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Our project

Supervised Unsupervised

Tabular data Tabular data classification Clustering

Audio data Audio data classification Enconding and decoding 
audio

● Zebras produce 4 different types of calls
● We gathered zebra sounds data via field trip
● We applied different ML techniques on that data



Classifying Tabular Data
with Random Forest Classifier
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Data, issues and how we handled them

Easy to use and test small dataset with 413 obs and 9 features 

Highly unbalanced data (snorts and whinnies)

Different scales 

Some quite skewed features

Choosing among the 9 variables to avoid overfitting

Oversampling 

Tree based

SHAP values and RFE 
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Modelling tabular data challenges

● The best model (Random Forest)
● The best hyperparameters (n of vars, n of trees and n to split leaf)
● Best features (4/9 or 6/9)
● Extra techniques like oversampling 

RF

Dec tree

NN

XGB

Model selection Hyperparameter tuning Feature selection

SHAP values and RFE agreed on: q25, 
q50,fpeak, am.var



Models attempts and fails timeline:

Accuracy Precision
(whinnie, squeal, 
snort, softsnort)

Recall
(whinnie, squeal, 
snort, softsnort)

Observations

Random Forest, 
HP tuned

91-93 (85,67,88,0) (100,3,97,0) Initial model

RF, HP tuned + 
less vars

91-95 (97,60,90,0) (95,50,99,0) 2nd Best 
accuracy, no 
oversampling

RF, HP tuned less 
vars + us

98-99 (97,100,99,100) (100,100,99,75) Best accuracy

Decision Tree, HP 
tuned

89-91 (96,50,88,100) (96,43,94,33) Highly 
interpretable

Neural Networks, 
HP tuned

89 (95,100,85,0) (100,33,97,0) Initial model,
Discontinued



Feature importances using SHAP values



Confusion matrices from different methods
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RF model with 6 features (SHAP values) RF with 4 features & upsampling



Clustering Tabulated Data
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Why?
● To find new classes for the calls

● To divide classes into sub-classes

● To visualise how the calls relate to each other
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Preprocessing:
● Using features taken from SHAP values
● MinMax Scaling
● TSNE for dimensionality reduction



Labelled TSNE

Spectral Clustering (4) DBSCAN (3)

KMeans (4) Agglomerative clustering (3)

Plots
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Audio Pre-processing
(Giving ML ears)



Choice of dataset

‘Good’ Labels ‘Bad’ Labels* Not-Zebra**

• More classes (snort, softsnort, 
squeal, whinny)

• Less background noise
• Audio trimmed to call precisely
• Less Samples (~400)

• Only two classes (snort, 
squeal)

• Lots of background noise
• Roughly trimmed audio
• Lots of samples (>1000)

• Used to detect zebras from 
background noise.

• Could generate data 
automatically.

* ‘Bad’ Labels contains the ‘Good’ Labels audio.
** Program written to detect this but data unavailable.



Challenge 1: Transform waveform into CNN friendly image.

1. Pad samples to same length of longest sample with zeros. Shape:  (21739)

2. MEL Spectrogram. Shape: (128, 51)
3. dB

4. Normalise
5. One hot encoding. Shape: (4)



Challenge 2: (Try to) Ensure there is enough data

Augment
• (Normalise & Buffer)
• Time shift: <10%
• Volume shift: <5%
• Noise: < 0.1%
Data shape: (4, 564 ,26085)

Balance

Waveforms for MEL spectrogram



Challenge 3: Keep it manageable for a CPU. 

Bad LabelsGood Labels

Final shape: (128,51)Initial shape: (128,74)



Classifying Audio Data
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CNN Structure

Input (n_samples, 128, 51, 1)                                                                         25 epochs

Cov2D (n_filters = 30, kernel_size = 8, activation = ‘relu’)

MaxPooling2D (2x2)

Conv2D (n_filters = 26, kernel_size = 4, activation = ‘selu’)

MaxPooling2D (3x3)

Dropout (rate = 0.404)

Flatten ()

Dense (units = 94)

Dense (units = num_class)
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1st convolutional layer

2nd convolutional layer

Space for further optimisation: architecture



Dataset split and processing 

Training time: ~10 minutes, CPU
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Training Validation Test

Balanced + - -

Augumented + - -

Implementation Optimisation, K-fold Final prediction



Results: 4 classes, ‘Good’ labels
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Results: 2 classes, ‘Bad’ labels
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Autoencoders
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Aim and model

A1: Reconstruct calls
A2: Clustering
A3: Look into cNN:
- Model structure was set to the same with cNN
-

Hyperparameter optimization: 
- Optimizer (Adam & SGD), Learning rate and weight_decay 

were tuned by optuna
Workplace: On google colab 23



Results

Round 1:
Input 
(413, 1025, 250)

24

Round 2:
Input 
(400, 128, 234)

???

Too long paddings, unscaled
Big data size, crashed workplace



Results

Round 3: train on a single sample.
- If model structure is good, it should be easy to construct a near perfect 

audio in a small number of epoch
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Upcoming: 
- Tune the model structure.

- Conclusion: 
1. the structure of the model (cNN) learns in a way to capture the most 
outstanding patterns, which is enough to classify different call types.
2. But it loses details, which makes it failed to reconstruct a call.



Results

Upcoming: 
- Tune the model structure.

! Train on one sample may lead to false minimum loss.

26

Explore larger data size
- Augmented zebra dataset (1600, 128, 234)

- Try MNIST Dataset on our model structure.
60,000 training images and 10,000 testing images



Summary
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Results summary

Number of call types: 4

The best model for classification: HP tuned RF, important variables, 
upsampling tabular data (99%)
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But maybe

Number of call types: 3 (soft snort is snort)

All other models say no to soft snort + clustering say no to soft snort

Answers to key questions: 

! Considering the small dataset, 
it’s hard to give any convincing 
conclusion



Results summary

Answers to key questions: 

How clusterings help: Argue for soft snort; sub clusters for the snort

Autoencoders: A tough task. Failed so far, but we know where to go 
in the next step.

29



Next step

! Larger and more balanced dataset

Tabular data: 
- Classifications: extract more features
- Clusterings: look into sub clusters of snort

Audio data: 
- Classifications: Increase data resolution, RNN
- Autoencoders: many things to do
- Clusterings: other methods
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Contributions
·  Matheus worked on tabular data classification

·  Keith worked on tabular data classification

·  Harry worked on tabular data clustering

·  Barnaby worked on audio data preprocessing and cNN

·  Aleksandra worked on cNN

·  Bing provided audio and tabular data, and worked on 
Autoencoders. 31



Appendix
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Exploring the data: relevant variables
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Exploring the data: difficulties on snort classification



Exploring zebra sounds: most relevant x 
least relevant vars
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Grid Search
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Some important decisions: variable selection

SHAP values

RandomForest Gradient Boosting

Relevant ones:
q25, q50, fpeak

RFE
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Why? Avoid overfitting and highly 
correlated features

How:



Confusion matrix
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SHAP values
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Confusion matrix
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Confusion matrix comparison

Before After
41



Clustering Tabulated Data
● Cleaning: Features from SHAP values selected and MinMax Scaling 

used
● TSNE, PCA and UMAP were all tried and tested, PCA was the clearest
● Many clustering methods tried and ignored such as Affinity 

Clustering

Eps = 2.1176309843890464

Clusters=4
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Optuna hyperparameters search space (4 classes)
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N 
epoc
h

Learning 
rate

Filters 
1&2

Kernels 
1&2

Activation 1&2 Pool size 
1&2

Dropout 
rate

1st 
Dense 
layer 
units 

Low 15 1e-4 8 16 6 4 1) Rectified Linear 
Unit, 
2) Hyperbolic 
Tangent,
3) Scaled 
Exponential Linear 
Unit, 
4) Exponential Linear 
Units

2 0.3 70

Hight 40 1e-3 30 60 12 12 4 0.6 126

Step 5 Random 
float

2 2 2 2 1 Random 
float
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Best 
trial 
number

25 0.000835 30 26 8 4 1st: ReLU
2nd: SeLU

1st: 2
2nd: 3

0.404 94



Audio Pre-processing 
Appendix



EBI (Even Better If)
• Use a GPU to do more optimising/training

• Increase resolution of spectrograms

• Have more data

• Normalise as final step only

• Don’t use volume shift augmentation

• When recording, use multiple microphones (real life augmentation)



Lessons Learnt
• Start with low resolution then increase IF NEEDED.

• No point augmenting with volume if data is normalised.

• Don’t use compound scaling (numerical errors may develop).

• Label files more consistently.

• Starting again is sometimes faster than adapting pre-existing code.

• Don’t use augmentations of train data as validation/test data (just in 
case). 



Dud Methods Pre-processing
Adding noise to the whole sample is much faster than adding it to just the section of the sample with audio so we swapped to 
that.

We didn’t use dB originally

Streamline the loading method so that it can be done easily and stored for later

The labels were originally assigned from the tabulated data, bu then we swapped to using the filenames and generating a set of 
labels from them.

We originally had multiples of the augmentations, but reduced them to one of each type to save space. 

Some augmentations may actually be zero because they are assigned randomly (so that the NN doesn’t start detecting 
augmentations)

The non zebra classification would have run the same way as the binary classification but with different labels. We would have 
randomly chopped up the long audiofile (from which the samples are taken) and used that as non-zebra samples. The chance of a 
zebra being wrongly labeled as not azebra was probably sufficiently low for this to be a quick and easy method.

It would have been better to not use notebooks for formatting data as the cells (or me) often got confused.

Many of the processing functions were written by me but may exist already (for example i found one for padding), using these 
would probably be better optimised and easier to keep track of. (although i learned a lot about python writing them) (the audio 
loading functions are in barney_functions).

It would be much better if all the audio files were the same length and had background noise rather than padding. (a la bad labels)
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CNN thoughts
We could have built the optimiser to test different architectures (number convs or dense layers for example).

It might have been a good idea to build two networks. One for longer calls and one for shorter calls, this would mean we wouldn’t have to waste time 
convolving mostly empty images.

A function that that split and augmented only the train data would have been very convenient.

We could have built in a voting system that could use the tabulated data as well, as the two different methods probably pick up on different and 
hopefully complementary features.

The validation accuracy curves seemed to be not very smooth compared to the training data. This might have been because the validation sets were 
too small… more data required or augmentation of the validation set? (For cross validation we could have used less folds to increased the size of the 
validation set, at the cost of training data)

Our metric for validation might not have been ideal for the unbalanced data set, maybe f1 would have been more appropriate as cases where the less 
popular class were ignored weren’t necessarily fairly penalized.

Without a more powerful computer it is hard to know if the reduction in resolution of the data is the cause of the lower accuracy than tabulated data 
or wether the model itself is worse.

We never tried using pretrained model like resnet, maybe this would have helped.

Other ML libraries like pytorch might run faster than tensorflow?

When optimising, the optimiser often pruned the trial within the first couple of epochs, maybe giving it more patience (somehow?) would have 
allowed us to find a better set of hyperparameters. (At the cost of time).

The final model was taken from the last fold of the cross validation. It might have been more efficient to retrain the model using the train and 
validation set before testing it on the test set. (To squeak out just a little more data in the evaluation)

The ‘bad’ labels model did better than the ‘good’ labels indication that the quality of the data was relatively sufficient. QUANTITY IS KING.
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Example dataset reduction methods
• Halve the sample rate (10kHz max frequency)

• Remove longest files

• Reduce time shift range/padding

• Add noise to padding and the sound (speeds up preprocessing)

• Use compressed files to send dataset to CNN

• Use MEL spectrogram (1/10th Hz resolution compared to STFT)



Appendix
• We halved the original sample rate to reduce dataset size

• We had to be check test,train,val contained all classes

• STFT has higher default resolution.

STFT



CNN Notes
• tf.keras. model

• Optuna optimisation

• Kfolding (sklearn)

• Confusion matrix
 



Binary Model Structure
• Input     (n_samples, n_rows = 128, n_cols = 51, n_channels = 1)

• Cov2D     (n_filters = 18, kernel_size = 16)

• MaxPooling2D    (pool_size = 2)

• Conv2D     (42,8)

• MaxPooling2D    (2)

• Dropout     (rate = 0.15)

• Flatten

• Dense     (Activation = ‘relu’, n_neurons = 31)

• Dense (Output)  (‘softmax’, 2)

n_epochs = 25

Batch_size = 384

Adam(learning_rate = 0.000350)

Loss = categorical_crossentropy

Metric = categorical_accuracy

Train data shape: 
(7016, 128, 51, 1) 
Validation data shape: 
(127, 128, 51, 1) 
Test data shape:
 (127, 128, 51, 1)

Train Accuracy:
0.9947
Validation Accuracy:
0.9528
Test Accuracy
0.921
(overfitting?)



Autoencoders on augmented dataset

53

Explore larger data size
- Augmented dataset (1600, 128, 234)
- No improvement so far


