
Speaking Zebra:
Applying ML methods to classify and cluster

zebra calls

Bing Xie, Barney Emmens, Aleksandra Panfilova, Keith Chew,

Matheus Valentim and Harry Desmond

1

Our project

Supervised Unsupervised

Tabular data Tabular data classification Clustering

Audio data Audio data classification Enconding and decoding
audio

● Zebras produce 4 different types of calls
● We gathered zebra sounds data via field trip
● We applied different ML techniques on that data

Classifying Tabular Data
with Random Forest Classifier

3

Data, issues and how we handled them

Easy to use and test small dataset with 413 obs and 9 features

Highly unbalanced data (snorts and whinnies)

Different scales

Some quite skewed features

Choosing among the 9 variables to avoid overfitting

Oversampling

Tree based

SHAP values and RFE

4

Modelling tabular data challenges

● The best model (Random Forest)
● The best hyperparameters (n of vars, n of trees and n to split leaf)
● Best features (4/9 or 6/9)
● Extra techniques like oversampling

RF

Dec tree

NN

XGB

Model selection Hyperparameter tuning Feature selection

SHAP values and RFE agreed on: q25,
q50,fpeak, am.var

Models attempts and fails timeline:

Accuracy Precision
(whinnie, squeal,
snort, softsnort)

Recall
(whinnie, squeal,
snort, softsnort)

Observations

Random Forest,
HP tuned

91-93 (85,67,88,0) (100,3,97,0) Initial model

RF, HP tuned +
less vars

91-95 (97,60,90,0) (95,50,99,0) 2nd Best
accuracy, no
oversampling

RF, HP tuned less
vars + us

98-99 (97,100,99,100) (100,100,99,75) Best accuracy

Decision Tree, HP
tuned

89-91 (96,50,88,100) (96,43,94,33) Highly
interpretable

Neural Networks,
HP tuned

89 (95,100,85,0) (100,33,97,0) Initial model,
Discontinued

Feature importances using SHAP values

Confusion matrices from different methods

8

RF model with 6 features (SHAP values) RF with 4 features & upsampling

Clustering Tabulated Data

9

Why?
● To find new classes for the calls

● To divide classes into sub-classes

● To visualise how the calls relate to each other

10

Preprocessing:
● Using features taken from SHAP values
● MinMax Scaling
● TSNE for dimensionality reduction

Labelled TSNE

Spectral Clustering (4) DBSCAN (3)

KMeans (4) Agglomerative clustering (3)

Plots

11

Audio Pre-processing
(Giving ML ears)

Choice of dataset

‘Good’ Labels ‘Bad’ Labels* Not-Zebra**

• More classes (snort, softsnort,
squeal, whinny)

• Less background noise
• Audio trimmed to call precisely
• Less Samples (~400)

• Only two classes (snort,
squeal)

• Lots of background noise
• Roughly trimmed audio
• Lots of samples (>1000)

• Used to detect zebras from
background noise.

• Could generate data
automatically.

* ‘Bad’ Labels contains the ‘Good’ Labels audio.
** Program written to detect this but data unavailable.

Challenge 1: Transform waveform into CNN friendly image.

1. Pad samples to same length of longest sample with zeros. Shape: (21739)

2. MEL Spectrogram. Shape: (128, 51)
3. dB

4. Normalise
5. One hot encoding. Shape: (4)

Challenge 2: (Try to) Ensure there is enough data

Augment
• (Normalise & Buffer)
• Time shift: <10%
• Volume shift: <5%
• Noise: < 0.1%
Data shape: (4, 564 ,26085)

Balance

Waveforms for MEL spectrogram

Challenge 3: Keep it manageable for a CPU.

Bad LabelsGood Labels

Final shape: (128,51)Initial shape: (128,74)

Classifying Audio Data

17

CNN Structure

Input (n_samples, 128, 51, 1) 25 epochs

Cov2D (n_filters = 30, kernel_size = 8, activation = ‘relu’)

MaxPooling2D (2x2)

Conv2D (n_filters = 26, kernel_size = 4, activation = ‘selu’)

MaxPooling2D (3x3)

Dropout (rate = 0.404)

Flatten ()

Dense (units = 94)

Dense (units = num_class)

18

1st convolutional layer

2nd convolutional layer

Space for further optimisation: architecture

Dataset split and processing

Training time: ~10 minutes, CPU

19

Training Validation Test

Balanced + - -

Augumented + - -

Implementation Optimisation, K-fold Final prediction

Results: 4 classes, ‘Good’ labels

20

Results: 2 classes, ‘Bad’ labels

21

Autoencoders

22

Aim and model

A1: Reconstruct calls
A2: Clustering
A3: Look into cNN:
- Model structure was set to the same with cNN
-

Hyperparameter optimization:
- Optimizer (Adam & SGD), Learning rate and weight_decay

were tuned by optuna
Workplace: On google colab 23

Results

Round 1:
Input
(413, 1025, 250)

24

Round 2:
Input
(400, 128, 234)

???

Too long paddings, unscaled
Big data size, crashed workplace

Results

Round 3: train on a single sample.
- If model structure is good, it should be easy to construct a near perfect

audio in a small number of epoch

25

Upcoming:
- Tune the model structure.

- Conclusion:
1. the structure of the model (cNN) learns in a way to capture the most
outstanding patterns, which is enough to classify different call types.
2. But it loses details, which makes it failed to reconstruct a call.

Results

Upcoming:
- Tune the model structure.

! Train on one sample may lead to false minimum loss.

26

Explore larger data size
- Augmented zebra dataset (1600, 128, 234)

- Try MNIST Dataset on our model structure.
60,000 training images and 10,000 testing images

Summary

27

Results summary

Number of call types: 4

The best model for classification: HP tuned RF, important variables,
upsampling tabular data (99%)

28

But maybe

Number of call types: 3 (soft snort is snort)

All other models say no to soft snort + clustering say no to soft snort

Answers to key questions:

! Considering the small dataset,
it’s hard to give any convincing
conclusion

Results summary

Answers to key questions:

How clusterings help: Argue for soft snort; sub clusters for the snort

Autoencoders: A tough task. Failed so far, but we know where to go
in the next step.

29

Next step

! Larger and more balanced dataset

Tabular data:
- Classifications: extract more features
- Clusterings: look into sub clusters of snort

Audio data:
- Classifications: Increase data resolution, RNN
- Autoencoders: many things to do
- Clusterings: other methods

30

Contributions
· Matheus worked on tabular data classification

· Keith worked on tabular data classification

· Harry worked on tabular data clustering

· Barnaby worked on audio data preprocessing and cNN

· Aleksandra worked on cNN

· Bing provided audio and tabular data, and worked on
Autoencoders. 31

Appendix

32

Exploring the data: relevant variables

33

Exploring the data: difficulties on snort classification

Exploring zebra sounds: most relevant x
least relevant vars

35

Grid Search

36

Some important decisions: variable selection

SHAP values

RandomForest Gradient Boosting

Relevant ones:
q25, q50, fpeak

RFE

37

Why? Avoid overfitting and highly
correlated features

How:

Confusion matrix

38

SHAP values

39

Confusion matrix

40

Confusion matrix comparison

Before After
41

Clustering Tabulated Data
● Cleaning: Features from SHAP values selected and MinMax Scaling

used
● TSNE, PCA and UMAP were all tried and tested, PCA was the clearest
● Many clustering methods tried and ignored such as Affinity

Clustering

Eps = 2.1176309843890464

Clusters=4

42

Optuna hyperparameters search space (4 classes)

43

N
epoc
h

Learning
rate

Filters
1&2

Kernels
1&2

Activation 1&2 Pool size
1&2

Dropout
rate

1st
Dense
layer
units

Low 15 1e-4 8 16 6 4 1) Rectified Linear
Unit,
2) Hyperbolic
Tangent,
3) Scaled
Exponential Linear
Unit,
4) Exponential Linear
Units

2 0.3 70

Hight 40 1e-3 30 60 12 12 4 0.6 126

Step 5 Random
float

2 2 2 2 1 Random
float

4

Best
trial
number

25 0.000835 30 26 8 4 1st: ReLU
2nd: SeLU

1st: 2
2nd: 3

0.404 94

Audio Pre-processing
Appendix

EBI (Even Better If)
• Use a GPU to do more optimising/training

• Increase resolution of spectrograms

• Have more data

• Normalise as final step only

• Don’t use volume shift augmentation

• When recording, use multiple microphones (real life augmentation)

Lessons Learnt
• Start with low resolution then increase IF NEEDED.

• No point augmenting with volume if data is normalised.

• Don’t use compound scaling (numerical errors may develop).

• Label files more consistently.

• Starting again is sometimes faster than adapting pre-existing code.

• Don’t use augmentations of train data as validation/test data (just in
case).

Dud Methods Pre-processing
Adding noise to the whole sample is much faster than adding it to just the section of the sample with audio so we swapped to
that.

We didn’t use dB originally

Streamline the loading method so that it can be done easily and stored for later

The labels were originally assigned from the tabulated data, bu then we swapped to using the filenames and generating a set of
labels from them.

We originally had multiples of the augmentations, but reduced them to one of each type to save space.

Some augmentations may actually be zero because they are assigned randomly (so that the NN doesn’t start detecting
augmentations)

The non zebra classification would have run the same way as the binary classification but with different labels. We would have
randomly chopped up the long audiofile (from which the samples are taken) and used that as non-zebra samples. The chance of a
zebra being wrongly labeled as not azebra was probably sufficiently low for this to be a quick and easy method.

It would have been better to not use notebooks for formatting data as the cells (or me) often got confused.

Many of the processing functions were written by me but may exist already (for example i found one for padding), using these
would probably be better optimised and easier to keep track of. (although i learned a lot about python writing them) (the audio
loading functions are in barney_functions).

It would be much better if all the audio files were the same length and had background noise rather than padding. (a la bad labels)

47

CNN thoughts
We could have built the optimiser to test different architectures (number convs or dense layers for example).

It might have been a good idea to build two networks. One for longer calls and one for shorter calls, this would mean we wouldn’t have to waste time
convolving mostly empty images.

A function that that split and augmented only the train data would have been very convenient.

We could have built in a voting system that could use the tabulated data as well, as the two different methods probably pick up on different and
hopefully complementary features.

The validation accuracy curves seemed to be not very smooth compared to the training data. This might have been because the validation sets were
too small… more data required or augmentation of the validation set? (For cross validation we could have used less folds to increased the size of the
validation set, at the cost of training data)

Our metric for validation might not have been ideal for the unbalanced data set, maybe f1 would have been more appropriate as cases where the less
popular class were ignored weren’t necessarily fairly penalized.

Without a more powerful computer it is hard to know if the reduction in resolution of the data is the cause of the lower accuracy than tabulated data
or wether the model itself is worse.

We never tried using pretrained model like resnet, maybe this would have helped.

Other ML libraries like pytorch might run faster than tensorflow?

When optimising, the optimiser often pruned the trial within the first couple of epochs, maybe giving it more patience (somehow?) would have
allowed us to find a better set of hyperparameters. (At the cost of time).

The final model was taken from the last fold of the cross validation. It might have been more efficient to retrain the model using the train and
validation set before testing it on the test set. (To squeak out just a little more data in the evaluation)

The ‘bad’ labels model did better than the ‘good’ labels indication that the quality of the data was relatively sufficient. QUANTITY IS KING.

48

Example dataset reduction methods
• Halve the sample rate (10kHz max frequency)

• Remove longest files

• Reduce time shift range/padding

• Add noise to padding and the sound (speeds up preprocessing)

• Use compressed files to send dataset to CNN

• Use MEL spectrogram (1/10th Hz resolution compared to STFT)

Appendix
• We halved the original sample rate to reduce dataset size

• We had to be check test,train,val contained all classes

• STFT has higher default resolution.

STFT

CNN Notes
• tf.keras. model

• Optuna optimisation

• Kfolding (sklearn)

• Confusion matrix

Binary Model Structure
• Input (n_samples, n_rows = 128, n_cols = 51, n_channels = 1)

• Cov2D (n_filters = 18, kernel_size = 16)

• MaxPooling2D (pool_size = 2)

• Conv2D (42,8)

• MaxPooling2D (2)

• Dropout (rate = 0.15)

• Flatten

• Dense (Activation = ‘relu’, n_neurons = 31)

• Dense (Output) (‘softmax’, 2)

n_epochs = 25

Batch_size = 384

Adam(learning_rate = 0.000350)

Loss = categorical_crossentropy

Metric = categorical_accuracy

Train data shape:
(7016, 128, 51, 1)
Validation data shape:
(127, 128, 51, 1)
Test data shape:
 (127, 128, 51, 1)

Train Accuracy:
0.9947
Validation Accuracy:
0.9528
Test Accuracy
0.921
(overfitting?)

Autoencoders on augmented dataset

53

Explore larger data size
- Augmented dataset (1600, 128, 234)
- No improvement so far

