 2014 — Published in Biogeosci Discuss.: 14 November 2014
Revised: 19 March 2015 — Accepted: 24 March 2015 — Published: 16 April 2015

Panoramic photos of the (a) Pine Upland, (b) Cypress Swamp and (¢) Dwarf Cypress plant communities.

Florida cypress dome

Precipitation
107 cm Evapotranspiration

They found: the bigger the trees -> the higher /,
the C sink g A

Surface inflow

stem T A

(makes sense!) B pe

A%

/ Subsurface outflow \

58 cm



BUT!

Cypress timber was historically
harvested for valuable heartwood until
the late 1950s (300 million board feet
annually)

Today threatened by climate change
(fires, drought, etc.)

Source: Florida International University

Monitoring systems and maps are
needed!
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Problem statement

Why deep learning?
Outperformance in image analysis

Machines are cheaper than humans :), i.e., photo-interpretation (laborious
and time-consuming)

Predictions are faster than tree-based algorithms, which enables large-scale
and frequent updates

14
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Datasets

NAIP 2019 The National Agriculture Imagery Program (NAIP)
- 1-meter (resampled from 60cm for 2019)
- RGB + NIR

PlanetScope mosaic 2019

- 3-meter spatial resolution
- RGB +NIR

GEDI from Google Earth Engine

- Sparse 25m rasterized data
- Spaceborne LIiDAR

Aerial LIDAR Canopy Height Model Data
- 1m rasterized height map
Vegetation Mapping Inventory

- Vegetation map (50m)
- Field measurements
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https://developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ
https://earth.esa.int/eogateway/missions/planetscope
https://developers.google.com/earth-engine/datasets/catalog/LARSE_GEDI_GEDI02_A_002_MONTHLY
https://glihtdata.gsfc.nasa.gov/
https://irma.nps.gov/DataStore/Reference/Profile/2177237

Dataset comparison

Google Satellite 0.15m (RGB)

NAIP 1m 2019
Il Band 1: Red
[ Band 4: NIR
Il Band 2: Green &

Planet 3m 2019
[l Band 3: Red
[P Band 4: NIR
Il Band 2: Green




Reflectance of a typical plant leaf in the visible and near infrared
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Land cover/species mapping from aerial imagery
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Photo 1. Photo-interpreters (Michael Foguer, left, and Alejandro Arteaga Garcia, right) working on a
photogrammetric workstation running Summit Evolution v7.4.

[T Anthropogenic
Brazilian Pepper
[T Freshwater Marsh
B Melaleuca
B Non-Vegetative
M salt Marsh
Upland Forest
["] upland scrub
Upland Shrubland
B upland Woodland
l:l Water Lettuce
[ wetland Forest
B wetland Scrub
["] wetland shrubland
["] wetland woodland



[T Anthropogenic
Brazilian Pepper

[ Freshwater Marsh
Melaleuca

[ Non-vegetative
Salt Marsh

B upland Forest

[] upland Scrub

B upland shrubland

B upland woodland
Water Lettuce

[ wetland Forest

B wetland Scrub

[T] wetland shrubland

["] wetland woodland




Data preprocessing - create grids




IS

select ao

Data preprocessing
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Data preprocessing - clip aerial images (input features)

25



Data preprocessing - clip vegetation maps (labels)
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UNet-based multiclass land cover classification

Model architecture

- Input: Aerial photos, RGB and NIR bands, 1-meter resolution, float
- Labels: Mask layer, 1 channel, 1-meter resolution, integer

- Number of classes: 15

- Validation percentage: 10%

- Learning rate: 1e-4

- Loss function: Weighted Cross Entropy

loss(z, class) = weight[class] (--x[class] + log (Z exp(m[j])))

J

In practice

- 9 (training dataset) + 1 (validation dataset)
- 1 (testing dataset) (1x1km2 per image chip)
- 200 epochs

input

3
&
@
¥
¥

128 64 64 2

output
segmentation
| map

tile

392 x 392

72 x 572
570 x 570
568 x 568

'IZE 128
256 128
HE E
~f Ol t
METES 512 256
A bt Rt % > =» conv 3x3, ReLU
5 B K MM d
R = copy and cro
' 512 512 1024 512 py p
p & max pool 2x2
el — i el Wumaxp
e oy 1024 45 B 4 up-conv 2x2
- % & =» conv 1x1

The last layer of the architecture performs an 1x1 convolution used to
reduce the 64 components to the desired number of classes

I Acknowledgement: Inspired by and adapted from the github repository developed by Srimannarayana Baratam and Georgios Apostolides I
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https://github.com/TarunKumar1995-glitch/land_cover_classification_unet

Results

Batch Loss Loss
Batch Loss/train Loss/test Loss/train
tag: Batch Loss/train tag: Loss/test tag: Loss/train
8 28 16
6 24 1.2
4 2 08
2 16 04
0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 0 40 80 120 160 200 0

40 80 120 160 200

Challenges and future work

Different resolutions between input imagery and labels
Test over larger areas and more detailed classes

28



Methods - tree density mapping

Labels

Gaussian
density
Manual __| function —m
labeling +
resample

i
Aerial photos
(Im)

Tree labels

To predict

i;%A

PlanetScope
(3m)

* Density map
(3m)

P

RGB
+ NIR
Bands

PlanetScope

mosaic
(3m)

Input features

e 72 (256x256 px) Planet images resampled to 1 m
resolution

47,651 manual labels (tree crown centroids)!!!
432 images after data augmentation + copies
GeoTIFF format

Ground truth: “gaussian filter” density maps

Attention UNet

Prediction

Next slide 1

Desnsity map
(1m)

Tree density mapping through a regression task, using CNN (UNet architecture[1] with modifications as recommended by [2]) with “linear” activate at

the last layer (for regression task)

1. Ronneberger, O., Fischer P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing 29

and Computer-Assisted Intervention (eds. Navab, N. et al.) 234-241, (S

pringer, 2015).

2. Koch, T., Perslev, M., Igel, C. & Brandt, S. Accurate segmentation of dental panoramic radiographs with U-nets. In Proc. IEEE International Symposium on

Biomedical Imaging (ISBI) (eds Dauvis, L. et al.) 15-19 (IEEE Computer

Society, 2019).



@ InputLayer ' Conv2D . BatchNormalization . MaxPooling2D . UpSampling2D @Add ' Activation . Multiply . Lambda

Methods - Model, hyperparameters and training

Tree density mapping!

UNet architecture model with “linear” activation at the last layer (for the regression task)

Optimizer - Adam(Ir=1e-04, 1e-05, 5.0e-05, 5.0e-06, decay= 0.0, beta_1= 0.9, beta_2=0.999, epsilon= 1.0e-8)
Loss : mse, (rmse / y_pred.mean()) * 100, combined_loss ((rmse / y_pred.mean()) * 100 + count_loss
Metrics: MSE, RMSE, (rmse / y_pred.mean()) * 100, RSE, MAE, count_loss!

Epochs:30, 50, 80, 100, 150, 200, 400

Training steps: 50, 60, 80, 100, 150

Validation steps: 10, 20, 25, 40

RMSE

Squared

0 S50 100 150 200 250 300 30 400
Epoch

—— Tain
Test

i,

0 S0 100 150 200 250 300 350 400
Epoch

r Squared

100 150 200 250 300 350 400
Epoch




Tree density mapping

Results
PlanetScope image Predicted tree density e Total number of predicted trees = 34,277,644
81200 81,000 . oo e Predicted mean tree density = 121.3 trees ha™
; : e Train R2=0.30, ValR2 =0.21
e Train MAE =0.006, Val MAE = 0.008
. e Train Avg Err %= 140.1, Val Avg Err = 117.7
e Train RSE =2.65, Val RSE= -
e Train RMSE =0.009, Val RMSE = 0.013
gl e Total labels = 47,651, Predicted=57,841 (21.3%

26.900

overestimation)

Discussion

® Tree counts informs about biodiversity
e  Support plan for restoration and fighting
climate change (planning guidance)

25.800
h
25.‘800

1m res NAIP image - for labelling

-
M 100

200

Original tree count: 1663

y s Pt imagefopediction | _prdcted s coun: 241 Challenges and future work
) 0t “‘Unharmonised” images
e Artefacts from Planet images
e Did not work well at overall count
(about 2x overerestimation) 31

300

500

600

e Biomass + C stocks map...

700
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0 100 200 300 400 5S00 600 700
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F|g Data overview for tralnlng helght model. a, Spatlal coverage and posmon of aerial LIDAR CHM and GEDI data. b, GEDI data dIStnI‘wautlon in one of 699 tralnlng
patches. c, Aerial LIDAR CHM data spatial coverage in one of 627 training patches. Each batch is 600x600 pixels at 3m resolution, enlarged from the center of aerial
CHM center. (Background: false color planet imagery NRG).




Methods: Sparse supervision with Gaussian NLL loss

L (i) — yi)Q 1 ) If o is a constant then loss function becomes equivalent to MSE*const.
Lnrr = N Z 2&2—(95) £y 2 log67(x:). g is a variable in this case, and hence the network gives higher weight to
=l data with lower variance.

i ] yrch.exp(log variance) + self.eps
Pytorch NLL: return torch.mean(weights * 0.5 / variance *

prediction - target rch.log(variance))

. f base cfg.num classes == 2:
score = model(img)

Learnin del

Process: means, vars = score[:,0,...], score[:,1,...]

loss = criterion(means

=t ,...1[~-mask], wvars[:,! gt[~mask])

Weights in the loss function can be the
inverse distribution of the height.

Ground Truth

o

WWW - L

3_val_Loss
tag: 3.Vl Loss

imb

Height [m]

Fig: Ground truth height histogram

. o o o ' ' ' ' ‘ ' ) and weight curve
Fig: Training and validation curves with different input and ground truth data. CNN model: UNet backbone,
Efficientnet-b4 encoder.
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Results: wall-to-wall height mapping

81.0°W

w sow now

Fig: Height and uncertainty map for the research area and zoom in visualization. Planet Imagery with false color (NRG)

Mapping with both mean height
and variance.

Boundary area have very high
uncertainty. (TTA?)

The pattern with low height also
show relatively low variance.
Model tend to saturate with the
increase of height.

r2:0.23; mae:4.57.

Future: drop out and deep
ensemble for model uncertainty.

r2 score:0.23
T | -10°
". il 1l l Ik
’ }‘ I l! 10
|| jl 10
11
y
%
%
4”

b
s
B
I
.
} |
...HII
1 s

Reference [m]

—
.
N

Number of samples

>

Fig: Confusion plot between prediction
and reference height. 34



Results

- 1m Land cover classification
- Tree density map
- Tree height map

26.200

26.000

25.800
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Original tree count: 10454 Predicted tree count: 1179

* »
£

Appendix :

100

Edge effect for tree density mapping at
“‘unresampled scale - 3m”!l! (fig. right) =
About 10x underestimation of total tree 20
count in some areas (the DL-based

regression did not work well here!!!),

100

400
150

and ~4x underestimation overall.. 0

Some changes in learning rate and no. 600 200

epochs lead the model either to 350 A
overtraining or lack of convergence (fig. 0 100 200 300 400 500 600 700 0 0 100 150 200

below)

epoch_loss
tag: epoch_loss
600
550
500
450
400

350

300

250

200

150

100

~ "\ ) \
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50
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Data pre-processing and training - tree density mapping

(rmsel/y_pred.mean())*100

Average Error Percent
2000

e Gaussian filter generation around every tree centroid 1750 =

(kernel_size=15, sigma=4.0) :E‘S’Z
e Offline data augmentation(using imgaug library) B i
e Image upsampling to 1 m res + normalisation g ™o |
e 80% training, 20% validation . Muwu

S % w0 1m0 20 2 0 350 400
Epoch
Loss 0300 RMSE 6 r Squared
e | o |
1200 0150 050 ‘“I
600 1 E0075 ¢ o] “ m
400 0.050 -0.50 1 [ '
-0.75 | — wain 37
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200 250
Epoch
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Data pre-processing for unet-based landcover mapping

- Grid fieldname

&> Grid Layer

& Project projection

I:ﬂ:»:: Satellite Image

-® In

—®In

Extract by attribute

Out [

I:%: Veg Map Shapefile

& Label fieldname

& Resolution

"‘. Clip raster by mask layer

Out o

~® In

j'. Rasterize (vector to raster)

Out °

{@ Save label

e

& Warp (reproject)
Out e

=5 Saveimage
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Freshwater Marsh
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[ upland Forest

["] upland Scrub

[ upland Shrubland
B upland woodland
[T] water Lettuce

B wetland Forest

W wetland scrub

["] wetland shrubland
["] wetland woodland
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